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Zoology of Topological Materials

PERSPECTIVE NATURE MATERIALS

remain unionized in heavier elements. In a class of insulators with 
topologically non-trivial band structure, known as topological 
insulators (TIs), the surface is metallic despite the bulk being insu-
lating. The surface states of a TI contain 2D Dirac points, named 
as such because the Hamiltonian describing low-energy excitations 
near these points in momentum space can be written as the Dirac 
Hamiltonian for massless Dirac fermions in two dimensions. At 
these points, the energy disperses linearly with momentum, and 
the spin and momentum are locked to each other. These states are 
topologically protected, that is, stable against disorder so long as 
the overall topology of the electronic structure does not change, 
when the surrounding space (vacuum or normal insulator) is topo-
logically trivial. TIs can be identified in the bulk band structure by 
determining the Z2 topological invariant, which can take only two 
values, 0 or 1 for topologically trivial and non-trivial states, respec-
tively (see classification in Table 1). This calculation is done, for 
example, by employing the parity criteria18.

Since the predictions of protected edge and surface states in 
graphene19 and HgTe quantum wells20, topologically non-trivial 
surface states indicative of TIs have been observed in many mate-
rials, including HgTe quantum wells21 and Bi2Se3 (refs. 22,23). Many 
half-Heusler compounds were also identified as TIs by their band 

inversion analogous to that of HgTe, but with additional functional-
ities such as superconductivity, magnetism and the Kondo effect24,25. 
Ultrahigh mobilities, large magnetoresistance effects, and low 
bandgaps were all discovered in addition to superconductivity in 
high-quality single crystals of several materials in the half-Heusler 
family of YPtBi and LuPtBi (ref. 26), showcasing the versatility of 
these compounds beyond their topologically non-trivial nature. 
Weak TIs can be recognized as quantum spin Hall insulators stacked 
in three dimensions, with 2D Dirac cones existing only for certain 
surfaces. Therefore, these materials can be identified by the sensitiv-
ity of the metallic surface states to the cleaving surface. These have 
been identified in layered bismuth compounds such as Bi14Rh3I9 (ref. 
27) and Bi2TeI and in layered variants of the half-Heusler compounds 
such as KHgSb (ref. 28), which has subsequently become a promi-
nent host of hourglass fermions29, surface states that are protected 
by non-symmorphic symmetries and gain their name from the 
shape of their dispersions. Beyond bismuth-based and half-Heusler 
compounds that lack strong electronic correlations, predicted cor-
related TIs include the actinide materials30, correlated skutteru-
dites31 and BaBiO3 (ref. 32). In addition, there has been much work in 
recent years exploring the quantum anomalous Hall effect (QAHE) 
and axion insulator phase in magnetic TIs, including magnetically 

Box 1 | Explaining band inversion and the emergence of topology in materials

An insulator is a material with a large energy gap between its 
conduction and valence bands, usually prohibiting conventional 
electrical conduction. Depending on the size of the gap, these 
materials will be transparent, white or of a certain visible colour, 
which indicates the wavelength of light absorption in the mate-
rial. Semiconductors, which can be made to conduct under certain 
conditions, are materials with small bandgaps, and semimetals are 
materials with slightly overlapping bandgaps in di!erent parts 
of the Brillouin zone. Because semimetals are not fully gapped, 
incoming light will be easily absorbed and quickly reemitted as 
in metals; as a consequence, these materials are typically black in 
colour and shiny.

In many ionic and semiconducting materials, the s electrons 
form the conduction band while the p or d electrons build the 
valence band. However, if the materials contain heavy elements, 
due to relativistic e!ects, the outer s electrons of the heavy 
elements can be lower in energy compared to the p or d electrons 
of the light elements. "e result is a semimetal with overlapping 
conduction and valence bands that have been ‘inverted’ in terms 
of their energies and orbital characters (Box 1 #gure, le$), with 
a band crossing that is referred to as a nodal line. If this nodal 
line becomes gapped due to spin–orbit coupling, either fully as 
in topological insulators (Box 1 #gure, top right) or everywhere 
except at certain points in the Brillouin zone as in Weyl and Dirac 
semimetals (Box 1 #gure, bottom right), this band inversion 
still remains and results in non-trivial topology of the electronic 
structure. "is is due to the band inversion playing a role in the 
Berry connection, the gauge potential associated with the Berry 
phase of the Bloch wave functions. In topological insulators, the 
Berry phase is quantized and directly corresponds to non-trivial 
topological description. In Weyl semimetals, the Berry curvature, 
the corresponding gauge #eld, diverges at the Weyl points, 
which are thus described also as monopoles and antimonopoles 
of Berry curvature in momentum space, with the integral of the 
Berry curvature over a sphere surrounding one Weyl node being 
equal to ±1. "e Weyl semimetal phase, assuming momentum is 
still conserved, can only be gapped out if these monopoles and 
antimonopoles come together; in this way, the Weyl semimetal is 

topologically non-trivial. "us, this mechanism of band inversion 
is the reason that many topologically non-trivial materials known 
today contain heavy elements.
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Band inversion. Band inversion (left) facilitates the formation of topological 
insulators (top right) and Weyl and Dirac semimetals (bottom right). 
Overlapping valence and conduction bands of different orbital characters 
form a nodal line in the Brillouin zone where the bands cross in energy. 
Spin–orbit coupling can open a full energy gap, resulting in a topological 
insulator, or everywhere along the nodal line except for at special points, 
called Weyl or Dirac points, in Weyl and Dirac semimetals. In all of these 
cases, the band inversion stemming from the overlapping bands without 
spin–orbit coupling results in the non-trivial topology of these electronic 
structures. Figure adapted with permission from ref. 90, Annual Reviews.
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remain unionized in heavier elements. In a class of insulators with 
topologically non-trivial band structure, known as topological 
insulators (TIs), the surface is metallic despite the bulk being insu-
lating. The surface states of a TI contain 2D Dirac points, named 
as such because the Hamiltonian describing low-energy excitations 
near these points in momentum space can be written as the Dirac 
Hamiltonian for massless Dirac fermions in two dimensions. At 
these points, the energy disperses linearly with momentum, and 
the spin and momentum are locked to each other. These states are 
topologically protected, that is, stable against disorder so long as 
the overall topology of the electronic structure does not change, 
when the surrounding space (vacuum or normal insulator) is topo-
logically trivial. TIs can be identified in the bulk band structure by 
determining the Z2 topological invariant, which can take only two 
values, 0 or 1 for topologically trivial and non-trivial states, respec-
tively (see classification in Table 1). This calculation is done, for 
example, by employing the parity criteria18.

Since the predictions of protected edge and surface states in 
graphene19 and HgTe quantum wells20, topologically non-trivial 
surface states indicative of TIs have been observed in many mate-
rials, including HgTe quantum wells21 and Bi2Se3 (refs. 22,23). Many 
half-Heusler compounds were also identified as TIs by their band 

inversion analogous to that of HgTe, but with additional functional-
ities such as superconductivity, magnetism and the Kondo effect24,25. 
Ultrahigh mobilities, large magnetoresistance effects, and low 
bandgaps were all discovered in addition to superconductivity in 
high-quality single crystals of several materials in the half-Heusler 
family of YPtBi and LuPtBi (ref. 26), showcasing the versatility of 
these compounds beyond their topologically non-trivial nature. 
Weak TIs can be recognized as quantum spin Hall insulators stacked 
in three dimensions, with 2D Dirac cones existing only for certain 
surfaces. Therefore, these materials can be identified by the sensitiv-
ity of the metallic surface states to the cleaving surface. These have 
been identified in layered bismuth compounds such as Bi14Rh3I9 (ref. 
27) and Bi2TeI and in layered variants of the half-Heusler compounds 
such as KHgSb (ref. 28), which has subsequently become a promi-
nent host of hourglass fermions29, surface states that are protected 
by non-symmorphic symmetries and gain their name from the 
shape of their dispersions. Beyond bismuth-based and half-Heusler 
compounds that lack strong electronic correlations, predicted cor-
related TIs include the actinide materials30, correlated skutteru-
dites31 and BaBiO3 (ref. 32). In addition, there has been much work in 
recent years exploring the quantum anomalous Hall effect (QAHE) 
and axion insulator phase in magnetic TIs, including magnetically 

Box 1 | Explaining band inversion and the emergence of topology in materials

An insulator is a material with a large energy gap between its 
conduction and valence bands, usually prohibiting conventional 
electrical conduction. Depending on the size of the gap, these 
materials will be transparent, white or of a certain visible colour, 
which indicates the wavelength of light absorption in the mate-
rial. Semiconductors, which can be made to conduct under certain 
conditions, are materials with small bandgaps, and semimetals are 
materials with slightly overlapping bandgaps in di!erent parts 
of the Brillouin zone. Because semimetals are not fully gapped, 
incoming light will be easily absorbed and quickly reemitted as 
in metals; as a consequence, these materials are typically black in 
colour and shiny.

In many ionic and semiconducting materials, the s electrons 
form the conduction band while the p or d electrons build the 
valence band. However, if the materials contain heavy elements, 
due to relativistic e!ects, the outer s electrons of the heavy 
elements can be lower in energy compared to the p or d electrons 
of the light elements. "e result is a semimetal with overlapping 
conduction and valence bands that have been ‘inverted’ in terms 
of their energies and orbital characters (Box 1 #gure, le$), with 
a band crossing that is referred to as a nodal line. If this nodal 
line becomes gapped due to spin–orbit coupling, either fully as 
in topological insulators (Box 1 #gure, top right) or everywhere 
except at certain points in the Brillouin zone as in Weyl and Dirac 
semimetals (Box 1 #gure, bottom right), this band inversion 
still remains and results in non-trivial topology of the electronic 
structure. "is is due to the band inversion playing a role in the 
Berry connection, the gauge potential associated with the Berry 
phase of the Bloch wave functions. In topological insulators, the 
Berry phase is quantized and directly corresponds to non-trivial 
topological description. In Weyl semimetals, the Berry curvature, 
the corresponding gauge #eld, diverges at the Weyl points, 
which are thus described also as monopoles and antimonopoles 
of Berry curvature in momentum space, with the integral of the 
Berry curvature over a sphere surrounding one Weyl node being 
equal to ±1. "e Weyl semimetal phase, assuming momentum is 
still conserved, can only be gapped out if these monopoles and 
antimonopoles come together; in this way, the Weyl semimetal is 

topologically non-trivial. "us, this mechanism of band inversion 
is the reason that many topologically non-trivial materials known 
today contain heavy elements.
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Band inversion. Band inversion (left) facilitates the formation of topological 
insulators (top right) and Weyl and Dirac semimetals (bottom right). 
Overlapping valence and conduction bands of different orbital characters 
form a nodal line in the Brillouin zone where the bands cross in energy. 
Spin–orbit coupling can open a full energy gap, resulting in a topological 
insulator, or everywhere along the nodal line except for at special points, 
called Weyl or Dirac points, in Weyl and Dirac semimetals. In all of these 
cases, the band inversion stemming from the overlapping bands without 
spin–orbit coupling results in the non-trivial topology of these electronic 
structures. Figure adapted with permission from ref. 90, Annual Reviews.
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doped and intrinsically ferromagnetic and antiferromagnetic TIs. 
For an overview of these explorations, see the review in ref. 33.

Weyl and Dirac semimetals
Following the excitement surrounding TIs and its implication of 
new topologically protected electronic states came the predictions 
of 3D Weyl34,35 and Dirac36,37 semimetals. In these materials, the bulk 
states near the Fermi energy contain twofold and fourfold degen-
erate band crossings at Weyl and Dirac nodes, respectively. In the 
vicinity of these nodes, the dispersion is linear in momentum in 
all three spatial directions; thus, low-energy excitations near these 
nodes can be described quasi-relativistically by the Weyl and Dirac 
Hamiltonians. In Weyl semimetals, these nodes come in pairs of 
opposite chirality, or handedness, corresponding to the two forms 
of the Weyl Hamiltonian and can be alternatively defined as Berry 
curvature monopoles and antimonopoles, or sources and sinks, 
in momentum space (Box 1). The projections of these nodes on 
the surface are connected by topologically protected Fermi arc 
surface states. In Dirac semimetals, the 3D Dirac nodes are achi-
ral, as they are the sum of two Weyl nodes of opposite chirality 
at the same energy and momentum. This makeup of Dirac nodes 
allows for Fermi arc surface states in Dirac semimetals as well. 
Prominent examples of well-studied Weyl semimetals include the 
TaAs family38–41 and Td-MoTe2 (ref. 42), both non-magnetic and 
non-centrosymmetric, and of Dirac semimetals, Na3Bi (refs. 37,43) 
and Cd3As2 (ref. 44). Figure 1 highlights how the Dirac and Weyl 

physics that underlies these semimetals has a growing role in topo-
logical materials science.

The differences between Weyl and Dirac semimetals, related to 
the chirality or achirality of their respective nodes, come from sym-
metry (Table 1). Under both time-reversal symmetry and spatial 
inversion symmetry, every state in the Brillouin zone is at least dou-
bly degenerate due to Kramers’ theorem. Both of these symmetries 
are upheld in a Dirac semimetal, thus Dirac points exist only along 
high symmetry directions. However, breaking at least one of these 
symmetries in a material can generate a Weyl semimetal. Thus, one 
can think of transforming a Dirac semimetal into a Weyl semimetal 
by breaking one of these symmetries, splitting one achiral Dirac 
node into two chiral Weyl nodes. In addition, unlike Weyl semi-
metals, Dirac semimetals are not protected topologically but only 
by underlying crystallographic symmetry and otherwise become 
gapped. This is because in a Dirac semimetal, the Weyl nodes, 
whose chiralities are directly related to positive or negative topolog-
ical charges, are already brought together at Dirac nodes and sum to 
zero. Thus, the topological charge is zero everywhere in momentum 
space, and the Dirac semimetal is topologically trivial. These differ-
ences in symmetry and topology have direct and profound conse-
quences on the properties of these semimetals.

Due to their topological protection, Weyl semimetals can be 
identified using methods that do not apply to Dirac semimetals. An 
important parameter used to identify these materials theoretically 
is the Chern number, which in topological materials science is the 

Table 1 | Classification of topological materials

Classification Symmetry Band inversion

Topological insulators

E
k

Z2 Time reversal Odd times
High order Crystalline symmetry Even times

Crystalline TI Crystalline symmetry ≥1

Classification Symmetry Band crossing

Dirac and Weyl semimetals
Dirac semimetal Rotation Rotation axis
Weyl semimetal (non-magnetic) Inversion symmetry broken Accidental degenerate point
Weyl semimetal (ferromagnetic) Time reversal broken

New fermions Nodal line semimetal Mirror Mirror plans
Non-symmorphic Brillouin zone edge

New fermion Rotation and non-symmorphic High-symmetry point

Chiral topology Mirror symmetry broken Arbitrary point (chiral Weyl fermion)

High-symmetry point (multiple Fermion)

A summary of the classification of topologically non-trivial materials by electronic structure and material symmetry. The left-most column of schematics represents the electronic dispersion characteristic 
of (top to bottom) topological insulators (TIs), Dirac and Weyl semimetals, and materials hosting new fermions that lack high-energy counterparts.
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remain unionized in heavier elements. In a class of insulators with 
topologically non-trivial band structure, known as topological 
insulators (TIs), the surface is metallic despite the bulk being insu-
lating. The surface states of a TI contain 2D Dirac points, named 
as such because the Hamiltonian describing low-energy excitations 
near these points in momentum space can be written as the Dirac 
Hamiltonian for massless Dirac fermions in two dimensions. At 
these points, the energy disperses linearly with momentum, and 
the spin and momentum are locked to each other. These states are 
topologically protected, that is, stable against disorder so long as 
the overall topology of the electronic structure does not change, 
when the surrounding space (vacuum or normal insulator) is topo-
logically trivial. TIs can be identified in the bulk band structure by 
determining the Z2 topological invariant, which can take only two 
values, 0 or 1 for topologically trivial and non-trivial states, respec-
tively (see classification in Table 1). This calculation is done, for 
example, by employing the parity criteria18.

Since the predictions of protected edge and surface states in 
graphene19 and HgTe quantum wells20, topologically non-trivial 
surface states indicative of TIs have been observed in many mate-
rials, including HgTe quantum wells21 and Bi2Se3 (refs. 22,23). Many 
half-Heusler compounds were also identified as TIs by their band 

inversion analogous to that of HgTe, but with additional functional-
ities such as superconductivity, magnetism and the Kondo effect24,25. 
Ultrahigh mobilities, large magnetoresistance effects, and low 
bandgaps were all discovered in addition to superconductivity in 
high-quality single crystals of several materials in the half-Heusler 
family of YPtBi and LuPtBi (ref. 26), showcasing the versatility of 
these compounds beyond their topologically non-trivial nature. 
Weak TIs can be recognized as quantum spin Hall insulators stacked 
in three dimensions, with 2D Dirac cones existing only for certain 
surfaces. Therefore, these materials can be identified by the sensitiv-
ity of the metallic surface states to the cleaving surface. These have 
been identified in layered bismuth compounds such as Bi14Rh3I9 (ref. 
27) and Bi2TeI and in layered variants of the half-Heusler compounds 
such as KHgSb (ref. 28), which has subsequently become a promi-
nent host of hourglass fermions29, surface states that are protected 
by non-symmorphic symmetries and gain their name from the 
shape of their dispersions. Beyond bismuth-based and half-Heusler 
compounds that lack strong electronic correlations, predicted cor-
related TIs include the actinide materials30, correlated skutteru-
dites31 and BaBiO3 (ref. 32). In addition, there has been much work in 
recent years exploring the quantum anomalous Hall effect (QAHE) 
and axion insulator phase in magnetic TIs, including magnetically 

Box 1 | Explaining band inversion and the emergence of topology in materials

An insulator is a material with a large energy gap between its 
conduction and valence bands, usually prohibiting conventional 
electrical conduction. Depending on the size of the gap, these 
materials will be transparent, white or of a certain visible colour, 
which indicates the wavelength of light absorption in the mate-
rial. Semiconductors, which can be made to conduct under certain 
conditions, are materials with small bandgaps, and semimetals are 
materials with slightly overlapping bandgaps in di!erent parts 
of the Brillouin zone. Because semimetals are not fully gapped, 
incoming light will be easily absorbed and quickly reemitted as 
in metals; as a consequence, these materials are typically black in 
colour and shiny.

