

Alexander Mook

University of Basel

Interacting and higher-order topological spin excitations

Spintronics

🖙 Hirohata et al., J. Mag. Mag. Mat., 509, 166711 (2020)

Magnon Spintronics

Chumak et al., Nature Physics 11, 453–461 (2015)

Magnons

Interacting localized spin moments

$$\hat{H} = \sum_{i,j} \hat{\mathbf{S}}_i \cdot \mathbb{I}_{i,j} \cdot \hat{\mathbf{S}}_j - \sum_i \mathbf{B} \cdot \hat{\mathbf{S}}_i$$

Classical: Landau-Lifshitz-Gilbert equation

$$\dot{\mathbf{S}}_{i} = -\frac{\gamma}{\mu \left(1 + \alpha^{2}\right)} \left[\mathbf{S}_{i} \times \mathbf{B}_{i}^{\text{eff}} + \alpha \mathbf{S}_{i} \times \left(\mathbf{S}_{i} \times \mathbf{B}_{i}^{\text{eff}}\right) \right]$$

Quantum: Holstein-Primakoff transformation from spins $\hat{\mathbf{S}}_r$ to bosons $\hat{a}_r^{(\dagger)}$

$$\hat{\mathbf{S}}_{r} = \sqrt{\frac{S}{2}} \left[\left(\hat{f}_{r} \hat{a}_{r} + \hat{a}_{r}^{\dagger} \hat{f}_{r} \right) \hat{\mathbf{x}}_{r} - i \left(\hat{f}_{r} \hat{a}_{r} - \hat{a}_{r}^{\dagger} \hat{f}_{r} \right) \hat{\mathbf{y}}_{r} \right] + \left(S - \hat{a}_{r}^{\dagger} \hat{a}_{r} \right) \hat{\mathbf{z}}_{r}, \quad \hat{f}_{r} = \sqrt{1 - \frac{\hat{a}_{r}^{\dagger} \hat{a}_{r}}{2S}}$$
$$\hat{H} = \hat{H}_{0} + \hat{H}_{1} + \hat{H}_{2} + \hat{H}_{3} + \dots$$

Magnons

Spintronics: Spin Seebeck effect

Nonequilibrium spin current caused by temperature gradient: $\langle J_{\gamma} \rangle = \chi_{\gamma} \nabla T$

III, 103903 (2012); III, 103903 (2012);

🖙 Kikkawa et al., PRL 110, 067207 (2013)

Rezende et al., J. Appl. Phys. 126, 151101 (2019)

IS Wu et al., PRL 116, 097204 (2016)

Magnon spin transport in noncollinear magnets

Nonequilibrium spin current caused by temperature gradient: $\langle J_{\gamma} \rangle = \chi_{\gamma} \nabla T$

AM, Neumann, Henk, Mertig, PRB 100, 100401(R) (2019); AM, Neumann, Johansson, Henk, Mertig, PRRes 2, 023065 (2020); Neumann, AM, Henk, Mertig, PRL 125, 117209 (2020)

🖙 See also: Okuma, PRL 119, 107205 (2017); Flebus et al., PRB 99, 224410 (2019); Li et al., PRRes 2, 013079 (2020)

Magnonic thermal Edelstein effect

Nonequilibrium spin-polarization caused by temperature gradient: $\langle S \rangle = \chi \nabla T$

102 Li, AM, Raeliarijaona, Kovalev, PRB 101, 024427 (2020)

🖙 See also: Shitade, Yanase, PRB 100, 224416 (2019); Zhang, Cheng, Appl. Phys. Lett. 117, 222402 (2020)

Topological magnonics

🖙 Shindou et al., PRB 87, 174427 (2013)

128 Hasan, Kane, Rev. Mod. Phys. 82, 3045 (2010)

Topological magnon insulators

Cu(1,3-benzenedicarboxylate)

Chisnell et al., PRL 115, 147201 (2015) & press release;
Katsura et al., PRL 104, 066403 (2010); Zhang et al., PRB

