Andrew D. Kent **Center for Quantum Phenomena Department of Physics New York University**

Funding:

Energy Frontiers Research Center

Quantum-Materials for Energy Efficient Neuromorphic-Computing

SPICE-SPIN+X Seminar: June 16th, 2021

Center for Quantum Phenomena

C. Safranski *et al.*, PRL **124**, 197204 (2020)

SPICE-SPIN+X Seminar: June 16th, 2021

L. Rehm *et al.*, APL **115**, 182404 (2019) L. Rehm et al., PR Appl. 15, 034088 (2021)

Outline

- Introduction: Spin torques and spin-orbit torques
- tunnel junction nanopillars
- Planar Hall effect spin torques

SPICE-SPIN+X Seminar: June 16th, 2021

• Charge-to-spin conversion efficiency in switching perpendicular magnetic

Outline

- Introduction: Spin torques and spin-orbit torques
- tunnel junction nanopillars
- Planar Hall effect spin torques

SPICE-SPIN+X Seminar: June 16th, 2021

• Charge-to-spin conversion efficiency in switching perpendicular magnetic

Prediction of Spin-Transfer Torques

2013 Oliver E. Buckley Prize John Slonczewski

Luc Berger

Citation:

"For predicting spin-transfer torque and opening the field of current-induced control over magnetic nanostructures."

Foundational papers:

- J. C. Slonczewski, Phys. Rev. B. 39, 6996 (1989)
- J. C. Slonczewski, J. Magn. Magn. Mater. **159**, L1 (1996)
- L. Berger, Phys. Rev. B 54, 9353 (1996)

SPICE-SPIN+X Seminar

Prediction of Spin-Transfer Torque $\mathcal{B}_{F}^{(E_{F})}$

PHYSICAL REVIEW B

Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier

IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (Received 27 June 1988)

A theory is given for three closely related effects involving a nonmagnetic electron-tunneling barrier separating two ferromagnetic conductors. The first is Julliere's magnetic valve effect, in which the tunnel conductance depends on the angle θ between the moments of the two ferromagnets. One finds that discontinuous change of the potential at the electrode-barrier interface diminishes the spin-polarization factor governing this effect and is capable of changing its sign. The second is an effective interfacial exchange coupling $-J\cos\theta$ between the ferromagnets. One finds that the magnitude and sign of J depend on the height of the barrier and the Stoner splitting in the ferromagnets. The third is a new, irreversible exchange term in the coupled dynamics of the ferromagnets. For one sign of external voltage V, this term describes relaxation of the Landau-Lifshitz type. For the opposite sign of V, it describes a pumping action which can cause spontaneous growth of magnetic oscillations. All of these effects were investigated consistently by analyzing the transmission of charge and spin currents flowing through a rectangular barrier separating free-electron metals. In application to Fe-C-Fe junctions, the theory predicts that the valve effect is weak and that the coupling is antiferromagnetic (J < 0). Relations connecting the three effects suggest experiments involving small spatial dimensions.

In magnetic tunnel junctions

L. Berger, PRB **54**, 9353 (1996)

SPICE-SPIN+X Seminar

VOLUME 39, NUMBER 10

1 APRIL 1989

J. C. Slonczewski

$$\mathrm{TMR} = rac{2P_1P_2}{1-P_1P_2}$$

FIG. 6. Scheme of spin-vector dynamics due to the tra verse terms of dissipative exchange coupling induced by external voltage across the barrier.

Applications: Magnetic Random Access Memory, STT-MRAM

Nature Nanotechnology, March 2015 Spin-transfer-torque memory

Basic Physics of Spin Transfer

Based on conservation of angular momentum

 $1 \ dM$ γdt magnetization itinerant charge

Reference layer 'sets' spin-polarization of current Enables readout of magnetization state through the tunnel magnetoresistance (TMR), giant magnetoresistance (GMR), or anisotropic magnetoresistance (AMR) effects

SPICE-SPIN+X Seminar

$$+ \frac{d\vec{S}_{\text{int}}}{dt} = 0$$

7

Charge Current to Spin Current Conversion

Ferromagnetic layers to polarize the current

Spin-polarization direction set by reference layer magnetization direction

Spin torque foundational theory papers:

- J. C. Slonczewski, Phys. Rev. B. **39**, 6996 (1989)
- J. C. Slonczewski, J. Magn. Magn. Mater. **159**, L1 (1996)
- L. Berger, Phys. Rev. B 54, 9353 (1996)

SPICE-SPIN+X Seminar

Spin-orbit torques

Spin-polarization direction set by layer geometry and current flow direction

Heavy metals/Ferromagnet bilayers M. Miron *et al.*, Nature Materials 2010 L. Liu *et al.*, Science 2012

Review article: J. Sinova et al., Spin Hall Effects, RMP 87, 1213 (2015)

Charge Current to Spin Current Conversion

spin-current density charge current density

 $J_s/J_c \simeq P$ $I_{\rm s}/I_{\rm c}\simeq P$

spin current is $\hbar J_{\rm s}/(2e)$

 $\mathbf{Q} \sim \hat{m}_{\mathrm{RL}} \otimes \hat{z}$

Polarization \otimes Flow direction

FL

RL

Spin torque foundational theory papers:

J. C. Slonczewski, Phys. Rev. B. **39**, 6996 (1989)

- J. C. Slonczewski, J. Magn. Magn. Mater. **159**, L1 (1996)
- L. Berger, Phys. Rev. B 54, 9353 (1996)

SPICE-SPIN+X Seminar

Heavy metals/Ferromagnet bilayers M. Miron *et al.*, Nature Materials 2010 L. Liu *et al.*, Science 2012

Review article: J. Sinova et al., Spin Hall Effects, RMP 87, 1213 (2015)

Outline

- Introduction: Spin torques and spin-orbit torques
- magnetic tunnel junction nanopillars
- Planar Hall effect spin torques

SPICE-SPIN+X Seminar

Charge-to-spin conversion efficiency in switching perpendicular

nature materials

A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction

S. Ikeda^{1,2}*, K. Miura^{1,2,3}, H. Yamamoto^{1,2,3}, K. Mizunuma², H. D. Gan¹, M. Endo², S. Kanai², J. Hayakawa³, F. Matsukura^{1,2} and H. Ohno^{1,2}*

microscope.

Also, D.C. Worledge et al., Applied Physics Letter 98, 022501 (2011) Perspective: A. D. Kent, Perpendicular all the way, Nature Materials 9, 699 (2010)

SPICE-SPIN+X Seminar

Magnetic Tunnel Junction Nanopillars

A. D. Kent and D. C. Worledge, "A new spin on magnetic memories," Nature Nanotechnology **10**, 187 (2015) H. Liu et al., "Dynamics of spin torque switching in all-perpendicular spin valve nanopillars," JMMM 358, 233 (2014) SPICE-SPIN+X Seminar

$$\frac{N_s}{N_c} = \frac{P}{(1+P^2)\ln(4\sqrt{\pi\Delta})} \simeq 0.11$$

$$\Delta = E_b / (k_B T)$$

SPICE-SPIN+X Seminar

Outline

- Introduction: Spin torques and spin-orbit torques
- tunnel junction nanopillars
- Planar Hall effect spin torques

• Charge-to-spin conversion efficiency in switching perpendicular magnetic

- Separating read/write paths can
 - Allow separate optimization of read/write channels
 - Increase barrier longevity
 - Eliminate reference layer switching instabilities
- Spin Hall and Rashba effects can be used to generate spin current.

Spin Orbit Torques

I. M. Miron et al. "Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer," Nature Materials **9**, 230(2010)

Charge-to-spin conversion

- in the interface plane. (Exception are materials with low crystalline symmetries, e.g. TMDs.) •These are ideal for switching *in-plane* magnetized element
- exert torques on an adjacent magnetic layer and switch perpendicularly magnetized elements

SPICE-SPIN+X Seminar

$$\hat{\mathbf{p}}||\hat{\mathbf{m}})$$

From C. Safranski, E. A. Montoya & I. N. Krivorotov, Nature Nanotechnology 14, 27 (2019)