In many ionic and semiconducting materials, the s electrons 
form the conduction band while the p or d electrons build the 
valence band. However, if the materials contain heavy elements, 
due to relativistic e!ects, the outer s electrons of the heavy 
elements can be lower in energy compared to the p or d electrons 
of the light elements. "e result is a semimetal with overlapping 
conduction and valence bands that have been ‘inverted’ in terms 
of their energies and orbital characters (Box 1 #gure, le$), with 
a band crossing that is referred to as a nodal line. If this nodal 
line becomes gapped due to spin–orbit coupling, either fully as 
in topological insulators (Box 1 #gure, top right) or everywhere 
except at certain points in the Brillouin zone as in Weyl and Dirac 
semimetals (Box 1 #gure, bottom right), this band inversion 
still remains and results in non-trivial topology of the electronic 
structure. "is is due to the band inversion playing a role in the 
Berry connection, the gauge potential associated with the Berry 
phase of the Bloch wave functions. In topological insulators, the 
Berry phase is quantized and directly corresponds to non-trivial 
topological description. In Weyl semimetals, the Berry curvature, 
the corresponding gauge #eld, diverges at the Weyl points, 
which are thus described also as monopoles and antimonopoles 
of Berry curvature in momentum space, with the integral of the 
Berry curvature over a sphere surrounding one Weyl node being 
equal to ±1. "e Weyl semimetal phase, assuming momentum is 
still conserved, can only be gapped out if these monopoles and 
antimonopoles come together; in this way, the Weyl semimetal is 

topologically non-trivial. "us, this mechanism of band inversion 
is the reason that many topologically non-trivial materials known 
today contain heavy elements.
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Band inversion. Band inversion (left) facilitates the formation of topological 
insulators (top right) and Weyl and Dirac semimetals (bottom right). 
Overlapping valence and conduction bands of different orbital characters 
form a nodal line in the Brillouin zone where the bands cross in energy. 
Spin–orbit coupling can open a full energy gap, resulting in a topological 
insulator, or everywhere along the nodal line except for at special points, 
called Weyl or Dirac points, in Weyl and Dirac semimetals. In all of these 
cases, the band inversion stemming from the overlapping bands without 
spin–orbit coupling results in the non-trivial topology of these electronic 
structures. Figure adapted with permission from ref. 90, Annual Reviews.
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remain unionized in heavier elements. In a class of insulators with 
topologically non-trivial band structure, known as topological 
insulators (TIs), the surface is metallic despite the bulk being insu-
lating. The surface states of a TI contain 2D Dirac points, named 
as such because the Hamiltonian describing low-energy excitations 
near these points in momentum space can be written as the Dirac 
Hamiltonian for massless Dirac fermions in two dimensions. At 
these points, the energy disperses linearly with momentum, and 
the spin and momentum are locked to each other. These states are 
topologically protected, that is, stable against disorder so long as 
the overall topology of the electronic structure does not change, 
when the surrounding space (vacuum or normal insulator) is topo-
logically trivial. TIs can be identified in the bulk band structure by 
determining the Z2 topological invariant, which can take only two 
values, 0 or 1 for topologically trivial and non-trivial states, respec-
tively (see classification in Table 1). This calculation is done, for 
example, by employing the parity criteria18.

Since the predictions of protected edge and surface states in 
graphene19 and HgTe quantum wells20, topologically non-trivial 
surface states indicative of TIs have been observed in many mate-
rials, including HgTe quantum wells21 and Bi2Se3 (refs. 22,23). Many 
half-Heusler compounds were also identified as TIs by their band 

inversion analogous to that of HgTe, but with additional functional-
ities such as superconductivity, magnetism and the Kondo effect24,25. 
Ultrahigh mobilities, large magnetoresistance effects, and low 
bandgaps were all discovered in addition to superconductivity in 
high-quality single crystals of several materials in the half-Heusler 
family of YPtBi and LuPtBi (ref. 26), showcasing the versatility of 
these compounds beyond their topologically non-trivial nature. 
Weak TIs can be recognized as quantum spin Hall insulators stacked 
in three dimensions, with 2D Dirac cones existing only for certain 
surfaces. Therefore, these materials can be identified by the sensitiv-
ity of the metallic surface states to the cleaving surface. These have 
been identified in layered bismuth compounds such as Bi14Rh3I9 (ref. 
27) and Bi2TeI and in layered variants of the half-Heusler compounds 
such as KHgSb (ref. 28), which has subsequently become a promi-
nent host of hourglass fermions29, surface states that are protected 
by non-symmorphic symmetries and gain their name from the 
shape of their dispersions. Beyond bismuth-based and half-Heusler 
compounds that lack strong electronic correlations, predicted cor-
related TIs include the actinide materials30, correlated skutteru-
dites31 and BaBiO3 (ref. 32). In addition, there has been much work in 
recent years exploring the quantum anomalous Hall effect (QAHE) 
and axion insulator phase in magnetic TIs, including magnetically 

Box 1 | Explaining band inversion and the emergence of topology in materials

An insulator is a material with a large energy gap between its 
conduction and valence bands, usually prohibiting conventional 
electrical conduction. Depending on the size of the gap, these 
materials will be transparent, white or of a certain visible colour, 
which indicates the wavelength of light absorption in the mate-
rial. Semiconductors, which can be made to conduct under certain 
conditions, are materials with small bandgaps, and semimetals are 
materials with slightly overlapping bandgaps in di!erent parts 
of the Brillouin zone. Because semimetals are not fully gapped, 
incoming light will be easily absorbed and quickly reemitted as 
in metals; as a consequence, these materials are typically black in 
colour and shiny.

In many ionic and semiconducting materials, the s electrons 
form the conduction band while the p or d electrons build the 
valence band. However, if the materials contain heavy elements, 
due to relativistic e!ects, the outer s electrons of the heavy 
elements can be lower in energy compared to the p or d electrons 
of the light elements. "e result is a semimetal with overlapping 
conduction and valence bands that have been ‘inverted’ in terms 
of their energies and orbital characters (Box 1 #gure, le$), with 
a band crossing that is referred to as a nodal line. If this nodal 
line becomes gapped due to spin–orbit coupling, either fully as 
in topological insulators (Box 1 #gure, top right) or everywhere 
except at certain points in the Brillouin zone as in Weyl and Dirac 
semimetals (Box 1 #gure, bottom right), this band inversion 
still remains and results in non-trivial topology of the electronic 
structure. "is is due to the band inversion playing a role in the 
Berry connection, the gauge potential associated with the Berry 
phase of the Bloch wave functions. In topological insulators, the 
Berry phase is quantized and directly corresponds to non-trivial 
topological description. In Weyl semimetals, the Berry curvature, 
the corresponding gauge #eld, diverges at the Weyl points, 
which are thus described also as monopoles and antimonopoles 
of Berry curvature in momentum space, with the integral of the 
Berry curvature over a sphere surrounding one Weyl node being 
equal to ±1. "e Weyl semimetal phase, assuming momentum is 
still conserved, can only be gapped out if these monopoles and 
antimonopoles come together; in this way, the Weyl semimetal is 

topologically non-trivial. "us, this mechanism of band inversion 
is the reason that many topologically non-trivial materials known 
today contain heavy elements.
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Band inversion. Band inversion (left) facilitates the formation of topological 
insulators (top right) and Weyl and Dirac semimetals (bottom right). 
Overlapping valence and conduction bands of different orbital characters 
form a nodal line in the Brillouin zone where the bands cross in energy. 
Spin–orbit coupling can open a full energy gap, resulting in a topological 
insulator, or everywhere along the nodal line except for at special points, 
called Weyl or Dirac points, in Weyl and Dirac semimetals. In all of these 
cases, the band inversion stemming from the overlapping bands without 
spin–orbit coupling results in the non-trivial topology of these electronic 
structures. Figure adapted with permission from ref. 90, Annual Reviews.
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remain unionized in heavier elements. In a class of insulators with 
topologically non-trivial band structure, known as topological 
insulators (TIs), the surface is metallic despite the bulk being insu-
lating. The surface states of a TI contain 2D Dirac points, named 
as such because the Hamiltonian describing low-energy excitations 
near these points in momentum space can be written as the Dirac 
Hamiltonian for massless Dirac fermions in two dimensions. At 
these points, the energy disperses linearly with momentum, and 
the spin and momentum are locked to each other. These states are 
topologically protected, that is, stable against disorder so long as 
the overall topology of the electronic structure does not change, 
when the surrounding space (vacuum or normal insulator) is topo-
logically trivial. TIs can be identified in the bulk band structure by 
determining the Z2 topological invariant, which can take only two 
values, 0 or 1 for topologically trivial and non-trivial states, respec-
tively (see classification in Table 1). This calculation is done, for 
example, by employing the parity criteria18.

Since the predictions of protected edge and surface states in 
graphene19 and HgTe quantum wells20, topologically non-trivial 
surface states indicative of TIs have been observed in many mate-
rials, including HgTe quantum wells21 and Bi2Se3 (refs. 22,23). Many 
half-Heusler compounds were also identified as TIs by their band 

inversion analogous to that of HgTe, but with additional functional-
ities such as superconductivity, magnetism and the Kondo effect24,25. 
Ultrahigh mobilities, large magnetoresistance effects, and low 
bandgaps were all discovered in addition to superconductivity in 
high-quality single crystals of several materials in the half-Heusler 
family of YPtBi and LuPtBi (ref. 26), showcasing the versatility of 
these compounds beyond their topologically non-trivial nature. 
Weak TIs can be recognized as quantum spin Hall insulators stacked 
in three dimensions, with 2D Dirac cones existing only for certain 
surfaces. Therefore, these materials can be identified by the sensitiv-
ity of the metallic surface states to the cleaving surface. These have 
been identified in layered bismuth compounds such as Bi14Rh3I9 (ref. 
27) and Bi2TeI and in layered variants of the half-Heusler compounds 
such as KHgSb (ref. 28), which has subsequently become a promi-
nent host of hourglass fermions29, surface states that are protected 
by non-symmorphic symmetries and gain their name from the 
shape of their dispersions. Beyond bismuth-based and half-Heusler 
compounds that lack strong electronic correlations, predicted cor-
related TIs include the actinide materials30, correlated skutteru-
dites31 and BaBiO3 (ref. 32). In addition, there has been much work in 
recent years exploring the quantum anomalous Hall effect (QAHE) 
and axion insulator phase in magnetic TIs, including magnetically 

Box 1 | Explaining band inversion and the emergence of topology in materials

An insulator is a material with a large energy gap between its 
conduction and valence bands, usually prohibiting conventional 
electrical conduction. Depending on the size of the gap, these 
materials will be transparent, white or of a certain visible colour, 
which indicates the wavelength of light absorption in the mate-
rial. Semiconductors, which can be made to conduct under certain 
conditions, are materials with small bandgaps, and semimetals are 
materials with slightly overlapping bandgaps in di!erent parts 
of the Brillouin zone. Because semimetals are not fully gapped, 
incoming light will be easily absorbed and quickly reemitted as 
in metals; as a consequence, these materials are typically black in 
colour and shiny.

In many ionic and semiconducting materials, the s electrons 
form the conduction band while the p or d electrons build the 
valence band. However, if the materials contain heavy elements, 
due to relativistic e!ects, the outer s electrons of the heavy 
elements can be lower in energy compared to the p or d electrons 
of the light elements. "e result is a semimetal with overlapping 
conduction and valence bands that have been ‘inverted’ in terms 
of their energies and orbital characters (Box 1 #gure, le$), with 
a band crossing that is referred to as a nodal line. If this nodal 
line becomes gapped due to spin–orbit coupling, either fully as 
in topological insulators (Box 1 #gure, top right) or everywhere 
except at certain points in the Brillouin zone as in Weyl and Dirac 
semimetals (Box 1 #gure, bottom right), this band inversion 
still remains and results in non-trivial topology of the electronic 
structure. "is is due to the band inversion playing a role in the 
Berry connection, the gauge potential associated with the Berry 
phase of the Bloch wave functions. In topological insulators, the 
Berry phase is quantized and directly corresponds to non-trivial 
topological description. In Weyl semimetals, the Berry curvature, 
the corresponding gauge #eld, diverges at the Weyl points, 
which are thus described also as monopoles and antimonopoles 
of Berry curvature in momentum space, with the integral of the 
Berry curvature over a sphere surrounding one Weyl node being 
equal to ±1. "e Weyl semimetal phase, assuming momentum is 
still conserved, can only be gapped out if these monopoles and 
antimonopoles come together; in this way, the Weyl semimetal is 

topologically non-trivial. "us, this mechanism of band inversion 
is the reason that many topologically non-trivial materials known 
today contain heavy elements.

Topological
insulators

SOC

Weyl
semimetals

Dirac
semimetals

Band inversion

Band inversion. Band inversion (left) facilitates the formation of topological 
insulators (top right) and Weyl and Dirac semimetals (bottom right). 
Overlapping valence and conduction bands of different orbital characters 
form a nodal line in the Brillouin zone where the bands cross in energy. 
Spin–orbit coupling can open a full energy gap, resulting in a topological 
insulator, or everywhere along the nodal line except for at special points, 
called Weyl or Dirac points, in Weyl and Dirac semimetals. In all of these 
cases, the band inversion stemming from the overlapping bands without 
spin–orbit coupling results in the non-trivial topology of these electronic 
structures. Figure adapted with permission from ref. 90, Annual Reviews.
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integral of the Berry curvature over a surface (Box 1). The sphere sur-
rounding a Weyl node in momentum space will have a Chern num-
ber of ±1, and the Fermi arc is a manifestation of the chiral edge states 
of the Chern insulator planes that enclose the node. A perhaps more 
tangible signature of a Weyl semimetal, which has been explored 
extensively by experimentalists for the TaAs family, is the chiral mag-
netic effect, a result of the chiral anomaly (Fig. 1). The chiral anomaly 
is a phenomenon well known in relativistic quantum field theory in 
which the number of particles of each chirality are not separately 
conserved due to the presence of a topologically non-trivial gauge 
field45–47. In Weyl semimetals and certain driven Dirac semimetals, 
the chiral anomaly is predicted to lead to a negative magnetoresis-
tance through the chiral magnetic effect due to the chiral zero modes 
of the Landau levels at the Weyl nodes and thus can be detected in 
transport measurements. A critical component in these measure-
ments is the ability to synthesize high-quality samples. We would like 
to highlight here that there is tremendous opportunity for new mate-
rials chemistry approaches to enter the field of topological materials 
science to diversify the synthesis methods and chemistries accessible.

Magnetic Weyl semimetals
Though the first experimentally observed Weyl semimetal, TaAs, 
is a non-magnetic and non-centrosymmetric material (breaking 

spatial inversion symmetry), the first predicted Weyl semimetals 
were magnetic, namely, the pyrochlore iridate Y2Ir2O7 (ref. 34) and 
HgCr2Se4 (ref. 48). While HgCr2Se4 has yet to show a Weyl semi-
metal phase experimentally, some of the pyrochlore iridates have 
since shown signatures of the phase in transport experiments49–51, 
and there has been much more work in just the past few years that 
has identified other magnetic Weyl semimetals. These include the 
LnPtBi family of half-Heusler compounds, wherein Weyl nodes can 
be induced via a magnetic exchange field. GdPtBi and NdPtBi have 
been shown to become Weyl semimetals only in applied fields of the 
order of ~2 T (refs. 52,53), and both compounds show two strong sig-
natures of the chiral anomaly that are absent in their non-magnetic 
analogue YPtBi: a large unsaturated negative quadratic magnetore-
sistance for fields up to 60 T and an unusual intrinsic anomalous 
Hall effect (AHE)53.

In the large family of magnetic full-Heusler compounds, Weyl 
nodes are predicted to be rather common. In fact, many crossings 
close to the Fermi level in the band structures of ferromagnetic 
centrosymmetric compounds have been shown to be Weyl nodes. 
Co2YZ (with Y = V, Zr, Nb, Ti, Hf; Z = Si, Ge, Sn)54,55 and Co2MnAl 
(ref. 56) have all been predicted to be Weyl semimetals with Weyl 
nodes near the Fermi energy and each having, as a consequence, 
a giant AHE stemming from the divergent Berry curvature at the 
Weyl nodes57. A large AHE was predicted with Berry curvature cal-
culations58 and then verified experimentally via transport measure-
ments59 for the Co2MnZ (Z = Ga, Al) Heusler compounds. Though 
at the time of the prediction, it was not clear that a large Berry cur-
vature was a consequence of any Weyl nodes or nodal lines, it was 
speculated that the Dirac crossing in Co2VSn could be related to 
a large Berry curvature58. Measurements of the AHE in thin films 
of Co2MnAl are in good agreement with theory, and in Co2MnGa, 
a large anomalous Hall angle up to 12%59 and a giant anomalous 
Nernst effect have been observed60,61.

Another recently identified Weyl semimetal is the half-metallic 
magnetic shandite compound Co3Sn2S2 (ref. 62). Owing to the large 
Berry curvature in Co3Sn2S2 stemming from its Weyl nodes and 
weakly gapped nodal lines, as well as due to a relatively low charge 
conductivity, both the anomalous Hall conductivity and anomalous 
Hall angle have been measured experimentally to have values of 
up to 1,130 S cm–1 and 20%, respectively62. This easily grown mag-
netic Weyl semimetal serves as an ideal platform for studying Weyl 
physics, and its Berry curvature-induced intrinsic AHE makes it a 
candidate for finding the QAHE in 2D insulating systems yielding 
dissipationless edge currents.