87, 144101 (2013)

Chern number

$$C_n = \frac{1}{2\pi} \int_{BZ} \Omega_n(\boldsymbol{k}) d\boldsymbol{k}$$
$$\Omega_n(\boldsymbol{k}) = i \langle \boldsymbol{\nabla}_{\boldsymbol{k}} u_n(\boldsymbol{k}) | \times | \boldsymbol{\nabla}_{\boldsymbol{k}} u_n(\boldsymbol{k}) \rangle$$

Bulk-boundary correspondence

IS AM, Henk, Mertig, PRB 90, 024412 (2014)

Honeycomb lattice ferromagnet

$$\hat{H} = \frac{1}{2} \sum_{\langle \mathbf{r}, \mathbf{r}' \rangle} -J \hat{\mathbf{S}}_{\mathbf{r}} \cdot \hat{\mathbf{S}}_{\mathbf{r}'} + \frac{1}{2} \sum_{\langle \langle \mathbf{r}, \mathbf{r}' \rangle \rangle} \mathbf{D}_{\mathbf{r}, \mathbf{r}'} \cdot (\hat{\mathbf{S}}_{\mathbf{r}} \times \hat{\mathbf{S}}_{\mathbf{r}'}) = \hat{H}_0 + \hat{H}_2 + \hat{H}_3 + \dots$$

Honeycomb lattice ferromagnet

$$\hat{H} = \frac{1}{2} \sum_{\langle \boldsymbol{r}, \boldsymbol{r}' \rangle} -J \hat{\boldsymbol{S}}_{\boldsymbol{r}} \cdot \hat{\boldsymbol{S}}_{\boldsymbol{r}'} + \frac{1}{2} \sum_{\langle \langle \boldsymbol{r}, \boldsymbol{r}' \rangle \rangle} \boldsymbol{D}_{\boldsymbol{r}, \boldsymbol{r}'} \cdot \left(\hat{\boldsymbol{S}}_{\boldsymbol{r}} \times \hat{\boldsymbol{S}}_{\boldsymbol{r}'} \right) = \hat{H}_0 + \hat{H}_2 + \hat{H}_3 + \dots$$

Topological phases of magnons (incomplete)

^{ES} Shindou *et al.*, PRB 87, 174427 (2013); Zhang *et al.*, PRB 87, 144101 (2013); **AM**, Henk, Mertig, PRB 90, 024412 (2014)

AM, Göbel, Henk, Mertig, PRB 97, 140401(R) (2018); Nakata *et al.*, PRB 96, 224414 (2017)

Dirac/Weyl magnons

 AM, Henk, Mertig, PRL 117, 157204 (2016); Li *et al.*, Nat. Comm. 7, 12691 (2016);
 Fransson *et al.*, PRB 94, 075401 (2016)

Topological magnon materials (incomplete)

Compound	Magnon topology	Theory	Experiment
Lu ₂ V ₂ O ₇	Weyl magnons	[1]	[2]
Cu(1,3-bdc)	Chern insulating	[3]	[4]
Crl ₃	Chern insulating	[5]	[6]
CrBr ₃	Dirac magnons	[7]	[8]
	Chern insulating	[9]	[9]
Cu ₂ OSeO ₃	Weyl magnons	[10]	[10]
YMn ₆ Sn ₆	Dirac magnons	[11]	[11]
FeSn	Dirac magnons	[12]	[12]
Cu ₃ TeO ₆	Dirac magnons	[13]	[14]
CoTiO ₃	Nodal lines	[15]	[15]
CrSiTe ₃ /CrGeTe ₃	Chern insulating	[16]	[16]
Skyrmion crystals	Chern insulating	[17]	[18]
Elemental Gd	Nodal lines	[19]	[19]
Antiskyrmion crystals	Second-order	[20]	[21]
van der Waals magnet stacks	Second-order	[22]	_
Magnonic metamaterials	various		
:	:	÷	:

Topological magnon materials (incomplete); references

- [1] AM, Henk, Mertig, PRL 117, 157204 (2016)
- [2] Onose et al., Science 329, 5989 (2010); Mena et al.,

PRL 113, 047202 (2014)

- [3] Katsura et al., PRL 104, 066403 (2010); Zhang et al., PRB 87, 144101 (2013)
- [4] Chisnell et al., PRL 115, 147201 (2015)
- [5] Owerre, J. Phys.: Condens. Matter 28, 386001
- (2016); Aguilera et al., Phys. Rev. B 102, 024409 (2020);
- Costa et al., 2D Mater. 7 045031 (2020)
- [6] Chen et al., PRX 8, 041028 (2018)
- [7] Pershoguba et al., PRX 8, 011010 (2018)
- [8] Samuelsen *et al.*, PRB 3, 157 (1971); Yelon and
 Silberglitt, PRB 4, 2280 (1971)
- [9] Cai et al., PRB 104, L020402 (2021)
- [10] Zhang et al., PRRes 2, 013063 (2020)
- [11] Zhang et al., PRB 101, 100405(R) (2020)

- [12] Do et al., arXiv:2107.08915 (2021)
- [13] Li et al., PRL 119, 247202 (2017)
- 14] Yao et al., Nature Physics 14, 1011-1015 (2018);
- Bao et al., Nat. Comm. 9, 2591 (2018)
- [15] Yuan et al., PRX 10, 011062 (2020); Elliot et al.,
- Nat. Comm. 12, 3936 (2021)
- [16] Zhu et al., arXiv:2107.03835 (2021)
- [17] van Hoogdalem et al., PRB 87, 024402 (2013);

Roldán-Molina et al., New J. Phys. 18, 045015 (2016);

Díaz et al., PRL 122, 187203 (2019)

- [18] Mochizuki et al., Nat. Mat. 13, 241-246 (2014)
- [19] Schele et al., arXiv:2107.11372 (2021)
- [20] Hirosawa et al., PRL 125, 207204 (2020)
- [21] Jena et al., Research Square (2021)
- [22] AM, Díaz, Klinovaja, Loss, PRB 104, 024406
- (2021)

Central questions

How to go 3D?

AM, Díaz, Klinovaja, Loss, PRB 104, 024406 (2021) What do interactions do?

Topology in quantum matter without particle conservation

 $\hat{H}=\hat{H}_2+\hat{H}_3+\hat{H}_4+\ldots$

Single-particle sector ↓ Two-particle sector

AM, Klinovaja, Loss, PRRes 2, 033491 (2020) AM, Plekhanov, Klinovaja, Loss, PRX 11, 021061 (2021)

Collaborators

Kirill Plekhanov, Sebastián Díaz, Jelena Klinovaja, Daniel Loss

Second-order topological chiral hinge magnons —Topological magnonics goes 3D—

AM, Díaz, Klinovaja, Loss, PRB 104, 024406 (2021)

Second-and-higher-order topology

IS Figure: APS, Alan Stonebraker

🖙 Benalcazar et al., Science 357, 6346, 61–66 (2017); Schindler et al., Science Advances 4, 6, (2018); Schindler et al.,

Nature Physics 14, 918-924 (2018)

Honeycomb lattice ferromagnet

$$\hat{H} = \frac{1}{2} \sum_{\langle \mathbf{r}, \mathbf{r}' \rangle} -J \hat{\mathbf{S}}_{\mathbf{r}} \cdot \hat{\mathbf{S}}_{\mathbf{r}'} + \frac{1}{2} \sum_{\langle \langle \mathbf{r}, \mathbf{r}' \rangle \rangle} \mathbf{D}_{\mathbf{r}, \mathbf{r}'} \cdot (\hat{\mathbf{S}}_{\mathbf{r}} \times \hat{\mathbf{S}}_{\mathbf{r}'}) = \hat{H}_0 + \hat{H}_2 + \hat{H}_3 + \dots$$