• Spin-orbit coupling in non-magnetic materials (e.g. by Spin-Hall, Rashba and in TIs) leads to spin-polarization

$$I_c \simeq \frac{\alpha}{P} \frac{4\ddot{e}}{\hbar} E_b(1+D), \qquad D = \frac{M_{\text{eff}}}{H_k}$$

• A goal of spintronics is to covert a charge current into a spin current with a controlled spin polarization that can

$$\mathbf{J}_{\mathbf{s}} = \eta \frac{\hbar}{2e} (\hat{m} \cdot \mathbf{J}_{\mathrm{dc}}) \, \hat{m}$$

- Spin current needs to be injected into nearby FM lacksquare
- Thus only the z component of current is important ullet

$$J_{sz} = \eta \frac{\hbar}{2e} (\hat{m} \cdot \hat{x})(\hat{m} \cdot \hat{z}) J_{dc} = \eta \frac{\hbar}{2e} \cos \theta$$

T. Taniguchi, J. Grollier & M. Stiles, PR Applied **3**, 044001 (2015) K. D. Belashchenko et al., PR Materials 3, 011401 (2019) & PRB 101, 020407 (2020) V. P. Amin, J. Zemen & M. D. Stiles. Interface-generated spin currents. PRL 121, 136805 (2018) V. P. Amin, P. M. Haney & M. D. Stiles, "Interfacial spin-orbit torques," arXiv:2008.01182

Planar Hall Driven Spin Current

Patterned Samples

• 400 nm x 3 μ m bridges

SiO₂/Ta(3)/Pt(3)/[Co(0.65)/Ni(0.98)]x2/Co(0.65)/Au(3)/CoFeB(1.5)/Ta(3)

SPICE-SPIN+X Seminar

- CoNi has large AMR and is grown with perpendicular anisotropy
- •CoFeB has small AMR and is grown to be weakly in-plane
- •A ~0.1 Tesla field can saturate both layers

 Angular dependence of resonance field with *f*=14 GHz drive can identify the layer's modes.

$$\left(\frac{\omega}{\gamma}\right)^2 = \mu_0^2 (H - M_{\text{eff}} \cos 2\theta) (H - M_{\text{eff}} \cos^2 \theta)$$
$$M_{\text{eff}} = M_s - H_p$$

- CoNi has out-of-plane anisotropy ($M_{\rm eff} < 0$): $H_{\rm res}$ large for H in-plane
- CFB has in-plane anisotropy ($M_{\rm eff} > 0$): $H_{\rm res}$ large for H out-of-plane

- We work at high enough frequency so that the applied fields saturate both FM's magnetizations parallel to the applied field.
- Application of DC current changes the resonances linewidths

$$\Delta H = \Delta H_0 + 2\alpha \frac{\omega}{\gamma} + \frac{\hbar}{e} \frac{\eta}{M_s t_{\rm FM}} \frac{I_{dc}}{w t_{\rm tot}} \cos \frac{\omega}{2}$$

ST-FMR Bias Dependence

 $s \theta \sin \theta$

- Observe linear modulation of resonance linewidth for both layers.
- The slope is proportional to the charge to spin conversion efficiency

$d\Delta H$	ħ	η	$\cos\theta\sin\theta$
$dI_{\rm dc}$	e	$M_s t_{\rm FM}$	wt _{tot}

Linewidth vs Bias

Linewidth vs Bias

• Changing the z component of the field changes the sign of the spin-torques

Slope of linewidth vs bias follows expected angular dependence:

$d\Delta H$	ħ	η	$\cos\theta\sin\theta$
dI_{dc}	- <u>e</u>	$M_s t_{FM}$	wt _{tot}

•Overall charge to spin conversion efficiency:

- •CFB $\eta = 0.05$ •CoNi $\eta = 0.09$
- •Similar conversion efficiency as spin Hall effect in materials like Pt.