Angle-resolved photoemission spectroscopy (ARPES) and 
scanning tunnelling microscopy experiments revealed intrin-
sic time-reversal symmetry broken Weyl semimetal states in the 
Heusler compound Co2MnGa (ref. 63) and the shandite compound 
Co3Sn2S2 (refs. 64,65). Thus, the connection between the topologically 
non-trivial states and enhanced Berry curvature of these materials 
and their observed anomalous transport effects becomes crucial. 
These materials have natural advantages of high magnetic order-
ing temperatures, clearly defined topologically non-trivial band 
structures, low charge carrier densities, and strong electromag-
netic responses, and thus show great promise for studying quantum 
effects, as the design of a material that exhibits a high-temperature 
QAHE via quantum confinement of a magnetic Weyl semimetal 
and its integration into quantum devices is the next step. Realization 
of the QAHE at room temperature would be revolutionary in over-
coming limitations of many of today’s data-based technologies, 
which are affected by large electron scattering-induced power 
losses. Such a discovery would pave the way to a new generation of 
low-energy consuming quantum electronic and spintronic devices.

In addition to the magnetic Weyl semimetals discussed so far, the 
Weyl semimetal phase has also been discovered in the non-collinear 
triangular antiferromagnets Mn3Z (Z = Ge, Sn)66 and Mn3Ir (ref. 67).  

Chiral anomaly Axion insulators

Non-equilibrium
responseFloquet and

driven states

Dirac and 
Weyl physics

New topologyWeyl semimetals

Fig. 1 | Dirac and Weyl physics. Dirac and Weyl physics is ubiquitous 
in topological materials science and related phenomena. Because the 
dispersion near Dirac and Weyl points is linear in momentum (centre; 
shown in two dimensions in momentum space for conceptual clarity), the 
low-energy excitations near these band touchings are well described by the 
Dirac and Weyl Hamiltonians, respectively. In Weyl semimetals (bottom 
left), Weyl nodes come in pairs of opposite chirality in momentum space, 
and the separation of oppositely handed nodes is what protects the Weyl 
semimetal phase topologically. The existence of chiral fermions (top left) 
in a Weyl semimetal suggests that these materials and certain driven 
Dirac semimetals will exhibit the chiral anomaly, which can manifest in 
a so-called chiral magnetic effect when the material is in the presence 
of parallel electric and magnetic fields. In addition, Weyl nodes can be 
induced or moved in energy and/or momentum by electromagnetic driving, 
allowing for Floquet (periodically driven) Weyl phases (middle left) and 
non-equilibrium responses (middle right; out-of-equilibrium electrons 
illustrated in red). In the presence of correlations, a Weyl semimetal can 
be gapped into a less-explored topological phase, the axion insulator 
(top right). We similarly expect Dirac and Weyl physics to filter into new 
topological phases (bottom right) that are continuing to be discovered.
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● single pair of Weyl points
● located at EF (or very close)
● far separated in k-space
● no topologically trivial bands
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with time-reversal symmetry θ. These rotations act like mirror sym-
metries, as they relate Bloch wave functions at (kx, ky, kz) to those at 
(−kx, ky, kz) and (kx, ky, −kz), respectively, leaving the planes kx = 0 and 
kz = 0 and the BZ boundaries kx = ±π and kz = ±π invariant. Squaring θC̃

x
2 

and θC̃
z
2 and letting them operate on the Bloch state |ψ(k)$, one finds 

that k kθC ψ ψ( ˜ ) | ( )$ = e | ( )$
x k
2

2 i x  and k kθC ψ ψ( ˜ ) | ( )$ = e | ( )$
z k
2

2 i z . Hence, by 
Kramers theorem28, all Bloch states on planes with kx = ±π or kz = ±π are 
two-fold degenerate. Moving away from these BZ boundaries, the sym-
metries are lowered such that the Bloch states become non-degenerate. 
Therefore, all bands in ferromagnetic MnSi are forced to cross at kx = ±π 
and kz = ±π, representing a duo of NPs.

The topological charge ν of this duo of NPs (Fig. 1b) may be deter-
mined with the fermion doubling theorem29, which states that ν 
summed over all band crossings must be zero. We note that besides 
the NPs, there is an odd number of symmetry-enforced band cross-
ings on the Y1–Γ–Y and R1–U–R lines forming Weyl points (ν = ±1) and 
four-fold points (ν = ±2), respectively (Fig. 1c, d, Extended Data Fig. 2, 
Supplementary Note 1). Moreover, due to the effective mirror sym-
metries, accidental Weyl points away from these high-symmetry lines 
must form pairs or quadruplets with the same ν. As the sum over ν of all 
of these Weyl and four-fold points is odd, the duo of NPs must carry a 
non-zero topological charge to satisfy the fermion doubling theorem. 
Hence, the duo of NPs at the BZ boundary is the topological partner of a 
single Weyl point on the Y1–Γ–Y line (Fig. 1b). This is a counter-example 
to Weyl semimetals, in which Weyl points occur always in pairs.

Shown in Fig. 1d is the band structure of a generic tight-binding 
model satisfying SG 19.27 (Supplementary Note 2), where pairs of 
bands form NPs on the BZ boundaries kx = ±π and kz = ±π, whereas 
on the Y1–Γ–Y and R1–U–R lines there are Weyl and four-fold points, 
respectively. Explicit calculation of the Chern numbers shows that all 
of these band crossings, including those at the NPs, exhibit non-zero 
topological charges as predicted above. In turn, all of the FSs carry 
substantial Berry curvatures. The numerical analysis shows that 
these Berry curvatures become extremal at the NPs and close to the 
four-fold and Weyl points (Extended Data Fig. 3). By the bulk–boundary 
correspondence3,4, the non-trivial topology of these band crossings 
generates large Fermi arcs on the surface, which extend over half of 
the BZ of the surface (Extended Data Fig. 4). These arguments may 
be extended to 254 of the 1,651 magnetic SGs, of which 33 have NPs 
whose topological charges are enforced to be non-zero by symmetry 
alone (Supplementary Note 3).

Calculated electronic structure
Figure 1e shows the density functional theory (DFT) band structure of 
MnSi, taking into account spin–orbit coupling, for the experimental 
moment of 0.41 Bohr magnetons (µB) per Mn atom along the [010] 
direction (Methods, Extended Data Fig. 5). Ten bands are found to 
cross the Fermi level (Fig. 1e). In agreement with our symmetry analysis 
and the tight-binding model (Fig. 1d), we find the same generic band 
crossings, namely: (1) NPs on the BZ boundaries kx = ±π and kz = ±π;  
(2) an odd number of Weyl points along Y1–Γ–Y; and (3) an odd number 
of four-fold points along R1–U–R.

The calculated FSs as matched to experiment are shown in Fig. 1f, 
highlighting the NPs at the BZ boundaries at kx = ±π and kz = ±π (see 
Extended Data Table 1 for key parameters and Extended Data Fig. 5). 
Eight FS sheets centred at Γ comprise two small isolated hole pockets 
(sheets 1 and 2), two intersecting hole pockets with avoided crossings 
and magnetic breakdown due to spin–orbit coupling (sheets 3 and 4) 
and two pairs of jungle-gym-type sheets (sheets 5 and 6, and sheets  
7 and 8). Sheets 9 and 10 are centred at R, comprising eight three- 
fingered electron pockets around the [111] axes and a tiny electron 
pocket, respectively. The sheet pairs (5, 6), (7, 8) and (9, 10) extend 
beyond the BZ boundaries with pairwise sticking at the NPs. They rep-
resent TPs (marked in red) with extremal Berry curvatures protected 
by the magnetic screw rotations θC̃

x
2  and θC̃

z
2. In contrast, sheets 5 to 

10 do not form TPs at the BZ boundary ky = ±π, because the moment 
pointing along [010] breaks θC̃

y
2 .

Rotating the direction of the magnetization away from [010]  
distorts the FS sheets, where TPs exist only on those BZ boundaries 
parallel to the magnetization (Supplementary Videos 1 and 2). For 
instance, rotating the moments within the x–y plane away from [010] 
breaks the magnetic screw rotation θC̃

x
2, but keeps θC̃

z
2 intact. In turn, 

the TPs gap out on the ky = ±π and kx = ±π planes, whereas they remain 
degenerate at the kz = ±π planes (Extended Data Fig. 1, Supplementary 
Note 1).
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Fig. 1 | Symmetries, band topology, Fermi surface protectorates and band 
structure of ferromagnetic MnSi. a, Action of the magnetic screw rotations 
and time-reversal symmetry (TRS) on the k-points in the BZ. b, Pairs of energy 
bands E(k) close to the Fermi energy EF forming a topological NP (red line) on the 
BZ boundary that is perpendicular to the screw-rotation axis. This NP is the 
topological partner of a single Weyl point (WP) in the bulk (blue dot) of opposite 
topological charge. c, High-symmetry paths in the cubic primitive BZ. Special 
k-points are denoted by the orthorhombic primitive notation with subscripts 
for easier identification. d, Generic tight-binding band structure illustrating the 
generic band degeneracies of ferromagnetic MnSi with its magnetic space 
group, SG 19.27, namely Weyl points, four-fold degenerate points (FPs), NPs and 
TPs. e, Band structure of ferromagnetic MnSi for magnetization along [010] as 
calculated using DFT. Ten bands cross the Fermi level, as distinguished by 
different colours corresponding to the FS sheets numbered in f. f, Calculated FS 
sheets adapted to match the experimental data under magnetic field along 
[010], as discussed in Methods. Note the presence of NPs on the BZ boundaries, 
kx = ±π and kz = ±π, as well as TPs marked in red. a.u., arbitrary units.
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Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions,
could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1
excitations with threefold degeneracy and spin-3=2 Rarita-Schwinger-Weyl fermions. Herein, by using the
ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I
and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe,
when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs
connecting projections of these bulk excitations on the side surface, which is confirmed by (001) surface
electronic spectra of CoSi. In addition, these stable arc states exist within a wide energy window around
the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy
measurements.
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Introduction.—Three types of fermions play fundamen-
tal roles in our understanding of nature: Majorana, Dirac,
and Weyl [1]. Much attention has been paid to looking for
these fundamental particles in high-energy physics during
the past few decades, whereas only a signature of Dirac
fermions is captured. Interestingly, the same movement
comes up in the field of condensed matter physics [2], and
great achievements have been made in the past few years.
For example, Majorana-like excitations are detected in
superconducting heterostructures [3–6]; Dirac [7–12] and
Weyl [13–31] fermions are observed in some compounds.
These quasiparticles in solid states not only are important
for basic science but also show great potential for practical
applications on new devices [32,33].
Because symmetries in condensed matter physics are

usually much lower than the Poincaré symmetry in high-
energy physics, quasiparticles in solid states are less con-
strained such that various new types of fermionic excitations
are predicted to exist in three-dimensional (3D) lattices
[34–39]. Among these allowed by space group (SG)
symmetries are spin-1 and spin-3=2 massless fermionic
excitations, besides the well-known spin-1=2 case, namely,
theWeyl fermion.All of thesemassless quasiparticles can be
described by the low-energy Hamiltonian in a unified
manner to the linear order of momentum

H ¼ δk · S; ð1Þ

where δk ¼ k − k0 is the momentum deviation from the
crossing point k0 and S stands for the matrices for the
pseudospin degree of freedom that satisfy ½Si; Sj% ¼ iϵijkSk.
The definite helicity can be assigned to each energy band
of H, and it is related to the nonvanishing Chern number
for one energy surface enclosing the crossing point. These
band crossings behave as monopoles of the Berry flux. For

example, the Weyl fermion takes 2 × 2 Pauli matrices and
holds a twofold degeneracy; its crossing point carries a
topological charge &1 [see Fig. 1(a)]. As a generalization,
the spin-1 excitation takes 3 × 3 spin matrices and holds a
threefold degeneracy [see Fig. 1(b)]; its crossing point

(a) (b)

(c) (d)

Spin-1/2 Weyl fermion Spin-1 excitation

Spin-3/2 RSW fermion Double Weyl fermion

C=±1

C=±2

C=0

C=±3

C=±1 C=±1×2

FIG. 1. Energy dispersions for multiple types of topological
fermions. (a) The Weyl fermion with S ¼ 1=2. (b) The excitation
with S ¼ 1. (c) The Rarita-Schwinger-Weyl fermion with
S ¼ 3=2. (d) The double Weyl fermion. The red arrows indicate
that two energy crossings should be at the same point for the
double Weyl fermion. Chern numbers for upper and lower bands
are marked in blue for topological fermions.
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these fundamental particles in high-energy physics during
the past few decades, whereas only a signature of Dirac
fermions is captured. Interestingly, the same movement
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For example, Majorana-like excitations are detected in
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for basic science but also show great potential for practical
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strained such that various new types of fermionic excitations
are predicted to exist in three-dimensional (3D) lattices
[34–39]. Among these allowed by space group (SG)
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the past few decades, whereas only a signature of Dirac
fermions is captured. Interestingly, the same movement
comes up in the field of condensed matter physics [2], and
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For example, Majorana-like excitations are detected in
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Weyl [13–31] fermions are observed in some compounds.
These quasiparticles in solid states not only are important
for basic science but also show great potential for practical
applications on new devices [32,33].
Because symmetries in condensed matter physics are

usually much lower than the Poincaré symmetry in high-
energy physics, quasiparticles in solid states are less con-
strained such that various new types of fermionic excitations
are predicted to exist in three-dimensional (3D) lattices
[34–39]. Among these allowed by space group (SG)
symmetries are spin-1 and spin-3=2 massless fermionic
excitations, besides the well-known spin-1=2 case, namely,
theWeyl fermion.All of thesemassless quasiparticles can be
described by the low-energy Hamiltonian in a unified
manner to the linear order of momentum

H ¼ δk · S; ð1Þ

where δk ¼ k − k0 is the momentum deviation from the
crossing point k0 and S stands for the matrices for the
pseudospin degree of freedom that satisfy ½Si; Sj% ¼ iϵijkSk.
The definite helicity can be assigned to each energy band
of H, and it is related to the nonvanishing Chern number
for one energy surface enclosing the crossing point. These
band crossings behave as monopoles of the Berry flux. For

example, the Weyl fermion takes 2 × 2 Pauli matrices and
holds a twofold degeneracy; its crossing point carries a
topological charge &1 [see Fig. 1(a)]. As a generalization,
the spin-1 excitation takes 3 × 3 spin matrices and holds a
threefold degeneracy [see Fig. 1(b)]; its crossing point
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FIG. 1. Energy dispersions for multiple types of topological
fermions. (a) The Weyl fermion with S ¼ 1=2. (b) The excitation
with S ¼ 1. (c) The Rarita-Schwinger-Weyl fermion with
S ¼ 3=2. (d) The double Weyl fermion. The red arrows indicate
that two energy crossings should be at the same point for the
double Weyl fermion. Chern numbers for upper and lower bands
are marked in blue for topological fermions.
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Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions,
could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1
excitations with threefold degeneracy and spin-3=2 Rarita-Schwinger-Weyl fermions. Herein, by using the
ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I
and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe,
when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs
connecting projections of these bulk excitations on the side surface, which is confirmed by (001) surface
electronic spectra of CoSi. In addition, these stable arc states exist within a wide energy window around
the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy
measurements.
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Introduction.—Three types of fermions play fundamen-
tal roles in our understanding of nature: Majorana, Dirac,
and Weyl [1]. Much attention has been paid to looking for
these fundamental particles in high-energy physics during
the past few decades, whereas only a signature of Dirac
fermions is captured. Interestingly, the same movement
comes up in the field of condensed matter physics [2], and
great achievements have been made in the past few years.
For example, Majorana-like excitations are detected in
superconducting heterostructures [3–6]; Dirac [7–12] and
Weyl [13–31] fermions are observed in some compounds.
These quasiparticles in solid states not only are important
for basic science but also show great potential for practical
applications on new devices [32,33].
Because symmetries in condensed matter physics are

usually much lower than the Poincaré symmetry in high-
energy physics, quasiparticles in solid states are less con-
strained such that various new types of fermionic excitations
are predicted to exist in three-dimensional (3D) lattices
[34–39]. Among these allowed by space group (SG)
symmetries are spin-1 and spin-3=2 massless fermionic
excitations, besides the well-known spin-1=2 case, namely,
theWeyl fermion.All of thesemassless quasiparticles can be
described by the low-energy Hamiltonian in a unified
manner to the linear order of momentum