Stack of honeycomb-lattice ferromagnets

$$\hat{H} = \sum_{\ell} \left[\hat{H}_{\text{honeycomb}}^{(\ell)}(J, D^{(\ell)}) + \hat{H}_{\text{coupling}}^{(\ell \to \ell+1)}(J_{\perp}, \delta J_{\perp}) \right], \qquad D^{(\ell)} = (-1)^{\ell} D$$

Second-order topology and chiral hinge magnons

🖙 AM, Díaz, Klinovaja, Loss, PRB 104, 024406 (2021)

🖙 AM, Díaz, Klinovaja, Loss, PRB 104, 024406 (2021)

SSH chains along stacking direction: Domain walls

School and the state of the sta

🖙 AM, Díaz, Klinovaja, Loss, PRB 104, 024406 (2021)

Second-order topology and chiral hinge magnons

Spin dynamics simulations

Landau-Lifshitz-Gilbert equation

$$\dot{\mathbf{S}}_{i} = -\frac{\gamma}{\mu(1+\alpha^{2})} \left[\mathbf{S}_{i} \times \mathbf{B}_{i}^{\text{eff}} + \alpha \mathbf{S}_{i} \times \left(\mathbf{S}_{i} \times \mathbf{B}_{i}^{\text{eff}} \right) \right]$$

🖙 AM, Díaz, Klinovaja, Loss, PRB 104, 024406 (2021)

Spin dynamics simulations with disorder

 $R = \frac{\text{Disorder strength}}{\text{Band gap}}$

$$R = 0.21$$
 $R = 0.64$ $R = 1.07$

🖙 AM, Díaz, Klinovaja, Loss, PRB 104, 024406 (2021)

Proposal for experimental realization

🖙 AM, Díaz, Klinovaja, Loss, PRB 104, 024406 (2021)

Central questions

How to go 3D?

AM, Díaz, Klinovaja, Loss, PRB 104, 024406 (2021) What do interactions do?

Topology in quantum matter without particle conservation

 $\hat{H}=\hat{H}_2+\hat{H}_3+\hat{H}_4+\ldots$

Single-particle sector ↓ Two-particle sector

AM, Klinovaja, Loss, PRRes 2, 033491 (2020) AM, Plekhanov, Klinovaja, Loss, PRX 11, 021061 (2021)

Spontaneous quasiparticle decay

$$\hat{H} = \hat{H}_0 + \hat{H}_2 + \hat{H}_3 + \hat{H}_4 + \dots$$
$$\hat{\alpha}^{\dagger}_{\boldsymbol{k},\lambda} \hat{\alpha}^{\dagger}_{\boldsymbol{q},\mu} \hat{\alpha}_{\boldsymbol{p},\nu}$$

Does single-particle topology survive many-body interactions?
 Can many-body interactions bring about nontrivial topology?

Spontaneous magnon decay in skyrmion crystals —Topological magnons in spite of interactions—

AM, Klinovaja, Loss, PRRes 2, 033491 (2020)

Spontaneous magnon decay in skyrmion crystals

$$\hat{H} = \frac{1}{2} \sum_{\mathbf{r},\mathbf{r}'} \left(-J\hat{\mathbf{S}}_{\mathbf{r}} \cdot \hat{\mathbf{S}}_{\mathbf{r}'} + \mathbf{D}_{\mathbf{r},\mathbf{r}'} \cdot \hat{\mathbf{S}}_{\mathbf{r}} \times \hat{\mathbf{S}}_{\mathbf{r}'} \right) - b_{z} \sum_{\mathbf{r}} \hat{\mathbf{S}}_{\mathbf{r}}^{z}$$