SPICE-SPIN+X Seminar

C. Safranski, J. Z. Sun, J-W. Xu and ADK, PRL **124**, 197204 (2020)

Spin Currents Set By Magnetization

SPICE-SPIN+X Seminar

$$\mathbf{Q} = \frac{-\hbar}{2\mathbf{e}} \xi \sigma_{\text{SHE}}(\hat{z} \times \mathbf{E}) \otimes \hat{z}$$
Polarization \otimes Flow direction

Angular Symmetry

Spin Charge Effect	Spin Polarization	Spin Flow Direction	Symmetry Under Field Reversal *		
Spin Hall	ŷ	\hat{z}	Odd		
Anomalous Hall	m	$\mathbf{m} \times \hat{x}$	Odd		
Planar Hall	m	$\mathbf{m}(\mathbf{m}\cdot\hat{\mathbf{x}})$	Even		
Spin Seebeck	m	\hat{z}	Even		
*Symmetry of anti-damping torque under field reversel with fixed current direction					

CFB CoNi

C. Safranski, J. Z. Sun, J-W Xu and ADK, PRL 124, 197204 (2020) SPICE-SPIN+X Seminar

Symmetry of anti-damping torque under neid reversal with fixed current direction

Summary

- Spin torque switching in perpendicular MTJ nanopillars -Charge-to-spin conversion efficiency can be 0.23 for switching!
- Spin orbit torques with planar Hall effect symmetry have been observed in CoNi multilayers
 - -Charge-to-spin conversion efficiency (~0.05) is on par with the Spin Hall effect in Pt.
 - -The spin polarization can be partially out-of-plane, making the PHE a candidate for deterministic switching of perpendicularly magnetized MTJs

https://www.spintalks.org/talks/safranski

PRL **124**, 197204 (2020)

SPICE-SPIN+X Seminar

Kent Group

http://www.physics.nyu.edu/kentlab/

POSTDOCTORAL POSITION: ANTIFERROMAGNETIC SPINTRONICS @ NYU

Description: A postdoctoral position is available in Prof. Andrew Kent's research group in the Center for Quantum Phenomena of the Department of Physics. The research focus is on antiferromagnetic spintronics, specifically spin-transport phenomena in thin films of antiferromagnetic insulators and at their interfaces with heavy metals, ferrimagnets and ferromagnets. The successful candidate will work within a multiuniversity and national lab team with expertise in thin film materials, magnetic imaging, measurement, nanofabrication and modeling. Experience with electronic transport and magnetic measurements, magnetic imaging (e.g. x-ray), thin film deposition, nanofabrication and magnetic characterization methods is desirable. Good communication, writing and interpersonal skills are essential.

Email: andy.kent@nyu.edu **Posted: NYU Physics/Interfolio websites soon**

R. Lebrun et al., Nature **561**, 222 (2018) SPICE-SPIN+X Seminar

Acknowledgments

Collaborators

NYU Team: Dirk Backes^{*}, Gabriel Chaves^{*}, Eason Chen^{*}, Ege Cogulu, Daniel Gopman^{*}, Christian Hahn*, Jinting Hang*, Yu-Ming Hung*, Marion Lavanant*, Ferran Macia*, Jamileh Beik Mohammadi*, Daniele Pinna*, Laura Rehm, Debangsu Roy*, Sohrab Sani*, Nahuel Statuto, Volker Sluka*, Georg Wolf*, Li Ye* Yassine Quessab, **Haowen Ren & Junwen Xu** (*=group alumni) -NIST: Hans Nembach and Justin Shaw -Advanced Light Source, Berkeley: Rajesh V. Chopdekar & Hendrik Ohldag -IBM T. J. Watson Research Center: Chris Safranski & Jonathan Z. Sun -NYU: Gabriel Chaves and Dan Stein -University of Barcelona and ICMAB-CSIC: Nahuel Statuto & Ferran Macia -Ohio State University: Fengyuan Yang -UVA: Joseph Poon and Avik Ghosh -UC Santa Cruz: David Lederman -University of Central Florida: Enrique del Barco -BBN Raytheon: Tom Ohki, Colm Ryan & Graham Rolands -Spin Memory: Georg Wolf, Bartek Kardasz, Steve Watts & Mustafa Pinarbasi -University of Buffalo: Igor Zutic -Wayne State: Alex Matos Abiague -University of Lorraine: Stephane Mangin -U. Paris Saclay, C2N: Dafine Ravelosona -UCSD: Eric Fullerton