H ¼ δk · S; ð1Þ

where δk ¼ k − k0 is the momentum deviation from the
crossing point k0 and S stands for the matrices for the
pseudospin degree of freedom that satisfy ½Si; Sj% ¼ iϵijkSk.
The definite helicity can be assigned to each energy band
of H, and it is related to the nonvanishing Chern number
for one energy surface enclosing the crossing point. These
band crossings behave as monopoles of the Berry flux. For

example, the Weyl fermion takes 2 × 2 Pauli matrices and
holds a twofold degeneracy; its crossing point carries a
topological charge &1 [see Fig. 1(a)]. As a generalization,
the spin-1 excitation takes 3 × 3 spin matrices and holds a
threefold degeneracy [see Fig. 1(b)]; its crossing point
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FIG. 1. Energy dispersions for multiple types of topological
fermions. (a) The Weyl fermion with S ¼ 1=2. (b) The excitation
with S ¼ 1. (c) The Rarita-Schwinger-Weyl fermion with
S ¼ 3=2. (d) The double Weyl fermion. The red arrows indicate
that two energy crossings should be at the same point for the
double Weyl fermion. Chern numbers for upper and lower bands
are marked in blue for topological fermions.
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We grew two enantiopure specimens of PdGa
with opposite chirality through a self-flux
method with a chiral seed crystal and used
x-ray diffraction and the Flack method to
determine the structural chirality of our sam-
ples, indicating almost ideal homochirality.
More information about the refinements can
be found in (33). The chirality of the crystal
structure close to the surface can also be ob-
served from the intensity distribution of low-
energy electron diffraction (LEED) patterns
of the (100) surface (28) at an electron energy
of Ekin = 95 eV (Fig. 1B). As can be expected,
the S-shaped intensity distribution ismirrored
when comparing the two enantiomers. The
crystals used for the ARPES and LEED studies
were prepared by the same sputter-annealing
recipe, which is well known to produce clean
and stoichiometric surfaces of PdGa (26). In
Fig. 1C, we display the results of an ab initio
bulk band structure calculation, which shows
fourfold and sixfold band crossings at the G
andR high-symmetry points, respectively. Such
band crossings in space group 198 were pre-
dicted to carry aChernnumber ofmagnitude 4,

with opposite signs at theG andRpoints (15–18).
Because the Berry curvature is a pseudovec-
tor, a mirror operation will reverse the sign of
the Chern numbers associatedwith the nodes
at the high-symmetry points. Such a mirror
operation also leads to a reversal of the prop-
agation direction of the Fermi arcs (Fig. 1D).
The multifold fermions at the G and R points
act as sources (positive Chern number) or sinks
(negative Chern number) of Berry curvature.
One can imagine integrating the Berry flux
passing through a two-dimensional slice that
is dividing the Brillouin zone between the G
and R points (blue shaded planes in Fig. 1D).
Because of time-reversal symmetry, the Chern
number of the slice is equivalent to half of the
Chern number associated with the multifold
fermions at G and R, and the sign of their
Chern number depends on the direction of
Berry flux. If we imagine this slice to be a
two-dimensional quantum Hall phase, then
the number of edge states of the slice is di-
rectly related to its Chern number magnitude,
whereas their direction depends on its Chern
number sign. The observation of a Fermi-arc

doublet that is connecting the G and R points
is, therefore, an unambiguous signature of
a Chern number with magnitude 4, and the
observation of the reversal of the Fermi-arc
velocity is an unambiguous signature of a
change in the Chern number sign associated
with the multifold fermions.
We performed bulk-sensitive soft x-ray

ARPES measurements on the (100) surface
of our PdGa samples to investigate their bulk
electronic structure (Fig. 2). We find that
multifold crossings predicted at the R and
G points are indeed present (see Fig. 2, A to
C), and that our ab initio calculations are in
good qualitative agreement with the observed
band dispersions. This agreement can also
be observed from the Fermi surfaces for dif-
ferent high-symmetry planes displayed in
Fig. 2, D and E. Further analysis of the spin-
orbit splitting of the bulk bands can be found
in (33).
After establishing the existence of multifold

band crossings in PdGa, we now investigate
the topological character of these crossings
using surface-sensitive ARPES of the (100)
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Fig. 1. Structural and electronic chirality in the two enantiomers of PdGa.
(A) Illustration of the crystal structure of two enantiomers of PdGa with opposite
handedness. (B) LEED patterns for two samples with opposite chirality,
measured with an electron energy of Ekin = 95 eV. The S-shaped intensity
distribution of the diffraction spots (highlighted by red dashed lines as guides for
the eye) reflects the handedness of the crystal structure. (C) Ab initio
calculations of the band structure in PdGa, showing fourfold and sixfold band
crossings at the G and R points. The Chern numbers associated with the
crossings are of magnitude 4 and flip their sign on a mirror operation. This

reverses the direction of Berry flux that is flowing from the crossing with positive
Chern number (red circles) toward the crossing with negative Chern number
(blue circles). The inset shows the cubic Brillouin zone with high-symmetry
points G at the zone center and R at the zone corner. (D) Illustration of bulk
boundary correspondence for PdGa and related chiral topological semimetals.
Blue-shaded slices indicate two-dimensional quantum Hall phase with Chern
numbers of magnitude 2. Dashed black lines indicate the edges of the surface
Brillouin zone, and solid blue lines and black arrows indicate the Fermi-arc
surface states that are connecting the projections of R and G points.
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Topological Fermions in Transition Metal Silicides

Peizhe Tang et al., PRL 119 206402 (2017)

Electronic structures without SOC.—Figure 2(c) dem-
onstrates the calculated electronic structure and the Fermi
surface for CoSi bulk without SOC. Although this com-
pound contains the transition metal, no magnetization is
observed in our calculations, and TR symmetry is guar-
anteed in the whole system, which is consistent with
experimental observations [57]. Around the Fermi level,
electronic states are contributed only by hole pockets at theΓ
point and electron pockets at the R point. For each physical
spin, a gapless point with threefold degeneracy is observed
above the Fermi level at the center of the BZ, which is
stabilized by crystal symmetries (see SupplementalMaterial
[48] for details). Its low-energy physics can be described by
spin-1 excitations shown in Fig. 1(b), whose crossing point
is a monopole possessing topological charge þ2. At the R
point, we found a band crossing with fourfold degeneracy
below the Fermi level, which is a double Weyl fermion
with theChern number−2 [44]. So the total Chern number is
zero for the whole Fermi surface in CoSi bulk, which is
consistent with no-go theorem [62].
Because of nontrivial topology possessed by hole and

electron pockets in the bulk, the Fermi arc surface states can
be observed on the side surface. The electronic spectra for
the (001) surface is shown in Fig. 2(d). We can see that
topological surface states (marked by SS) emerge from
projections of spin-1 excitation and a double Weyl fermion
at Γ and R points, which are stable in a large energy
window. Figures 2(e) and 2(f) demonstrate the Fermi
surface contours on the (001) surface at different energies,
in which two Fermi arcs connect states at Γ̄ and M̄ points.
Especially for the contour at the Fermi level [see Fig. 2(e)],
Fermi arcs emerge from the Γ̄ point directly, which
indicates that the middle flat band in spin-1 excitations
does not carry a topological charge [see Fig. 1(b)].
Electronic structures with SOC.—Figure 3 shows the

bulk band structures for CoSi with SOC. Because of the
absence of inversion symmetry in SG 198, the SOC term
lifts the degeneracy at an arbitrary non-TR invariant point,
except for states on boundaries of the 3D BZ whose double
degeneracy is protected by TR and nonsymmorphic screw
symmetries [34]. At the center of the BZ, the sixfold
degeneracy point is split by SOC into two crossing points
with twofold and fourfold degeneracy, respectively. They
correspond to a Weyl fermion and a spin-3=2 RSW fermion
with topological charge þ4. And the fourfold degeneracy
originates from the TR forced doubling of the underlying
two-dimensional irreducible representation of the symmetry
group [63]. Meanwhile, a crossing point with sixfold
degeneracy is found at the R point. It is realized as a TR
doubling of spin-1 excitations protected by nonsymmorphic
symmetries [34], and its total topological charge is −4. In
stark contrast to three-component fermions [36–39], double
Dirac fermions [35], and Weyl fermions [13–31] whose
topological charge is "1 or zero, the spin-1 and spin-3=2
fermionic excitations carry large Chern numbers; thus, some

physical phenomena relatedwith topological charges should
be observed in this system, such as bulk photogalvanic effect
with a large quantized value and multiple Fermi arc surface
states. Furthermore, the coexistence of spin-1 and spin-3=2
RSW fermions in a compound with SG 198 is beyond
previous studies on unconventional quasiparticles [34].
At the same time, we found CoSi can host type-I and

type-II Weyl fermions along symmetry-invariant axes. For
bands below the gapless RSW point (see Fig. 3), six pairs of
type-II Weyl fermions exist along Γ-X lines; each pair has
opposite chiral charges. And four Weyl fermions are
observed on each line ofΓ-R that is invariant under threefold
rotation or screw symmetries. Twoof them are type I, and the
others are type II. In total, 32 Weyl points exist along these
threefold rotation or screw axes [see Fig. 3(e)], and the sum
of their topological charges is zero. Similar to previous
discussions [45,64], these Weyl fermions in CoSi are
generated by the crossing of stateswith different eigenvalues
of rotation or screw symmetries.
In order to demonstrate exotic physics of topological

fermions in CoSi with SOC, we explore its electronic
spectra on the (001) surface. The calculated results are
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FIG. 3. Electronic structures for CoSi with SOC. (a) The bulk
band structure for CoSi along high symmetry lines. (b)–(d)
Enlargement of bands in regions marked by red boxes. Weyl
fermions are marked by red arrows (including type I and type II).
The Rarita-Schwinger-Weyl fermion is marked by a blue arrow.
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the Fermi level. The red (blue) dots stand for the Weyl points with
a positive (negative) topological charge.
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Electronic structures without SOC.—Figure 2(c) dem-
onstrates the calculated electronic structure and the Fermi
surface for CoSi bulk without SOC. Although this com-
pound contains the transition metal, no magnetization is
observed in our calculations, and TR symmetry is guar-
anteed in the whole system, which is consistent with
experimental observations [57]. Around the Fermi level,
electronic states are contributed only by hole pockets at theΓ
point and electron pockets at the R point. For each physical
spin, a gapless point with threefold degeneracy is observed
above the Fermi level at the center of the BZ, which is
stabilized by crystal symmetries (see SupplementalMaterial
[48] for details). Its low-energy physics can be described by
spin-1 excitations shown in Fig. 1(b), whose crossing point
is a monopole possessing topological charge þ2. At the R
point, we found a band crossing with fourfold degeneracy
below the Fermi level, which is a double Weyl fermion
with theChern number−2 [44]. So the total Chern number is
zero for the whole Fermi surface in CoSi bulk, which is
consistent with no-go theorem [62].
Because of nontrivial topology possessed by hole and

electron pockets in the bulk, the Fermi arc surface states can
be observed on the side surface. The electronic spectra for
the (001) surface is shown in Fig. 2(d). We can see that
topological surface states (marked by SS) emerge from
projections of spin-1 excitation and a double Weyl fermion
at Γ and R points, which are stable in a large energy
window. Figures 2(e) and 2(f) demonstrate the Fermi
surface contours on the (001) surface at different energies,
in which two Fermi arcs connect states at Γ̄ and M̄ points.
Especially for the contour at the Fermi level [see Fig. 2(e)],
Fermi arcs emerge from the Γ̄ point directly, which
indicates that the middle flat band in spin-1 excitations
does not carry a topological charge [see Fig. 1(b)].
Electronic structures with SOC.—Figure 3 shows the

bulk band structures for CoSi with SOC. Because of the
absence of inversion symmetry in SG 198, the SOC term
lifts the degeneracy at an arbitrary non-TR invariant point,
except for states on boundaries of the 3D BZ whose double
degeneracy is protected by TR and nonsymmorphic screw
symmetries [34]. At the center of the BZ, the sixfold
degeneracy point is split by SOC into two crossing points
with twofold and fourfold degeneracy, respectively. They
correspond to a Weyl fermion and a spin-3=2 RSW fermion
with topological charge þ4. And the fourfold degeneracy
originates from the TR forced doubling of the underlying
two-dimensional irreducible representation of the symmetry
group [63]. Meanwhile, a crossing point with sixfold
degeneracy is found at the R point. It is realized as a TR
doubling of spin-1 excitations protected by nonsymmorphic
symmetries [34], and its total topological charge is −4. In
stark contrast to three-component fermions [36–39], double
Dirac fermions [35], and Weyl fermions [13–31] whose
topological charge is "1 or zero, the spin-1 and spin-3=2
fermionic excitations carry large Chern numbers; thus, some

physical phenomena relatedwith topological charges should
be observed in this system, such as bulk photogalvanic effect
with a large quantized value and multiple Fermi arc surface
states. Furthermore, the coexistence of spin-1 and spin-3=2
RSW fermions in a compound with SG 198 is beyond
previous studies on unconventional quasiparticles [34].
At the same time, we found CoSi can host type-I and

type-II Weyl fermions along symmetry-invariant axes. For
bands below the gapless RSW point (see Fig. 3), six pairs of
type-II Weyl fermions exist along Γ-X lines; each pair has
opposite chiral charges. And four Weyl fermions are
observed on each line ofΓ-R that is invariant under threefold
rotation or screw symmetries. Twoof them are type I, and the
others are type II. In total, 32 Weyl points exist along these
threefold rotation or screw axes [see Fig. 3(e)], and the sum
of their topological charges is zero. Similar to previous
discussions [45,64], these Weyl fermions in CoSi are
generated by the crossing of stateswith different eigenvalues
of rotation or screw symmetries.
In order to demonstrate exotic physics of topological

fermions in CoSi with SOC, we explore its electronic
spectra on the (001) surface. The calculated results are
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Electronic structures without SOC.—Figure 2(c) dem-
onstrates the calculated electronic structure and the Fermi
surface for CoSi bulk without SOC. Although this com-
pound contains the transition metal, no magnetization is
observed in our calculations, and TR symmetry is guar-
anteed in the whole system, which is consistent with
experimental observations [57]. Around the Fermi level,
electronic states are contributed only by hole pockets at theΓ
point and electron pockets at the R point. For each physical
spin, a gapless point with threefold degeneracy is observed
above the Fermi level at the center of the BZ, which is
stabilized by crystal symmetries (see SupplementalMaterial
[48] for details). Its low-energy physics can be described by
spin-1 excitations shown in Fig. 1(b), whose crossing point
is a monopole possessing topological charge þ2. At the R
point, we found a band crossing with fourfold degeneracy
below the Fermi level, which is a double Weyl fermion
with theChern number−2 [44]. So the total Chern number is
zero for the whole Fermi surface in CoSi bulk, which is
consistent with no-go theorem [62].
Because of nontrivial topology possessed by hole and

electron pockets in the bulk, the Fermi arc surface states can
be observed on the side surface. The electronic spectra for
the (001) surface is shown in Fig. 2(d). We can see that
topological surface states (marked by SS) emerge from
projections of spin-1 excitation and a double Weyl fermion
at Γ and R points, which are stable in a large energy
window. Figures 2(e) and 2(f) demonstrate the Fermi
surface contours on the (001) surface at different energies,
in which two Fermi arcs connect states at Γ̄ and M̄ points.
Especially for the contour at the Fermi level [see Fig. 2(e)],
Fermi arcs emerge from the Γ̄ point directly, which
indicates that the middle flat band in spin-1 excitations
does not carry a topological charge [see Fig. 1(b)].
Electronic structures with SOC.—Figure 3 shows the

bulk band structures for CoSi with SOC. Because of the
absence of inversion symmetry in SG 198, the SOC term
lifts the degeneracy at an arbitrary non-TR invariant point,
except for states on boundaries of the 3D BZ whose double
degeneracy is protected by TR and nonsymmorphic screw
symmetries [34]. At the center of the BZ, the sixfold
degeneracy point is split by SOC into two crossing points
with twofold and fourfold degeneracy, respectively. They
correspond to a Weyl fermion and a spin-3=2 RSW fermion
with topological charge þ4. And the fourfold degeneracy
originates from the TR forced doubling of the underlying
two-dimensional irreducible representation of the symmetry
group [63]. Meanwhile, a crossing point with sixfold
degeneracy is found at the R point. It is realized as a TR
doubling of spin-1 excitations protected by nonsymmorphic
symmetries [34], and its total topological charge is −4. In
stark contrast to three-component fermions [36–39], double
Dirac fermions [35], and Weyl fermions [13–31] whose
topological charge is "1 or zero, the spin-1 and spin-3=2
fermionic excitations carry large Chern numbers; thus, some

physical phenomena relatedwith topological charges should
be observed in this system, such as bulk photogalvanic effect
with a large quantized value and multiple Fermi arc surface
states. Furthermore, the coexistence of spin-1 and spin-3=2
RSW fermions in a compound with SG 198 is beyond
previous studies on unconventional quasiparticles [34].
At the same time, we found CoSi can host type-I and

type-II Weyl fermions along symmetry-invariant axes. For
bands below the gapless RSW point (see Fig. 3), six pairs of
type-II Weyl fermions exist along Γ-X lines; each pair has
opposite chiral charges. And four Weyl fermions are
observed on each line ofΓ-R that is invariant under threefold
rotation or screw symmetries. Twoof them are type I, and the
others are type II. In total, 32 Weyl points exist along these
threefold rotation or screw axes [see Fig. 3(e)], and the sum
of their topological charges is zero. Similar to previous
discussions [45,64], these Weyl fermions in CoSi are
generated by the crossing of stateswith different eigenvalues
of rotation or screw symmetries.
In order to demonstrate exotic physics of topological

fermions in CoSi with SOC, we explore its electronic
spectra on the (001) surface. The calculated results are
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shown in Fig. 4. Topologically nontrivial surface states that
related to excitations beyond Dirac andWeyl models can be
observed clearly on the side surface, which emerge from
projections of bulk states at the Γ̄ point and end at those
around the M̄ point. In Figs. 4(b)–(f), we show Fermi
surface contours at different energies; all of them are above
the gapless point with sixfold degeneracy at the R point
in the energy scale. In contour 1 [see Fig. 4(b)], states
around the Γ̄ point are projected from bulk conduction
bands with helicities of 3=2 and 1=2 in the RSW fermion,
and their total topological charge is þ4. So four Fermi arcs
are observed around the Γ̄ point on the (001) surface. When
the energy cuts the crossing point in the RSW fermion [see
Fig. 4(c)], the arc states emerge from the Γ̄ point directly,
indicating the nontrivial topology carried by the RSW
fermion. Furthermore, with a lower energy, projections at
the Γ̄ point are from states with 3=2 helicity in the RSW
fermion below its fourfold gapless point and states in the
Weyl fermion at the Γ point. Their total Chern number still
is þ4, and four Fermi arcs are observed in Figs. 4(d)–(f).
Similar to cases in TaAs [15,18,20–22] and MoTe2
[23–25,27–29], Fermi arcs contributed by type-I and
type-II Weyl fermions in CoSi are coupled with bulk states
strongly, although these bulk states still carry nonzero
topological charges. Thus, the signature from Weyl fer-
mions is hard to distinguish on the surface spectroscopy.