$$\underbrace{\text{Spiral} \quad \text{SkX} \quad \text{Ferro}}_{0.0 \quad 0.2 \quad 0.8 \quad b_{z} / \left(S \frac{D^{2}}{J} \right)}_{y} \xrightarrow{\delta_{3}} \underbrace{b_{\delta_{4}} \quad \delta_{5}}_{y} \xrightarrow{\delta_{5}} \underbrace{b_{\delta_{5}} \quad b_{\delta_{5}} \quad \delta_{5}}_{y} \xrightarrow{\delta_{5}} \underbrace{b_{\delta_{5}} \quad \delta_{5}}_{y} \xrightarrow{\delta_{5}} \underbrace{b_{\delta_{5}} \quad b_{\delta_{5}} \quad \delta_{5}}_{y} \xrightarrow{\delta_{5}} \underbrace{b_{\delta_{5}} \quad b_{\delta_{5}} \quad \delta_{5}}_{y} \xrightarrow{\delta_{5}} \underbrace{b_{\delta_{5}} \quad b_{\delta_{5}} \quad b_{\delta_{5}} \quad \delta_{5}}_{y} \xrightarrow{\delta_{5}} \underbrace{b_{\delta_{5}} \quad b_{\delta_{5}} \quad b_{\delta_{5}} \quad \delta_{5}}_{y} \xrightarrow{\delta_{5}} \underbrace{b_{\delta_{5}} \quad b_{\delta_{5}} \xrightarrow{\delta_{5}} \underbrace{b_{\delta_{5}} \quad b_{\delta_{5}} \quad b_{\delta_{5}}$$

I

Skyrmion crystal eigenmodes

107 Back et al., J. Phys. D: Appl. Phys. 53, 363001 (2020), Garst's chapter

Topology of skyrmion crystal eigenmodes

IS Díaz et al., PRRes 2, 013231 (2020)

Roldán-Molina et al., New J. Phys. 18, 045015 (2016)

Noncollinear texture causes topological magnon bands. BUT: Noncollinear texture also causes spontaneous magnon decay!

Any hope to detect topological magnons?

Many-body theory of spontaneous magnon decay

Perturbation theory

$$\hat{H} = \hat{H}_2 + \hat{V}, \qquad \hat{V} = \hat{H}_3 + \hat{H}_4$$

Spontaneous damping (inverse lifetime)

$$\Gamma_{\boldsymbol{k}}^{\nu} = \frac{\pi}{2N} \sum_{\boldsymbol{q} \in \mathsf{BZ}} \sum_{\lambda,\mu} \left| \mathcal{V}_{\boldsymbol{q},\boldsymbol{k}-\boldsymbol{q}\leftarrow\boldsymbol{k}}^{\lambda\mu\leftarrow\nu} \right|^2 \delta\left(\varepsilon_{\nu,\boldsymbol{k}} - \varepsilon_{\lambda,\boldsymbol{q}} - \varepsilon_{\mu,\boldsymbol{k}-\boldsymbol{q}}\right)$$

Two-magnon density of states

$$D_{\boldsymbol{k}}(\varepsilon) = \frac{\pi}{2N} \sum_{\boldsymbol{q} \in \mathsf{BZ}} \sum_{\lambda,\mu} \delta\left(\varepsilon - \varepsilon_{\lambda,\boldsymbol{q}} - \varepsilon_{\mu,\boldsymbol{k}-\boldsymbol{q}}\right)$$

Magnon spectral function

AM, Klinovaja, Loss, PRRes 2, 033491 (2020)

Implications

- Great prospects for topological magnonics
- Field-dependent quantum damping of C mode

Quantum vs. classical damping

IS Mochizuki, PRL 108, 017601 (2012)

AM, Klinovaja, Loss, PRRes 2, 033491 (2020)

Quantum mass of Dirac magnons —Topological magnons **because of** interactions—

AM, Plekhanov, Klinovaja, Loss, PRX 11, 021061 (2021)