Herein, we found the possible signal of Fermi arcs
contributed by type-II Weyl fermions in Fig. 4(f) and the
Lifshitz transition for Fermi arc surface states.
Conclusion.—By using first-principles calculations, we

predict that bulk states of CoSi-family compounds host
spin-1 excitations, double Weyl fermions, spin-3=2 RSW
fermions, and type-I and type-II Weyl fermions in cases
without and with SOC. The corresponding extensive Fermi
arcs are observed on the (001) surface clearly. Different
from previously found topological semimetals, such as the
three-component, Dirac, and Weyl fermions, our systems
support topological features in a large energy window
around the Fermi level and almost on the whole surface BZ.
We expect that these electronic signatures can be observed
via angle-resolved photoemission spectroscopy on the side
surface directly. When a magnetic field is applied to this
system to break TR symmetry, these quasiparticles may
split to multiple Weyl fermions [34]. Therefore, the
anomalous magnetoresistance may be observed via elec-
trical transport measurements, and quantum anomalies may
be identified via thermal transports [65]. Because of the
large Chern number carried by spin-3=2 and spin-1
excitations, the exotic bulk photogalvanic effects related
to chiral charges may be also observed in this system.
Therefore, this work not only identifies a series of desired
robust topological semimetal candidates but also provides
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the long winding states extend from the centre of the BZ to the M 
pocket (Fig. 2f). To better understand the nature of these states, we 
analyse the photon energy dependence of the ARPES results and find 
that the long winding states do not disperse as we vary the photon 
energy, suggesting that they are surface states (Extended Data Fig. 7). 
Moreover, we observe an overall agreement between the ARPES data 
and the Fermi surface calculated ab initio, where topological Fermi arcs 
connect the Γ and M pockets (Fig. 1f). Taken together, these results 
suggest that the long winding states observed in ARPES may be topo-
logical Fermi arcs.

Grounded on the framework of topological band theory, the bulk–
boundary correspondence of chiral fermions makes it possible to use 
ARPES (spectroscopic) measurements to determine the Chern  
numbers of a crystal by probing the surface-state dispersion (Fig. 3a, 
Methods). Such spectroscopic methods to determine Chern numbers 
have become well accepted in the field26. Using such an approach, we 
provide two spectral signatures of Fermi arcs in CoSi. We first look  
at the dispersion of the candidate Fermi arcs along a pair of energy–
momentum cuts on opposite sides of the Γ pocket, taken at fixed 
momentum +kx (cut I) and −kx (cut II; Fig. 2f). In cut I, we observe 
two right-moving chiral edge modes (Fig. 3b, c). Because the cut passes 
through two BZs (Fig. 2f), we associate one right-moving mode with 
each BZ. Next, we fit Lorentzian peaks to the MDCs and we find that 

the extracted dispersion again suggests two chiral edge modes (Fig. 3d). 
Along cut II, we observe two left-moving chiral edge modes (Fig. 3e, f). 
Consequently, one chiral edge mode is observed for each measured 
surface BZ on cuts I and II, but with opposite Fermi velocity directions. 
In this way, our ARPES spectra suggest that the number of chiral edge 
modes n changes by +2 when the k-slice is swept from cut I to cut II. 
This again suggests that the long winding states are topological Fermi 
arcs. Moreover, these ARPES results imply that projected topological 
charge with net Chern number +2 resides near Γ.

Next we search for other Chern numbers encoded by the surface- 
state band structure. We study an ARPES energy–momentum cut  
on a loop P enclosing M (Fig. 4a, inset). Again following the bulk–
boundary correspondence, we aim to extract the Chern number of 
chiral fermions projecting on M. The cut P shows two right-moving 
chiral edge modes dispersing towards EF (Fig. 4a, b), suggesting a Chern 
number of −2 on the associated bulk manifold. Furthermore, the sur-
face spectral weight along P calculated ab initio is consistent with our 
experimental results (Fig. 4c). Our ARPES spectra on cuts I, II and P 
suggest that CoSi hosts a projected chiral charge of +2 at Γ with its 
partner chiral charge of −2 projecting on M. This again provides evi-
dence that the long winding states are a pair of topological Fermi arcs 
that traverse the surface BZ on a diagonal, connecting the Γ and M 
pockets. Our ARPES spectra of RhSi also provide evidence for gigantic 
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Fig. 2 | Fermiology of the (001) surface electronic topology in CoSi and 
RhSi. a, ARPES constant-energy contours for CoSi measured at incident 
photon energy of 50 eV, with the BZ boundary marked (rightmost panel, 
red dashed line). We observe long winding states connecting the Γ and M 
pockets. b, Fermi surface for RhSi measured at incident photon energy of 
82 eV, with the BZ boundary marked (blue dashed line). Again, we observe 
long winding states extending diagonally across the BZ (Extended Data 
Fig. 1). c, Schematic of the measured Fermi surface for CoSi, showing 
topologically nontrivial hole- (h; green) and electron- (e; blue) like bulk 

pockets and long winding states (orange). The grey pocket is topologically 
trivial. d, Zoomed-in view of the long winding states, with a trajectory 
obtained by fitting Lorentzians to the MDCs of the ARPES spectrum (blue 
circles). e, Representative Lorentzian fit to the MDC along k1 for k2 = 0 at 
binding energy E − EF = −10 meV (Extended Data Fig. 6). f, Schematic 
overlaid with Lorentzian peaks extracted from the MDCs passing through 
the long winding states. We mark two straight cuts, I and II (magenta 
lines), as well as a closed-loop cut, P (magenta circle).
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the long winding states extend from the centre of the BZ to the M 
pocket (Fig. 2f). To better understand the nature of these states, we 
analyse the photon energy dependence of the ARPES results and find 
that the long winding states do not disperse as we vary the photon 
energy, suggesting that they are surface states (Extended Data Fig. 7). 
Moreover, we observe an overall agreement between the ARPES data 
and the Fermi surface calculated ab initio, where topological Fermi arcs 
connect the Γ and M pockets (Fig. 1f). Taken together, these results 
suggest that the long winding states observed in ARPES may be topo-
logical Fermi arcs.

Grounded on the framework of topological band theory, the bulk–
boundary correspondence of chiral fermions makes it possible to use 
ARPES (spectroscopic) measurements to determine the Chern  
numbers of a crystal by probing the surface-state dispersion (Fig. 3a, 
Methods). Such spectroscopic methods to determine Chern numbers 
have become well accepted in the field26. Using such an approach, we 
provide two spectral signatures of Fermi arcs in CoSi. We first look  
at the dispersion of the candidate Fermi arcs along a pair of energy–
momentum cuts on opposite sides of the Γ pocket, taken at fixed 
momentum +kx (cut I) and −kx (cut II; Fig. 2f). In cut I, we observe 
two right-moving chiral edge modes (Fig. 3b, c). Because the cut passes 
through two BZs (Fig. 2f), we associate one right-moving mode with 
each BZ. Next, we fit Lorentzian peaks to the MDCs and we find that 

the extracted dispersion again suggests two chiral edge modes (Fig. 3d). 
Along cut II, we observe two left-moving chiral edge modes (Fig. 3e, f). 
Consequently, one chiral edge mode is observed for each measured 
surface BZ on cuts I and II, but with opposite Fermi velocity directions. 
In this way, our ARPES spectra suggest that the number of chiral edge 
modes n changes by +2 when the k-slice is swept from cut I to cut II. 
This again suggests that the long winding states are topological Fermi 
arcs. Moreover, these ARPES results imply that projected topological 
charge with net Chern number +2 resides near Γ.

Next we search for other Chern numbers encoded by the surface- 
state band structure. We study an ARPES energy–momentum cut  
on a loop P enclosing M (Fig. 4a, inset). Again following the bulk–
boundary correspondence, we aim to extract the Chern number of 
chiral fermions projecting on M. The cut P shows two right-moving 
chiral edge modes dispersing towards EF (Fig. 4a, b), suggesting a Chern 
number of −2 on the associated bulk manifold. Furthermore, the sur-
face spectral weight along P calculated ab initio is consistent with our 
experimental results (Fig. 4c). Our ARPES spectra on cuts I, II and P 
suggest that CoSi hosts a projected chiral charge of +2 at Γ with its 
partner chiral charge of −2 projecting on M. This again provides evi-
dence that the long winding states are a pair of topological Fermi arcs 
that traverse the surface BZ on a diagonal, connecting the Γ and M 
pockets. Our ARPES spectra of RhSi also provide evidence for gigantic 
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Fig. 2 | Fermiology of the (001) surface electronic topology in CoSi and 
RhSi. a, ARPES constant-energy contours for CoSi measured at incident 
photon energy of 50 eV, with the BZ boundary marked (rightmost panel, 
red dashed line). We observe long winding states connecting the Γ and M 
pockets. b, Fermi surface for RhSi measured at incident photon energy of 
82 eV, with the BZ boundary marked (blue dashed line). Again, we observe 
long winding states extending diagonally across the BZ (Extended Data 
Fig. 1). c, Schematic of the measured Fermi surface for CoSi, showing 
topologically nontrivial hole- (h; green) and electron- (e; blue) like bulk 

pockets and long winding states (orange). The grey pocket is topologically 
trivial. d, Zoomed-in view of the long winding states, with a trajectory 
obtained by fitting Lorentzians to the MDCs of the ARPES spectrum (blue 
circles). e, Representative Lorentzian fit to the MDC along k1 for k2 = 0 at 
binding energy E − EF = −10 meV (Extended Data Fig. 6). f, Schematic 
overlaid with Lorentzian peaks extracted from the MDCs passing through 
the long winding states. We mark two straight cuts, I and II (magenta 
lines), as well as a closed-loop cut, P (magenta circle).
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the long winding states extend from the centre of the BZ to the M 
pocket (Fig. 2f). To better understand the nature of these states, we 
analyse the photon energy dependence of the ARPES results and find 
that the long winding states do not disperse as we vary the photon 
energy, suggesting that they are surface states (Extended Data Fig. 7). 
Moreover, we observe an overall agreement between the ARPES data 
and the Fermi surface calculated ab initio, where topological Fermi arcs 
connect the Γ and M pockets (Fig. 1f). Taken together, these results 
suggest that the long winding states observed in ARPES may be topo-
logical Fermi arcs.

Grounded on the framework of topological band theory, the bulk–
boundary correspondence of chiral fermions makes it possible to use 
ARPES (spectroscopic) measurements to determine the Chern  
numbers of a crystal by probing the surface-state dispersion (Fig. 3a, 
Methods). Such spectroscopic methods to determine Chern numbers 
have become well accepted in the field26. Using such an approach, we 
provide two spectral signatures of Fermi arcs in CoSi. We first look  
at the dispersion of the candidate Fermi arcs along a pair of energy–
momentum cuts on opposite sides of the Γ pocket, taken at fixed 
momentum +kx (cut I) and −kx (cut II; Fig. 2f). In cut I, we observe 
two right-moving chiral edge modes (Fig. 3b, c). Because the cut passes 
through two BZs (Fig. 2f), we associate one right-moving mode with 
each BZ. Next, we fit Lorentzian peaks to the MDCs and we find that 

the extracted dispersion again suggests two chiral edge modes (Fig. 3d). 
Along cut II, we observe two left-moving chiral edge modes (Fig. 3e, f). 
Consequently, one chiral edge mode is observed for each measured 
surface BZ on cuts I and II, but with opposite Fermi velocity directions. 
In this way, our ARPES spectra suggest that the number of chiral edge 
modes n changes by +2 when the k-slice is swept from cut I to cut II. 
This again suggests that the long winding states are topological Fermi 
arcs. Moreover, these ARPES results imply that projected topological 
charge with net Chern number +2 resides near Γ.

Next we search for other Chern numbers encoded by the surface- 
state band structure. We study an ARPES energy–momentum cut  
on a loop P enclosing M (Fig. 4a, inset). Again following the bulk–
boundary correspondence, we aim to extract the Chern number of 
chiral fermions projecting on M. The cut P shows two right-moving 
chiral edge modes dispersing towards EF (Fig. 4a, b), suggesting a Chern 
number of −2 on the associated bulk manifold. Furthermore, the sur-
face spectral weight along P calculated ab initio is consistent with our 
experimental results (Fig. 4c). Our ARPES spectra on cuts I, II and P 
suggest that CoSi hosts a projected chiral charge of +2 at Γ with its 
partner chiral charge of −2 projecting on M. This again provides evi-
dence that the long winding states are a pair of topological Fermi arcs 
that traverse the surface BZ on a diagonal, connecting the Γ and M 
pockets. Our ARPES spectra of RhSi also provide evidence for gigantic 
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Fig. 2 | Fermiology of the (001) surface electronic topology in CoSi and 
RhSi. a, ARPES constant-energy contours for CoSi measured at incident 
photon energy of 50 eV, with the BZ boundary marked (rightmost panel, 
red dashed line). We observe long winding states connecting the Γ and M 
pockets. b, Fermi surface for RhSi measured at incident photon energy of 
82 eV, with the BZ boundary marked (blue dashed line). Again, we observe 
long winding states extending diagonally across the BZ (Extended Data 
Fig. 1). c, Schematic of the measured Fermi surface for CoSi, showing 
topologically nontrivial hole- (h; green) and electron- (e; blue) like bulk 

pockets and long winding states (orange). The grey pocket is topologically 
trivial. d, Zoomed-in view of the long winding states, with a trajectory 
obtained by fitting Lorentzians to the MDCs of the ARPES spectrum (blue 
circles). e, Representative Lorentzian fit to the MDC along k1 for k2 = 0 at 
binding energy E − EF = −10 meV (Extended Data Fig. 6). f, Schematic 
overlaid with Lorentzian peaks extracted from the MDCs passing through 
the long winding states. We mark two straight cuts, I and II (magenta 
lines), as well as a closed-loop cut, P (magenta circle).
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topological Fermi arcs following a similar analysis (Extended Data 
Fig. 1).

To further explore the topological properties of CoSi, we examine in 
greater detail the structure of the Fermi arcs near M. We consider the 
dispersion on P (plotted as a magenta loop in Fig. 4d, inset) and we 
also extract the dispersion from Lorentzian fitting on a second, tighter 
circle (black loop; Extended Data Fig. 8). We observe that as we 
decrease the binding energy (approaching EF), the extracted dispersion 
spirals clockwise on both loops, suggesting that as a given k point trav-
erses the loop, the energy of the state does not return to its initial value 
after a full cycle. Such a non-trivial electronic dispersion directly signals 
a projected chiral charge at M (Fig. 4d). In fact, the extracted dispersion 
is characteristic of the helicoid structure of topological Fermi arcs as 
they wind around a chiral fermion (Fig. 4e), suggesting that CoSi and 
RhSi17 are rare examples of non-compact surfaces in nature6,27.

To further understand these experimental results, we consider the 
spectral weight for the (001) surface calculated ab initio, and we observe 
a pair of Fermi arcs winding around the Γ and M pockets counter- 
clockwise and clockwise, respectively, with decreasing binding  
energy (approaching EF; Fig. 4f). The clockwise winding around M is 
consistent with our ARPES observation of a −2 projected chiral charge. 
Moreover, from our ab initio calculations, we predict that the −2 charge 
projecting to M arises from a fourfold chiral fermion at the bulk R point 
(Fig. 1d). The +2 chiral charge, which we associate with Γ from ARPES 
(Fig. 3), is further consistent with the threefold chiral fermion predicted 
at the bulk Γ point. By fully accounting for the predicted topological 

charges in the experiment, our ARPES results suggest the manifestation 
of a topological chiral crystal in CoSi. We can similarly account for the 
predicted topological charges of multifold fermions in RhSi (Extended 
Data Figs. 1, 2).

The surface-state dispersions in our ARPES spectra, taken together 
with the topological bulk–boundary correspondence, demonstrate that 
CoSi and RhSi are topological chiral crystals6,7. This experimental 
result is further consistent with the numerical result of first-principles 
calculations of the surface-state dispersions and topological invariants. 
Unlike previously reported Weyl semimetals, the Fermi arcs that we 
observe in CoSi and RhSi stretch diagonally across the entire (001) 
surface BZ, from Γ to M. In fact, the Fermi arcs in XSi are longer than 
those found in TaAs by a factor of thirty. Our surface band structure 
measurements also demonstrate two well-separated Fermi pockets 
carrying Chern number ±2. Lastly, for the first time to our knowledge, 
we observe in an electronic material the helicoid structure of topolog-
ical Fermi arcs. Our results suggest that CoSi and RhSi are excellent 
candidates for studying topological phenomena distinct to chiral  
fermions by using a variety of techniques4,8,11.

Crucially for applications, the topologically non-trivial energy win-
dow in CoSi and RhSi is an order of magnitude larger than that in 
TaAs6,21,22, rendering its quantum properties robust against changes in 
surface chemical potential and disorder. Moreover, the energy offset 
between the higher-fold chiral fermions at Γ and R is predicted to be 
about 225 meV. Such an energy offset is essential for inducing the chiral 
magnetic effect and its optical analogue28, as well as the photogalvanic 
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topological Fermi arcs following a similar analysis (Extended Data 
Fig. 1).

To further explore the topological properties of CoSi, we examine in 
greater detail the structure of the Fermi arcs near M. We consider the 
dispersion on P (plotted as a magenta loop in Fig. 4d, inset) and we 
also extract the dispersion from Lorentzian fitting on a second, tighter 
circle (black loop; Extended Data Fig. 8). We observe that as we 
decrease the binding energy (approaching EF), the extracted dispersion 
spirals clockwise on both loops, suggesting that as a given k point trav-
erses the loop, the energy of the state does not return to its initial value 
after a full cycle. Such a non-trivial electronic dispersion directly signals 
a projected chiral charge at M (Fig. 4d). In fact, the extracted dispersion 
is characteristic of the helicoid structure of topological Fermi arcs as 
they wind around a chiral fermion (Fig. 4e), suggesting that CoSi and 
RhSi17 are rare examples of non-compact surfaces in nature6,27.