Models

Achiral

Chiral

$$\hat{H}^{\mathsf{A}} = -\frac{J}{2} \sum_{\langle \mathbf{r}, \mathbf{r}' \rangle} \hat{\mathbf{S}}_{\mathbf{r}} \cdot \hat{\mathbf{S}}_{\mathbf{r}'} - \sum_{\mathbf{r}} \mathbf{B} \cdot \hat{\mathbf{S}}_{\mathbf{r}} + \frac{D_{z}}{2} \sum_{\langle \langle \mathbf{r}, \mathbf{r}' \rangle \rangle} v_{\mathbf{r}, \mathbf{r}'} \mathbf{z} \cdot \left(\hat{\mathbf{S}}_{\mathbf{r}} \times \hat{\mathbf{S}}_{\mathbf{r}'} \right)$$
$$\hat{H}^{\mathsf{C}} = -\frac{J}{2} \sum_{\langle \mathbf{r}, \mathbf{r}' \rangle} \hat{\mathbf{S}}_{\mathbf{r}} \cdot \hat{\mathbf{S}}_{\mathbf{r}'} - \sum_{\mathbf{r}} \mathbf{B} \cdot \hat{\mathbf{S}}_{\mathbf{r}} + \frac{D}{2} \sum_{\langle \mathbf{r}, \mathbf{r}' \rangle} \mathbf{d}_{\mathbf{r}, \mathbf{r}'} \cdot \left(\hat{\mathbf{S}}_{\mathbf{r}} \times \hat{\mathbf{S}}_{\mathbf{r}'} \right)$$

Models

Achiral

Chiral

	Achiral	Chiral
Time-reversal symmetry	$\mathcal{R}(\pi, \mathbf{Z})\mathcal{T}$	_
Parity symmetry	I	$\mathcal{R}(\pi, \mathbf{Z})\mathcal{I}$

Models

Achiral

$$\hat{H}^{A/C} - \hat{H}_0 \approx \hat{H}_2(J, B) + \hat{H}_3^{A/C}(D) + \hat{H}_4(J)$$

Models differ only in particle-number nonconserving interactions.

Harmonic theory

Free-magnon dispersion

$$\varepsilon_{\boldsymbol{k},\pm} = JS (3 \pm |\gamma_{\boldsymbol{k}}|) + B$$

Dirac cones at $\boldsymbol{k} = \boldsymbol{K}, \boldsymbol{K}' (\gamma_{\boldsymbol{k}} = 0)$
 $\varepsilon_{\mathrm{D}} = 3JS + B$

Anharmonic theory

Three-magnon interaction:

$$\hat{H}_{3} = \frac{1}{2\sqrt{N}} \sum_{\lambda,\mu,\nu=1}^{2} \sum_{\boldsymbol{k},\boldsymbol{q},\boldsymbol{p}}^{\boldsymbol{p}=\boldsymbol{k}+\boldsymbol{q}} \left(\mathcal{V}_{\boldsymbol{k},\boldsymbol{q}\leftarrow\boldsymbol{p}}^{\lambda\mu\leftarrow\nu} \hat{b}_{\boldsymbol{k},\lambda}^{\dagger} \hat{b}_{\boldsymbol{q},\mu}^{\dagger} \hat{b}_{\boldsymbol{p},\nu} + \text{H.c.} \right)$$

Interacting Green's function:

$$\mathcal{G}_{\boldsymbol{k}}^{-1}(\varepsilon,T) = (\varepsilon + \mathrm{i}0^+) - \mathcal{E}_{\boldsymbol{k}} - \mathcal{\Sigma}_{\boldsymbol{k}}(\varepsilon,T)$$

Self-energy:

$$\Sigma_{k}^{\alpha\beta}(\varepsilon,T) = \frac{1}{2N} \sum_{q \in \mathsf{BZ}} \sum_{j,j'} \frac{\mathcal{V}_{k \leftarrow q,k-q}^{\alpha \leftarrow jj'} \mathcal{V}_{q,k-q \leftarrow k}^{jj' \leftarrow \beta}}{\varepsilon + \mathrm{i0^+} - \varepsilon_{j,q} - \varepsilon_{j',k-q}}$$

Interaction-renormalized Dirac cones

Chiral magnet exhibits a spontaneous Dirac mass gap.