To further understand these experimental results, we consider the 
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Fig. 3 | Observation of topological chiral edge modes in CoSi. a, Left 
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examples of two-dimensional manifolds hosting a Chern number n (green 
planes, red cylinder)33. Every plane in the bulk has a non-zero n. The 
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along cut I (as marked in Fig. 2f), suggesting two right-moving chiral edge 
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effect (optical)6,17,29, and our results on RhSi samples suggest that it can  
be used to observe a fourfold quantized circular photogalvanic  
current17. When coupled to a compatible superconductor, CoSi and 
RhSi are compelling platforms for studying the superconducting  
pairing of Fermi surfaces with non-zero Chern numbers, which may 
be promising for realizing a new type of topological superconducting  
phase proposed recently17,30, which can be probed with scanning  
tunnelling microscopy-based spectroscopy31. CoSi and RhSi further 
open the door to the exploration of other exotic quantum phenomena  
when combined with the isochemical material FeSi. Fe1−xCoxSi may 
simultaneously host k-space (chiral fermions) and real-space (skyrmions)  
topological defects and their interplay, which can also be probed by 
scanning tunnelling microscopy/spectroscopy31. Through our observa-
tion of a helicoid surface state and its topological properties, our results 
suggest the experimental discovery of the first structurally chiral crystal 
that is also topological. In this way, our work provides a next-generation 
platform that could be used in the further study of, and the search for, 
new types of topological chiral crystal6.

While the present article was under review, a related work studying 
bulk dispersion in CoSi was reported32.
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Fig. 4 | Observation of helicoid quantum arcs in CoSi. a, ARPES 
spectrum along loop P, revealing two right-moving chiral edge modes and 
a projected chiral charge of −2 at M. Inset, definition of loop P, starting 
from the green mark and proceeding clockwise. b, Lorentzian fits (red 
lines) to a series of MDCs (blue circles) along P to track the dispersion of 
the chiral edge modes (orange dashed lines). c, Ab initio calculation of the 
dispersion along a loop around M, showing two right-moving chiral edge 
modes, consistent with the ARPES data. Colour scale as in Fig. 1f. d, 
Extracted dispersion of the chiral edge modes on P and a second inner 

loop from Lorentzian fits to the MDCs. Error bars correspond to the 
momentum resolution. Inset, definition of the second inner loop (black). 
We observe that the chiral edge modes spiral clockwise with decreasing 
binding energy (approaching EF). e, Perspective plot of d, where the two 
loops are shown as two concentric cylinders. The winding of the chiral 
modes around M as a function of binding energy suggests that the Fermi 
arcs have a helicoid structure6,27. f, Constant-energy contours calculated 
ab initio, consistent with the helicoid Fermi arc structure observed in our 
ARPES spectra.
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spectrum along loop P, revealing two right-moving chiral edge modes and 
a projected chiral charge of −2 at M. Inset, definition of loop P, starting 
from the green mark and proceeding clockwise. b, Lorentzian fits (red 
lines) to a series of MDCs (blue circles) along P to track the dispersion of 
the chiral edge modes (orange dashed lines). c, Ab initio calculation of the 
dispersion along a loop around M, showing two right-moving chiral edge 
modes, consistent with the ARPES data. Colour scale as in Fig. 1f. d, 
Extracted dispersion of the chiral edge modes on P and a second inner 

loop from Lorentzian fits to the MDCs. Error bars correspond to the 
momentum resolution. Inset, definition of the second inner loop (black). 
We observe that the chiral edge modes spiral clockwise with decreasing 
binding energy (approaching EF). e, Perspective plot of d, where the two 
loops are shown as two concentric cylinders. The winding of the chiral 
modes around M as a function of binding energy suggests that the Fermi 
arcs have a helicoid structure6,27. f, Constant-energy contours calculated 
ab initio, consistent with the helicoid Fermi arc structure observed in our 
ARPES spectra.
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a projected chiral charge of −2 at M. Inset, definition of loop P, starting 
from the green mark and proceeding clockwise. b, Lorentzian fits (red 
lines) to a series of MDCs (blue circles) along P to track the dispersion of 
the chiral edge modes (orange dashed lines). c, Ab initio calculation of the 
dispersion along a loop around M, showing two right-moving chiral edge 
modes, consistent with the ARPES data. Colour scale as in Fig. 1f. d, 
Extracted dispersion of the chiral edge modes on P and a second inner 

loop from Lorentzian fits to the MDCs. Error bars correspond to the 
momentum resolution. Inset, definition of the second inner loop (black). 
We observe that the chiral edge modes spiral clockwise with decreasing 
binding energy (approaching EF). e, Perspective plot of d, where the two 
loops are shown as two concentric cylinders. The winding of the chiral 
modes around M as a function of binding energy suggests that the Fermi 
arcs have a helicoid structure6,27. f, Constant-energy contours calculated 
ab initio, consistent with the helicoid Fermi arc structure observed in our 
ARPES spectra.
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spectrum along loop P, revealing two right-moving chiral edge modes and 
a projected chiral charge of −2 at M. Inset, definition of loop P, starting 
from the green mark and proceeding clockwise. b, Lorentzian fits (red 
lines) to a series of MDCs (blue circles) along P to track the dispersion of 
the chiral edge modes (orange dashed lines). c, Ab initio calculation of the 
dispersion along a loop around M, showing two right-moving chiral edge 
modes, consistent with the ARPES data. Colour scale as in Fig. 1f. d, 
Extracted dispersion of the chiral edge modes on P and a second inner 

loop from Lorentzian fits to the MDCs. Error bars correspond to the 
momentum resolution. Inset, definition of the second inner loop (black). 
We observe that the chiral edge modes spiral clockwise with decreasing 
binding energy (approaching EF). e, Perspective plot of d, where the two 
loops are shown as two concentric cylinders. The winding of the chiral 
modes around M as a function of binding energy suggests that the Fermi 
arcs have a helicoid structure6,27. f, Constant-energy contours calculated 
ab initio, consistent with the helicoid Fermi arc structure observed in our 
ARPES spectra.
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FIG. 1. (a) Crystal structure of CoSi with the space group P213
(No. 198). (b) Single crystal XRD pattern of CoSi. Inset shows
the picture of grown single crystal. (c) Powder XRD pattern with
refinement. (d) The temperature-dependent resistivity from 2 K to
300 K with the RRR ≈ 14. Inset shows the MR versus magnetic field
at 2 K with B ‖ [001] configuration.

powder XRD patterns were carried out by a Brucker D8 Ad-
vance X-ray diffractometer using Cu Kα radiation. TOPAS-4.2
was employed for the refinement. The measurements of resis-
tivity and magnetic properties were performed on a Quantum
Design physical property measurement system (QD PPMS-
14 T). The first-principles electronic structure calculations of
CoSi were performed by using the projector augmented wave
(PAW) method [47,48], as implemented in the VASP package
[49–51]. The generalized gradient approximation (GGA) of
Perdew-Burke-Ernzerhof (PBE) type [52] was used for the
exchange-correlation functional. The kinetic energy cutoff of
the plane-wave basis was set to be 400 eV. The Brillouin zone
(BZ) was sampled with a 16 × 16 × 16 k-point mesh. For
the Fermi surface (FS) broadening, the Gaussian smearing
method with a width of 0.01 eV was adopted. Both lattice
parameters and internal atomic positions were fully relaxed
until all the forces on atoms were smaller than 0.01 eV/Å.
The calculated lattice constants of CoSi (4.427 Å) agree well
with the experimental values of 4.45 Å [53]. The SOC ef-
fect was included in the band structure calculations. The FSs
were studied by the maximally localized Wannier functions
(MLWF) method [54,55].

The crystal structure of CoSi with space group P213 (No.
198) is shown in Fig. 1(a). The single-crystal XRD pattern il-
lustrated in Fig. 1(b) reveals the (111) crystalline surface. The
inset of Fig. 1(b) displays a photography of a CoSi single crys-
tal with metallic luster. Figure 1(c) shows the powder XRD
patterns (a powdered sample was obtained by crushing single
crystals) which can be well refined with space group P213,
and the refined lattice parameter is a = b = c = 4.446 Å. The
hump at small angle (below 27◦) may be induced by the
adsorption of water into the sample, which is hard to remove
even when the Kapton film is employed. As displayed in
Fig. 1(d), the temperature-dependent resistivity ρxx demon-
strates the metallic behavior with the residual resistance ratio
(RRR ≈ 14).

FIG. 2. (a) Magnetization versus magnetic field at various tem-
peratures. (b) The amplitudes of dHvA oscillations as a function of
1/B. (c) The FFT spectra of the oscillations. Inset shows the temper-
ature dependence of relative FFT amplitude of the frequencies.

III. RESULTS AND DISCUSSION

Quantum oscillation experiments provide an effective
method to study the electronic structures of a single crys-
tal. Evident dHvA quantum oscillations have been observed
in CoSi at low temperature and high magnetic field with
B ‖ [00l] configuration, as shown in Fig. 2(a). The periodic
oscillations #M = M − 〈M〉 are obtained after subtracting a
smooth background, which is plotted as a function of 1/B
in Fig. 2(b). Three prominent frequencies are extracted from
the FFT analysis, which are indexed as Fα = 19.7 T, Fβ =
557.6 T, and Fγ = 656.7 T, as shown in Fig. 2(c). The extreme
cross section AF of FS normal to the magnetic field can be
obtained according to the Onsager relation F = (h̄/2πe)AF .
Thus the corresponding results are Aα

F ≈ 1.87 × 10−3 Å−2,
Aβ

F ≈ 53.21 × 10−3 Å−2, and Aγ
F ≈ 62.66 × 10−3 Å−2, re-

spectively. Among them, the frequency Fα is first detected
in quantum oscillation measurements. Two high frequencies
Fβ and Fγ are consistent with previous reports [36–40]. In
addition, the asymmetry of peaks Fβ and Fγ in FFT spectra
are detected [Fig. 2(c)], which indicates the composition of
two close frequencies.

The oscillatory component can be described by the LK
formula [56]:

#M ∝ −B1/2 λT
sinh(λT )

e−λTD sin
[

2π

(
F
B

− 1
2

+ β + δ

)]
,

(1)
where λ = (2π2kBm∗)/(h̄eB) and TD is the Dingle tempera-
ture. β = )B/2π and )B is the Berry phase. The phase shift
δ is determined by the dimensionality δ = 0 and δ = ±1/8
for 2D and 3D systems, respectively. The thermal damping
factor RT = (λT )/sinh(λT ) in the LK formula is employed
to fit the temperature dependence of the FFT amplitude [inset
of Fig. 2(c)], from which the light effective masses are ob-
tained and listed in Table I. Angle-dependent dHvA quantum
oscillation measurements are further applied to investigate the
detailed characteristics of FS. The schematic diagram with the

115129-2

DE HAAS–VAN ALPHEN QUANTUM OSCILLATIONS AND … PHYSICAL REVIEW B 102, 115129 (2020)

TABLE I. Parameters extracted from dHvA oscillations in CoSi.
F is the frequency of dHvA oscillations; m∗/me is the ratio of the
effective mass to the electron mass; AF represents the extreme cross
section of the FS and kF is the Fermi wave vector.

F (T ) m∗/me AF (×10−3 Å−2) kF (×10−2 Å−1)

Fα 19.6 0.11 1.87 2.44
Fβ 557.6 0.36 53.21 13.04
Fγ 656.7 0.37 62.66 14.12

magnetic field rotating from B ‖ [001] to B ‖ [110] is drawn
in Fig. 3(a). The amplitudes of oscillations versus 1/B with
the magnetic field along different orientations are shown in
Fig. 3(b). The corresponding extracted FFT spectra at typical
angle is illustrated in Fig. 3(c). Three fundamental frequencies
are observed with different magnetic field orientations. The
asymmetry of peaks Fβ and Fγ in FFT spectra are also de-
tected, as demonstrated in Fig. 3(c), indicating the existence of
two close frequencies. In order to distinguish the frequencies,
the multiple peak fits of Fβ and Fγ are conducted, the details
of which are displayed in the Supplemental Material [57].
To further investigate the origin of this phenomena, the first-
principles electronic structure calculations and the detailed
analysis are employed.

Figure 4(a) exhibits the band structures of CoSi with SOC
included. Figures 4(b) and 4(c) illustrate the enlarged band
structures around $ and R, respectively. The band crossing
at R locates at 192 meV below the Fermi level. To aid clar-
ity, the overall three-dimensional (3D) FSs in the first BZ
are shown in Fig. 5(a). There are two electron pockets at R
along R-X [Fig. 4(c)], indexed as electron pocket 1 (EP1)
shown in Fig. 6(a) for (001) plane projection and Fig. 6(b)
for (110) plane projection and electron pocket 2 (EP2) shown
in Fig. 6(c) for (001) plane projection and Fig. 6(d) for
(110) plane projection. They are calabash-shaped instead of
perfectly spherical, which contributes to four extreme cross

(a)

(a
.u

.)

(a
.u

.)

(b)

(c)

FIG. 3. (a) Diagram of magnetic field B rotating direction along
crystallographic direction. (b) The amplitudes of dHvA oscillations
versus 1/B at different angles. (c) The FFT spectra of the oscillations
at different angles.

FIG. 4. (a) Band structure of CoSi calculated with SOC effect.
The enlarged band structures around (b) $ point and (c) R point,
respectively.

sections when B ‖ [001]. The FS cut in the kz = π plane is
displayed in Fig. 5(b). Two extreme cross sections of FSs
at R stem from two splitting bands indexed as OE and OF
along R-X [Fig. 4(c)], respectively. According to the Onsager
relation, the extreme cross sections correspond to frequencies
in experiment. Thus, when B ‖ [001], two main frequencies

FIG. 5. (a) Calculated electron and hole FS sheets in the bulk BZ
of CoSi. Calculated FSs in (b) kz = π plane, (c) (110) plane, and
(d) kz = 0 plane, respectively. The colors of 2D FSs have one-to-one
correspondence to the colors of bands in Fig. 4.
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FIG. 6. Top view and side view of the enlarged FSs projected in
the (a),(c) (001) plane and (b),(d) (110) plane of BZ, respectively.
The letters on the FSs correspond to the letters on bands in Fig. 4(c).

Fβ and Fγ originate from the extreme cross sections of EP1
and EP2 at R along the kz = π plane. Figures 6(a) and 6(c)
display the detailed profiles of two electron pockets, which
also illustrate the identified extremal areas, corresponding
to the band OE and OF [Fig. 4(c)], respectively. On the
other hand, the asymmetrical peaks Fδ and Fλ (defined in the
Supplemental Material [57]) are induced by irregular elec-
tron pockets, which stem from the extreme cross sections of
EP1 in the kz = L (kz = 0.9396π ) and EP2 in the kz = H
(kz = 0.9798π ) plane, respectively, as displayed in Figs. 6(b)
and 6(d). Moreover, the observation of two main frequencies
when B ‖ [001] reveals the SOC effect. When the SOC is
neglected, only one main asymmetrical frequency, instead of
two distinct asymmetrical frequencies, can be observed. The
main frequency originates from the extreme cross section in
the kz = π plane at R, corresponding to the degenerate band
along R-X . The asymmetry of frequency peak originates from
the extreme cross section of the irregular electron pocket.
The FS cut in the (110) plane is displayed in Fig. 5(c). Four
extreme cross sections of FSs at R stem from four split-
ting bands along R-& [Fig. 4(c)], respectively. Therefore, it
is natural to detect four frequencies when B ‖ [110]. Two
fundamental frequencies Fβ and Fγ correspond to the bands
OD and OB, as shown in Fig. 4(c), respectively (the detailed
profiles of electron pockets are displayed in the Supplemental
Material [57]). The band splitting induced by SOC leads to
the phenomena of obvious asymmetrical peaks observed with
B ‖ [110]. Fδ and Fλ correspond to the splitting bands OC and
OA [Fig. 4(c)], respectively, details of which are illustrated

in Figs. 6(b) and 6(d). In addition, the low frequency Fα ,
first observed in our dHvA quantum oscillation, is consid-
ered to originate from the hole pocket at &. However, the
mismatch is found when the frequencies obtained from ex-
periment and theory are compared. The measured frequencies
are smaller than the theoretical ones. Taking account of the
growth method by Te flux, the doping may be brought in
and the Fermi level may be shifted, which is also considered
in a previous report with the similar growth method [39].
When B ‖ [001], the measured frequencies (Fβ = 557.6 T,
Fδ = 566.3 T, Fγ = 656.5 T, and Fλ = 666.4 T) are con-
sistent with the calculation (F ′

β = 564.3 T, F ′
δ = 572.7 T,

F ′
γ = 638.2 T, and F ′

λ = 646.7 T) as the Fermi level is shifted
down by 45 meV. Accordingly, the theoretical frequency Fα

is 23.4 T with the Fermi level shifted down by 45 meV [the
pocket is marked in Fig. 4(b)], which matches very well with
the measured frequency (19.7 T). Thus the frequencies Fα ,
Fβ , Fγ , Fδ , and Fλ observed in dHvA oscillations are verified
to originate from the Fermi pockets at & and R, respectively.
Meanwhile, the two distinct frequencies when B ‖ [001] and
the asymmetrical peaks observed when B ‖ [110] both affirm
the existence of SOC-induced band splitting in CoSi.

IV. SUMMARY

In conclusion, we investigate the magnetic transport
properties and electronic structures of CoSi. Evident angle-
dependent dHvA quantum oscillations with magnetic field
rotating from B ‖ [001] to B ‖ [110] have been observed, from
which three fundamental frequencies are extracted. The low
frequency Fα is first detected in quantum oscillation measure-
ments, which presents the contribution from the hole pocket at
&. Two high frequencies Fβ and Fγ with asymmetrical peaks
are confirmed to originate from the electron pockets at R.
Combined with the analysis of first-principles calculations,
the asymmetry of peaks are induced by the band splitting due
to SOC when B ‖ [110] and the irregular Fermi pockets when
B ‖ [001]. Thus this paper reveals the hole pocket at & and the
irregular electron pockets at R, demonstrating the detailed FS
characteristics of CoSi with SOC.
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Maximal Chern numbers in PdGa

Schröter et al., Science 369 179 (2020)

We grew two enantiopure specimens of PdGa
with opposite chirality through a self-flux
method with a chiral seed crystal and used
x-ray diffraction and the Flack method to
determine the structural chirality of our sam-
ples, indicating almost ideal homochirality.
More information about the refinements can
be found in (33). The chirality of the crystal
structure close to the surface can also be ob-
served from the intensity distribution of low-
energy electron diffraction (LEED) patterns
of the (100) surface (28) at an electron energy
of Ekin = 95 eV (Fig. 1B). As can be expected,
the S-shaped intensity distribution ismirrored
when comparing the two enantiomers. The
crystals used for the ARPES and LEED studies
were prepared by the same sputter-annealing
recipe, which is well known to produce clean
and stoichiometric surfaces of PdGa (26). In
Fig. 1C, we display the results of an ab initio
bulk band structure calculation, which shows
fourfold and sixfold band crossings at the G
andR high-symmetry points, respectively. Such
band crossings in space group 198 were pre-
dicted to carry aChernnumber ofmagnitude 4,

with opposite signs at theG andRpoints (15–18).
Because the Berry curvature is a pseudovec-
tor, a mirror operation will reverse the sign of
the Chern numbers associatedwith the nodes
at the high-symmetry points. Such a mirror
operation also leads to a reversal of the prop-
agation direction of the Fermi arcs (Fig. 1D).
The multifold fermions at the G and R points
act as sources (positive Chern number) or sinks
(negative Chern number) of Berry curvature.
One can imagine integrating the Berry flux
passing through a two-dimensional slice that
is dividing the Brillouin zone between the G
and R points (blue shaded planes in Fig. 1D).
Because of time-reversal symmetry, the Chern
number of the slice is equivalent to half of the
Chern number associated with the multifold
fermions at G and R, and the sign of their
Chern number depends on the direction of
Berry flux. If we imagine this slice to be a
two-dimensional quantum Hall phase, then
the number of edge states of the slice is di-
rectly related to its Chern number magnitude,
whereas their direction depends on its Chern
number sign. The observation of a Fermi-arc

doublet that is connecting the G and R points
is, therefore, an unambiguous signature of
a Chern number with magnitude 4, and the
observation of the reversal of the Fermi-arc
velocity is an unambiguous signature of a
change in the Chern number sign associated
with the multifold fermions.
We performed bulk-sensitive soft x-ray

ARPES measurements on the (100) surface
of our PdGa samples to investigate their bulk
electronic structure (Fig. 2). We find that
multifold crossings predicted at the R and
G points are indeed present (see Fig. 2, A to
C), and that our ab initio calculations are in
good qualitative agreement with the observed
band dispersions. This agreement can also
be observed from the Fermi surfaces for dif-
ferent high-symmetry planes displayed in
Fig. 2, D and E. Further analysis of the spin-
orbit splitting of the bulk bands can be found
in (33).
After establishing the existence of multifold

band crossings in PdGa, we now investigate
the topological character of these crossings
using surface-sensitive ARPES of the (100)
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Fig. 1. Structural and electronic chirality in the two enantiomers of PdGa.
(A) Illustration of the crystal structure of two enantiomers of PdGa with opposite
handedness. (B) LEED patterns for two samples with opposite chirality,
measured with an electron energy of Ekin = 95 eV. The S-shaped intensity
distribution of the diffraction spots (highlighted by red dashed lines as guides for
the eye) reflects the handedness of the crystal structure. (C) Ab initio
calculations of the band structure in PdGa, showing fourfold and sixfold band
crossings at the G and R points. The Chern numbers associated with the
crossings are of magnitude 4 and flip their sign on a mirror operation. This

reverses the direction of Berry flux that is flowing from the crossing with positive
Chern number (red circles) toward the crossing with negative Chern number
(blue circles). The inset shows the cubic Brillouin zone with high-symmetry
points G at the zone center and R at the zone corner. (D) Illustration of bulk
boundary correspondence for PdGa and related chiral topological semimetals.
Blue-shaded slices indicate two-dimensional quantum Hall phase with Chern
numbers of magnitude 2. Dashed black lines indicate the edges of the surface
Brillouin zone, and solid blue lines and black arrows indicate the Fermi-arc
surface states that are connecting the projections of R and G points.
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We grew two enantiopure specimens of PdGa
with opposite chirality through a self-flux
method with a chiral seed crystal and used
x-ray diffraction and the Flack method to
determine the structural chirality of our sam-
ples, indicating almost ideal homochirality.
More information about the refinements can
be found in (33). The chirality of the crystal
structure close to the surface can also be ob-
served from the intensity distribution of low-
energy electron diffraction (LEED) patterns
of the (100) surface (28) at an electron energy
of Ekin = 95 eV (Fig. 1B). As can be expected,
the S-shaped intensity distribution ismirrored
when comparing the two enantiomers. The
crystals used for the ARPES and LEED studies
were prepared by the same sputter-annealing
recipe, which is well known to produce clean
and stoichiometric surfaces of PdGa (26). In
Fig. 1C, we display the results of an ab initio
bulk band structure calculation, which shows
fourfold and sixfold band crossings at the G
andR high-symmetry points, respectively. Such
band crossings in space group 198 were pre-
dicted to carry aChernnumber ofmagnitude 4,

with opposite signs at theG andRpoints (15–18).
Because the Berry curvature is a pseudovec-
tor, a mirror operation will reverse the sign of
the Chern numbers associatedwith the nodes
at the high-symmetry points. Such a mirror
operation also leads to a reversal of the prop-
agation direction of the Fermi arcs (Fig. 1D).
The multifold fermions at the G and R points
act as sources (positive Chern number) or sinks
(negative Chern number) of Berry curvature.
One can imagine integrating the Berry flux
passing through a two-dimensional slice that
is dividing the Brillouin zone between the G
and R points (blue shaded planes in Fig. 1D).
Because of time-reversal symmetry, the Chern
number of the slice is equivalent to half of the
Chern number associated with the multifold
fermions at G and R, and the sign of their
Chern number depends on the direction of
Berry flux. If we imagine this slice to be a
two-dimensional quantum Hall phase, then
the number of edge states of the slice is di-
rectly related to its Chern number magnitude,
whereas their direction depends on its Chern
number sign. The observation of a Fermi-arc

doublet that is connecting the G and R points
is, therefore, an unambiguous signature of
a Chern number with magnitude 4, and the
observation of the reversal of the Fermi-arc
velocity is an unambiguous signature of a
change in the Chern number sign associated
with the multifold fermions.
We performed bulk-sensitive soft x-ray

ARPES measurements on the (100) surface
of our PdGa samples to investigate their bulk
electronic structure (Fig. 2). We find that
multifold crossings predicted at the R and
G points are indeed present (see Fig. 2, A to
C), and that our ab initio calculations are in
good qualitative agreement with the observed
band dispersions. This agreement can also
be observed from the Fermi surfaces for dif-
ferent high-symmetry planes displayed in
Fig. 2, D and E. Further analysis of the spin-
orbit splitting of the bulk bands can be found
in (33).
After establishing the existence of multifold

band crossings in PdGa, we now investigate
the topological character of these crossings
using surface-sensitive ARPES of the (100)
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Fig. 1. Structural and electronic chirality in the two enantiomers of PdGa.
(A) Illustration of the crystal structure of two enantiomers of PdGa with opposite
handedness. (B) LEED patterns for two samples with opposite chirality,
measured with an electron energy of Ekin = 95 eV. The S-shaped intensity
distribution of the diffraction spots (highlighted by red dashed lines as guides for
the eye) reflects the handedness of the crystal structure. (C) Ab initio
calculations of the band structure in PdGa, showing fourfold and sixfold band
crossings at the G and R points. The Chern numbers associated with the
crossings are of magnitude 4 and flip their sign on a mirror operation. This

reverses the direction of Berry flux that is flowing from the crossing with positive
Chern number (red circles) toward the crossing with negative Chern number
(blue circles). The inset shows the cubic Brillouin zone with high-symmetry
points G at the zone center and R at the zone corner. (D) Illustration of bulk
boundary correspondence for PdGa and related chiral topological semimetals.
Blue-shaded slices indicate two-dimensional quantum Hall phase with Chern
numbers of magnitude 2. Dashed black lines indicate the edges of the surface
Brillouin zone, and solid blue lines and black arrows indicate the Fermi-arc
surface states that are connecting the projections of R and G points.
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!R! !G ! !R direction, we confirm experimen-
tally that these Fermi arcs are indeed surface
states without noticeable dispersion along
the kz direction (perpendicular to the sample
surface), as can be seen from Fig. 3C. Interest-
ingly, we also find additional surface states
that overlap with the projected bulk pocket at

!G (indicated by purple arrows). Owing to the
sizable SOC in PdGa and high resolution of
our ARPES data, we are furthermore able to
resolve a spin splitting in the surface Fermi
arcs (see Fig. 3, D to F, and the calculation in
Fig. 3A for comparison). We can therefore
conclude that four Fermi arcs are connect-

ing the projections of the multifold fermions
located at the!Gand !Rpoints, which constitutes
an experimental confirmation of their maximal
Chern number of magnitude 4. We find that
the SOC splitting of the Fermi arcs close to
the Fermi level is ~0.015 Å−1 and ~60 meV.
Because these multifold crossings are a generic
feature of many chiral topological semimetals,
we expect that our finding will also hold for
other compounds from the same material
family.
Next, we investigate how themaximal Chern

number in PdGa can be controlled by tuning
the handedness of its crystal structure. When
comparing the Fermi surfaces for enantiomers
A and B (Fig. 4A), we see that the Fermi arcs
wind around the bulk pocket at !R in opposite
directions. By comparing the band dispersion
of the Fermi arcs between the two enantiomers
along a line cut (Fig. 4C), we can see that the
Fermi velocity of the edge states is indeed
reversed, which implies that the Chern number
signs are reversed between the two enan-
tiomers. [Dispersions along a different direc-
tion can be found in (33).] This observation
shows that the sign of the Chern numbers in
topological semimetals can be controlled by
deliberately choosing a sample with a specific
handedness for experiments. We expect that
this finding will serve as a control parameter
in experiments that investigate the response
of topological semimetals to external pertur-
bations, such as all-optical measurement of
the quantized circular photogalvanic effect
(25). Here, a comparison of the nonlinear
response between two enantiomers should
give the same magnitude of the mesa-like
plateau region in the photocurrent spectrum,
albeit with a reversed sign. We furthermore
expect eight counterpropagaing topological
edge modes at a domain wall between enan-
tiomers in PdGa, given that the Chern num-
bers for positive and negativemomenta change
by 4 (33). The coupling of multifold fermions
with opposite Chern number at this boundary
could realize an interface Fermi surface that is
qualitatively different from the boundary to the
vacuum and thereby enable distinct topological
and correlated phenomena.
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Fig. 4. Comparison of the surface electronic structure of the (100) surface of enantiomer A and
enantiomer B. (A) Comparison of the Fermi-surfaces for enantiomer A (left) and enantiomer B (right),
measured with photon energy hv = 60 eV and LH polarization. Red arrows indicate Fermi arcs that
reverse the direction along which they are dispersing around the !R pocket under a mirror operation.
(B) Comparison of magnified Fermi surfaces measured with photon energy hv = 30 eV and LH polarization.
The red dashed line indicates the momentum path shown in (C). Red solid arrows indicate Fermi arcs that
are crossing the projected bulk band gap that separates the projected bulk pockets at !G and !R. (C) Band
dispersion along the path indicated by the red dashed line in (B). Red arrows indicate the Fermi arcs
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Band sticking in SG198
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with time-reversal symmetry θ. These rotations act like mirror sym-
metries, as they relate Bloch wave functions at (kx, ky, kz) to those at 
(−kx, ky, kz) and (kx, ky, −kz), respectively, leaving the planes kx = 0 and 
kz = 0 and the BZ boundaries kx = ±π and kz = ±π invariant. Squaring θC̃

x
2 

and θC̃
z
2 and letting them operate on the Bloch state |ψ(k)$, one finds 

that k kθC ψ ψ( ˜ ) | ( )$ = e | ( )$
x k
2

2 i x  and k kθC ψ ψ( ˜ ) | ( )$ = e | ( )$
z k
2

2 i z . Hence, by 
Kramers theorem28, all Bloch states on planes with kx = ±π or kz = ±π are 
two-fold degenerate. Moving away from these BZ boundaries, the sym-
metries are lowered such that the Bloch states become non-degenerate. 
Therefore, all bands in ferromagnetic MnSi are forced to cross at kx = ±π 
and kz = ±π, representing a duo of NPs.

The topological charge ν of this duo of NPs (Fig. 1b) may be deter-
mined with the fermion doubling theorem29, which states that ν 
summed over all band crossings must be zero. We note that besides 
the NPs, there is an odd number of symmetry-enforced band cross-
ings on the Y1–Γ–Y and R1–U–R lines forming Weyl points (ν = ±1) and 
four-fold points (ν = ±2), respectively (Fig. 1c, d, Extended Data Fig. 2, 
Supplementary Note 1). Moreover, due to the effective mirror sym-
metries, accidental Weyl points away from these high-symmetry lines 
must form pairs or quadruplets with the same ν. As the sum over ν of all 
of these Weyl and four-fold points is odd, the duo of NPs must carry a 
non-zero topological charge to satisfy the fermion doubling theorem. 
Hence, the duo of NPs at the BZ boundary is the topological partner of a 
single Weyl point on the Y1–Γ–Y line (Fig. 1b). This is a counter-example 
to Weyl semimetals, in which Weyl points occur always in pairs.

Shown in Fig. 1d is the band structure of a generic tight-binding 
model satisfying SG 19.27 (Supplementary Note 2), where pairs of 
bands form NPs on the BZ boundaries kx = ±π and kz = ±π, whereas 
on the Y1–Γ–Y and R1–U–R lines there are Weyl and four-fold points, 
respectively. Explicit calculation of the Chern numbers shows that all 
of these band crossings, including those at the NPs, exhibit non-zero 
topological charges as predicted above. In turn, all of the FSs carry 
substantial Berry curvatures. The numerical analysis shows that 
these Berry curvatures become extremal at the NPs and close to the 
four-fold and Weyl points (Extended Data Fig. 3). By the bulk–boundary 
correspondence3,4, the non-trivial topology of these band crossings 
generates large Fermi arcs on the surface, which extend over half of 
the BZ of the surface (Extended Data Fig. 4). These arguments may 
be extended to 254 of the 1,651 magnetic SGs, of which 33 have NPs 
whose topological charges are enforced to be non-zero by symmetry 
alone (Supplementary Note 3).

Calculated electronic structure
Figure 1e shows the density functional theory (DFT) band structure of 
MnSi, taking into account spin–orbit coupling, for the experimental 
moment of 0.41 Bohr magnetons (µB) per Mn atom along the [010] 
direction (Methods, Extended Data Fig. 5). Ten bands are found to 
cross the Fermi level (Fig. 1e). In agreement with our symmetry analysis 
and the tight-binding model (Fig. 1d), we find the same generic band 
crossings, namely: (1) NPs on the BZ boundaries kx = ±π and kz = ±π;  
(2) an odd number of Weyl points along Y1–Γ–Y; and (3) an odd number 
of four-fold points along R1–U–R.

The calculated FSs as matched to experiment are shown in Fig. 1f, 
highlighting the NPs at the BZ boundaries at kx = ±π and kz = ±π (see 
Extended Data Table 1 for key parameters and Extended Data Fig. 5). 
Eight FS sheets centred at Γ comprise two small isolated hole pockets 
(sheets 1 and 2), two intersecting hole pockets with avoided crossings 
and magnetic breakdown due to spin–orbit coupling (sheets 3 and 4) 
and two pairs of jungle-gym-type sheets (sheets 5 and 6, and sheets  
7 and 8). Sheets 9 and 10 are centred at R, comprising eight three- 
fingered electron pockets around the [111] axes and a tiny electron 
pocket, respectively. The sheet pairs (5, 6), (7, 8) and (9, 10) extend 
beyond the BZ boundaries with pairwise sticking at the NPs. They rep-
resent TPs (marked in red) with extremal Berry curvatures protected 
by the magnetic screw rotations θC̃

x
2  and θC̃

z
2. In contrast, sheets 5 to 

10 do not form TPs at the BZ boundary ky = ±π, because the moment 
pointing along [010] breaks θC̃

y
2 .

Rotating the direction of the magnetization away from [010]  
distorts the FS sheets, where TPs exist only on those BZ boundaries 
parallel to the magnetization (Supplementary Videos 1 and 2). For 
instance, rotating the moments within the x–y plane away from [010] 
breaks the magnetic screw rotation θC̃

x
2, but keeps θC̃

z
2 intact. In turn, 

the TPs gap out on the ky = ±π and kx = ±π planes, whereas they remain 
degenerate at the kz = ±π planes (Extended Data Fig. 1, Supplementary 
Note 1).
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z
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that k kθC ψ ψ( ˜ ) | ( )$ = e | ( )$
x k
2

2 i x  and k kθC ψ ψ( ˜ ) | ( )$ = e | ( )$
z k
2

2 i z . Hence, by 
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to Weyl semimetals, in which Weyl points occur always in pairs.

Shown in Fig. 1d is the band structure of a generic tight-binding 
model satisfying SG 19.27 (Supplementary Note 2), where pairs of 
bands form NPs on the BZ boundaries kx = ±π and kz = ±π, whereas 
on the Y1–Γ–Y and R1–U–R lines there are Weyl and four-fold points, 
respectively. Explicit calculation of the Chern numbers shows that all 
of these band crossings, including those at the NPs, exhibit non-zero 
topological charges as predicted above. In turn, all of the FSs carry 
substantial Berry curvatures. The numerical analysis shows that 
these Berry curvatures become extremal at the NPs and close to the 
four-fold and Weyl points (Extended Data Fig. 3). By the bulk–boundary 
correspondence3,4, the non-trivial topology of these band crossings 
generates large Fermi arcs on the surface, which extend over half of 
the BZ of the surface (Extended Data Fig. 4). These arguments may 
be extended to 254 of the 1,651 magnetic SGs, of which 33 have NPs 
whose topological charges are enforced to be non-zero by symmetry 
alone (Supplementary Note 3).