🖙 AM, Plekhanov, Klinovaja, Loss, PRX 11, 021061 (2021)

Slab calculation

Interaction-induced topological band gap with chiral edge magnons.

Summary

Second-order topological magnonics goes 3D! Great prospects for topological magnonics in skyrmion crystals!

Magnon-magnon interactions cause topology!

AM, Díaz, Klinovaja, Loss, PRB 104, 024406 (2021)

AM, Klinovaja, Loss, PRes 2, 033491 (2020)

AM, Plekhanov, Klinovaja, Loss, PRX 11, 021061 (2021)

Anomalous transverse transport

12018) Martig, PRB 97, 140401(R) (2018)

Anomalous transverse transport

$$\boldsymbol{j} = \boldsymbol{L}^{(0)} \boldsymbol{\nabla} \boldsymbol{B} - \boldsymbol{L}^{(1)} \boldsymbol{T}^{-1} \boldsymbol{\nabla} \boldsymbol{T},$$
$$\boldsymbol{q} = \boldsymbol{L}^{(1)} \boldsymbol{\nabla} \boldsymbol{B} - \boldsymbol{L}^{(2)} \boldsymbol{T}^{-1} \boldsymbol{\nabla} \boldsymbol{T},$$

$$L_{xy}^{(i)}(T) \propto \sum_{j=\pm} \int_{\mathsf{BZ}} c_i [\rho(\varepsilon_{k,j}, T)] \Omega_{k,j} \, \mathrm{d}^2 k$$

Magnon Chern insulator in antiferromagnets

S AM, Henk, Mertig, PRB 99, 014427 (2019)

Magnon Chern insulator in antiferromagnets

AM, Henk, Mertig, PRB 99, 014427 (2019)

Magnon spectral function

AM, Klinovaja, Loss, PRRes 2, 033491 (2020)

Anticlockwise mode is very stable

$$\Gamma_{\boldsymbol{k}}^{\alpha} = \frac{\pi}{2N} \sum_{\boldsymbol{q} \in \mathsf{BZ}} \sum_{\lambda,\mu} \left| \mathcal{V}_{\boldsymbol{q},\boldsymbol{k}-\boldsymbol{q}\leftarrow\boldsymbol{k}}^{\lambda\mu\leftarrow\alpha} \right|^2 \delta\left(\varepsilon - \varepsilon_{\lambda,\boldsymbol{q}} - \varepsilon_{\mu,\boldsymbol{k}-\boldsymbol{q}}\right)$$

(a) Anticlockwise mode

AM, Klinovaja, Loss, PRRes 2, 033491 (2020)

Breathing mode is also stable

$$\Gamma_{\boldsymbol{k}}^{\alpha} = \frac{\pi}{2N} \sum_{\boldsymbol{q} \in \mathsf{BZ}} \sum_{\lambda,\mu} \left| \mathcal{V}_{\boldsymbol{q},\boldsymbol{k}-\boldsymbol{q}\leftarrow\boldsymbol{k}}^{\lambda\mu\leftarrow\alpha} \right|^2 \delta\left(\varepsilon - \varepsilon_{\lambda,\boldsymbol{q}} - \varepsilon_{\mu,\boldsymbol{k}-\boldsymbol{q}}\right)$$

AM, Klinovaja, Loss, PRRes 2, 033491 (2020)

Clockwise mode is very unstable

AM, Klinovaja, Loss, PRRes. 2, 033491 (2020)

Implications

Zero-temperature magnon lifetimes are strongly momentum and field-dependent.

Quantum vs. classical damping

AM, Klinovaja, Loss, PRRes. 2, 033491 (2020)

IS Mochizuki, PRL 108, 017601 (2012)

Implications

Excellent prospects for "topological magnonics" in skyrmion crystals!

12020) In the second se

AM, Klinovaja, Loss, PRRes 2, 033491 (2020)