Calculated electronic structure
Figure 1e shows the density functional theory (DFT) band structure of 
MnSi, taking into account spin–orbit coupling, for the experimental 
moment of 0.41 Bohr magnetons (µB) per Mn atom along the [010] 
direction (Methods, Extended Data Fig. 5). Ten bands are found to 
cross the Fermi level (Fig. 1e). In agreement with our symmetry analysis 
and the tight-binding model (Fig. 1d), we find the same generic band 
crossings, namely: (1) NPs on the BZ boundaries kx = ±π and kz = ±π;  
(2) an odd number of Weyl points along Y1–Γ–Y; and (3) an odd number 
of four-fold points along R1–U–R.

The calculated FSs as matched to experiment are shown in Fig. 1f, 
highlighting the NPs at the BZ boundaries at kx = ±π and kz = ±π (see 
Extended Data Table 1 for key parameters and Extended Data Fig. 5). 
Eight FS sheets centred at Γ comprise two small isolated hole pockets 
(sheets 1 and 2), two intersecting hole pockets with avoided crossings 
and magnetic breakdown due to spin–orbit coupling (sheets 3 and 4) 
and two pairs of jungle-gym-type sheets (sheets 5 and 6, and sheets  
7 and 8). Sheets 9 and 10 are centred at R, comprising eight three- 
fingered electron pockets around the [111] axes and a tiny electron 
pocket, respectively. The sheet pairs (5, 6), (7, 8) and (9, 10) extend 
beyond the BZ boundaries with pairwise sticking at the NPs. They rep-
resent TPs (marked in red) with extremal Berry curvatures protected 
by the magnetic screw rotations θC̃

x
2  and θC̃

z
2. In contrast, sheets 5 to 

10 do not form TPs at the BZ boundary ky = ±π, because the moment 
pointing along [010] breaks θC̃

y
2 .

Rotating the direction of the magnetization away from [010]  
distorts the FS sheets, where TPs exist only on those BZ boundaries 
parallel to the magnetization (Supplementary Videos 1 and 2). For 
instance, rotating the moments within the x–y plane away from [010] 
breaks the magnetic screw rotation θC̃

x
2, but keeps θC̃

z
2 intact. In turn, 

the TPs gap out on the ky = ±π and kx = ±π planes, whereas they remain 
degenerate at the kz = ±π planes (Extended Data Fig. 1, Supplementary 
Note 1).

Sheet 6
Sheet 7
Sheet 8
Sheet 9
Sheet 10

Sheet 1
Sheet 2
Sheet 3
Sheet 4
Sheet 5

Y1 Γ Y R U R1 Γ S Y
–250

250

EF

E 
– 

E F 
(m

eV
)

a b c

d

e

f

R1 S

Y1

Γ

E

k⊥

X

NP

π
TPPPP

TP

R

U

Z

S1

T

T1

TP

TP

TP

TP

NP
NP

TP

TP

TP

NP

WP
FP
TP

EF

E 
(a

.u
.)

TRS

C2

k⊥

k1
k2

k1 k2 EF

WP

T
Z

T1 R1
U

R

S
XS1Y1

Y
Γ

[010]

[001]

B || [010]
[100]

B || [010]

NP1

NP1

N
P

2

′

NP2

TP TP

Fig. 1 | Symmetries, band topology, Fermi surface protectorates and band 
structure of ferromagnetic MnSi. a, Action of the magnetic screw rotations 
and time-reversal symmetry (TRS) on the k-points in the BZ. b, Pairs of energy 
bands E(k) close to the Fermi energy EF forming a topological NP (red line) on the 
BZ boundary that is perpendicular to the screw-rotation axis. This NP is the 
topological partner of a single Weyl point (WP) in the bulk (blue dot) of opposite 
topological charge. c, High-symmetry paths in the cubic primitive BZ. Special 
k-points are denoted by the orthorhombic primitive notation with subscripts 
for easier identification. d, Generic tight-binding band structure illustrating the 
generic band degeneracies of ferromagnetic MnSi with its magnetic space 
group, SG 19.27, namely Weyl points, four-fold degenerate points (FPs), NPs and 
TPs. e, Band structure of ferromagnetic MnSi for magnetization along [010] as 
calculated using DFT. Ten bands cross the Fermi level, as distinguished by 
different colours corresponding to the FS sheets numbered in f. f, Calculated FS 
sheets adapted to match the experimental data under magnetic field along 
[010], as discussed in Methods. Note the presence of NPs on the BZ boundaries, 
kx = ±π and kz = ±π, as well as TPs marked in red. a.u., arbitrary units.

Z.-M. Yu et al., PRB 100 041118 (2019) Wilde, et al., Nature 594, 374 (2021)

5. Huang, S.-M. et al. A Weyl Fermion semimetal with surface Fermi arcs in the
transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

6. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).
7. Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X

5, 031013 (2015).
8. Xu, S. Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi

arcs. Science 349, 613–617 (2015).
9. Lv, B. Q. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727

(2015).
10. Ma, J.-Z. et al. Spin fluctuation induced Weyl semimetal state in the

paramagnetic phase of EuCd2As2. Sci. Adv. 5, eaaw4718 (2019).
11. Nielsen, H. B. & Ninomiya, M. Absence of neutrinos on a lattice (I). Proof by

homotopy theory. Nucl. Phys. B 185, 20–40 (1981).
12. Nielsen, H. B. & Ninomiya, M. Absence of neutrinos on a lattice (II). Intuitive

topological proof. Nucl. Phys. B 193, 173–194 (1981).
13. Yu, Z.-M., Wu, W., Zhao, Y. X. & Yang, S. A. Circumventing the no-go

theorem: a single Weyl point without surface Fermi arcs. Phys. Rev. B 100,
041118 (2019).

14. Chang, G. et al. Topological quantum properties of chiral crystals. Nat. Mater.
17, 978–985 (2018).

15. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett.
95, 226801 (2005).

16. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions.
Phys. Rev. Lett. 98, 106803 (2007).

17. Tang, P., Zhou, Q. & Zhang, S.-C. Multiple types of topological fermions in
transition metal silicides. Phys. Rev. Lett. 119, 206402 (2017).

18. Takane, D. et al. Observation of chiral fermions with a large topological charge
and associated Fermi-arc surface states in CoSi. Phys. Rev. Lett. 122, 076402
(2019).

19. Rao, Z. et al. Observation of unconventional chiral fermions with long Fermi
arcs in CoSi. Nature 567, 496–499 (2019).

20. Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum
states. Nature 567, 500–505 (2019).

21. Li, H. et al. Chiral fermion reversal in chiral crystals. Nat. Commun. 10, 5505
(2019).

22. Schröter, N. B. M. et al. Chiral topological semimetal with multifold band
crossings and long Fermi arcs. Nat. Phys. 15, 759–765 (2019).

23. Jackiw, R. & Rebbi, C. Solitons with fermion number ½. Phys. Rev. D 13,
3398–3409 (1976).

24. Kaplan, D. B. A method for simulating chiral fermions on the lattice. Phys.
Lett. B 288, 342–347 (1992).

25. Kaplan, D. B. Chiral symmetry and lattice fermions. Preprint at https://arxiv.
org/abs/0912.2560 (2012).

26. Wojcik, C. C., Sun, X.-Q., Bzdušek, T. & Fan, S. Homotopy characterization of
non-Hermitian Hamiltonians. Phys. Rev. B 101, 205417 (2020).

27. Autès, G., Wu, Q., Mounet, N. & Yazyev, O. V. TopoMat: a database of high-
throughput first-principles calculations of topological materials. Mater. Cloud
Arch. https://doi.org/10.24435/materialscloud:2019.0019/v (2019).

28. Yao, M. et al. Observation of giant spin-split Fermi-arc with maximal Chern
number in the chiral topological semimetal PtGa. Nat. Commun. 11, 2033
(2020).

29. Zeng, C., Nandy, S. & Tewari, S. Berry curvature dipole in topological Weyl
semimetals. Preprint at https://arxiv.org/abs/2009.05043 (2020).

30. Dil, J. H. Finding spin hedgehogs in chiral crystals. Physics 13, 45 (2020).
31. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for

metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.
6, 15–50 (1996).

32. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-
energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186
(1996).

33. Wu, Q., Zhang, S., Song, H.-F., Troyer, M. & Soluyanov, A. A. WannierTools:
an open-source software package for novel topological materials. Comput.
Phys. Commun. 224, 405–416 (2018).

34. Mostofi, A. A. et al. An updated version of wannier90: a tool for obtaining
maximally-localised Wannier functions. Comput. Phys. Commun. 185,
2309–2310 (2014).

Acknowledgements
We acknowledge T. L. Yu, V. N. Strocov, E. Rienks, A. Varykhalov, and Y. B. Huang for
help during the ARPES experiments. This work was supported by the NCCR-MARVEL
funded by the Swiss National Science Foundation, the Sino-Swiss Science and Tech-
nology Cooperation (Grant No. IZLCZ2-170075), and the European Union’s Horizon
2020 research and innovation program under the Marie Skłodowska-Curie grant
agreement No. 701647. M.R. and J.-Z.M. were supported by the project 200021_182695
funded by the Swiss National Science Foundation. J.-Z.M is supported by City University
of Hong Kong through the start-up project (Project No. 9610489). K.M., M.Y.Y., and C.F.
acknowledges financial support from European Research Council Advanced Grant No.
(742068) “TOP-MAT,” European Union’s Horizon 2020 research and innovation pro-
gram (grant No. 824123 and 766566) and Deutsche Forschungsgemeinschaft (Project-ID
258499086 and FE 633/30-1). K.M. acknowledges Max Plank Society for the funding
support under Max Plank–India partner group project. H.D. and T.Q. acknowledge
financial support from the Ministry of Science and Technology of China
(2016YFA0401000, and 2016YFA0300600), the National Natural Science Foundation of
China (U1832202), and the Chinese Academy of Sciences (QYZDB-SSW-SLH043,
XDB33000000, and XDB28000000.).

Author contributions
M. Shi and J.-Z.M. supervised this project. J.-Z.M. performed normal ARPES experi-
ments with help from S.A.E., M.Y.Y., S.-Y.G., W.-H.F., M.R., M.K., T.Q., and H.D.;
J.-Z.M. performed and analyzed the SARPES experiments with help from E.B.G. and
J.H.D.; J.-Z.M. analyzed the ARPES data and plotted the figures. J.-Z.M. searched the
database and found all the candidate compounds, which are confirmed by Q.-S.W. via
calculations; Q.-S.W., S.-N.Z., and O.V.Y. performed first-principles calculations of the
band structure. K.M. and C.F. synthesized and polished the single crystals of PtGa.
M. Song and Y.-M.X. synthesized single crystal of PtGa for the primary ARPES study. All
the authors contributed to the discussions. J.-Z.M. and M. Shi wrote the manuscript with
help from S.A.E., N.C.P., J.H.D., and O.V.Y.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-24289-0.

Correspondence and requests for materials should be addressed to J.-Z.M., O.V.Y. or M.S.

Peer review information Nature Communications thanks Su-Yang Xu and the other
anonymous reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24289-0

8 NATURE COMMUNICATIONS | ��������(2021)�12:3994� | https://doi.org/10.1038/s41467-021-24289-0 | www.nature.com/naturecommunications

Nielsen, Ninomiya, Nucl. Phys. B 185 20 (1981)
Nielsen, Ninomiya, Nucl. Phys. B 193 173 (1981)



Single-Weyl point & Nodal planes in PtGa

J.-Z. Ma et al., Nat. Comms. 12 3994 (2021)

Crystal and electronic structure. The crystal structure of PtGa
belongs to the CoSi family that has been reported to follow the
no-go theorem in scenario Fig. 1b. The unconventional Weyl
fermions with high chiral charges and large Fermi arcs were
discovered in the CoSi family17–21. When taking spin–orbit
coupling (SOC) into consideration, it is predicted and reported
that between bands N−1 and N+4 the spin-1/2 Weyl fermion,
spin-3/2 Rarita–Schwinger–Weyl (RSW) fermion, and double
spin-1 Weyl fermion quasiparticles can emerge in the CoSi
family17. Constrained by the no-go theorem, the RSW node at the
BZ center pairs with the spin-1 WP at the R point in the BZ
corner, which results in large surface Fermi arcs connecting the
projections of the BZ center and corners in the surface BZ
(Fig. 1b). However, most of the ARPES measurements were
focused on the observation of the large surface Fermi arcs as it
was anticipated that the SOC induces only a small energy
separation in CoSi; the bulk WPs related to the SOC were not
clearly identified18–22.

As a member of the CoSi family, PtGa has a cubic lattice
structure of the space group P213 (No.198) (Fig. 1e). The
corresponding BZ is shown in Fig. 1d. Space group 198 has
12 symmetry operations associated with three basic symmetries:
one threefold rotation symmetry along the (111) direction, and
two twofold screw symmetry axes along the z and x directions17,
respectively. From the data in the TopoMap database27 we find
that PtGa has the largest SOC effect in the CoSi family, which
makes it possible to disentangle the bulk states by using ARPES.

Figure 1g, h show the Fermi surface (FS) maps acquired in the Γ–
M–X and X–R–M planes, respectively. Large Fermi arcs
connecting the projections of the R (double Weyl node) and Γ
(RSW node) points are clearly observed associated with bands N
−1 to N+4. These are indicated by dotted green lines and labeled
“SS.” The Fermi arcs are furthermore illustrated schematically in
Fig. 1b, which have been investigated in the previous report28.
Meanwhile, the four diamond-like FS patches appear only in the
Γ–M–X plane around BZ center (Fig. 1g) but not in X–R–M plane
(Fig. 1h), indicating that these pieces of FS belong to bulk states.

Singular WP surrounded by WNWs. Considering the effect of
SOC, the band crossing node at the Γ point splits into one RSW
point and one spin-1/2 WP17 (Fig. 1f). The spin-1/2 WP is the
crossing point of bands N−2 and N−3 and is protected by time-
reversal symmetry. We will show that this is the awaited singular
WP whose existence lies within the extended no-go theorem.
Preserved by the combination of time-reversal symmetry and
nonsymmorphic screw symmetry, the two bands (N−2 and N−3)
are degenerate at all the boundaries of the bulk BZ. In this
situation, no surface Fermi arc can be topologically protected
relevant to these two bands as the Chern number cannot be
defined in the 2D slices of the 3D BZ, which is different to the
large surface Fermi arc28 as discussed above between bands N−1
and N+4. In Fig. 2b, c, we show the ARPES spectra and the
curvature intensity plot along Γ–X direction. In agreement with
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Fig. 1 Weyl semimetal (WSM) schematic with paired points and unpaired points. a A conventional WSM restricted by the no-go theorem with surface
Fermi arcs surface states connecting the projections of the bulk WPs with opposite chirality on the surface BZ. “C” indicates 2D Chern number on the
related slice. b The topological semimetal system containing both spin-3/2 RSW (Rarita–Schwinger–Weyl) and spin-1 Weyl points at different high-
symmetry points in the bulk BZ and the large surface Fermi arcs connecting the projections of these WPs on the surface BZ. c Schematic drawing of a
topological semimetal with a single Weyl point in the BZ center enclosed by the topologically charged Weyl nodal walls (WNWs) on the BZ boundaries. No
surface Fermi arc connects the projection of this singular WP. d, e 3D bulk BZ and unit cell of PtGa single crystal, respectively. f Bulk band structure of PtGa
along the high symmetry lines as indicated in d. The green and blue lines are the nondegenerate bands that cross at the BZ boundary forming the
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maps, acquired by ARPES measurements with photon energies hv= 605 and 545 eV, respectively. Labels BS and SS denote bulk and surface states,
respectively.
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Crystal and electronic structure. The crystal structure of PtGa
belongs to the CoSi family that has been reported to follow the
no-go theorem in scenario Fig. 1b. The unconventional Weyl
fermions with high chiral charges and large Fermi arcs were
discovered in the CoSi family17–21. When taking spin–orbit
coupling (SOC) into consideration, it is predicted and reported
that between bands N−1 and N+4 the spin-1/2 Weyl fermion,
spin-3/2 Rarita–Schwinger–Weyl (RSW) fermion, and double
spin-1 Weyl fermion quasiparticles can emerge in the CoSi
family17. Constrained by the no-go theorem, the RSW node at the
BZ center pairs with the spin-1 WP at the R point in the BZ
corner, which results in large surface Fermi arcs connecting the
projections of the BZ center and corners in the surface BZ
(Fig. 1b). However, most of the ARPES measurements were
focused on the observation of the large surface Fermi arcs as it
was anticipated that the SOC induces only a small energy
separation in CoSi; the bulk WPs related to the SOC were not
clearly identified18–22.

As a member of the CoSi family, PtGa has a cubic lattice
structure of the space group P213 (No.198) (Fig. 1e). The
corresponding BZ is shown in Fig. 1d. Space group 198 has
12 symmetry operations associated with three basic symmetries:
one threefold rotation symmetry along the (111) direction, and
two twofold screw symmetry axes along the z and x directions17,
respectively. From the data in the TopoMap database27 we find
that PtGa has the largest SOC effect in the CoSi family, which
makes it possible to disentangle the bulk states by using ARPES.

Figure 1g, h show the Fermi surface (FS) maps acquired in the Γ–
M–X and X–R–M planes, respectively. Large Fermi arcs
connecting the projections of the R (double Weyl node) and Γ
(RSW node) points are clearly observed associated with bands N
−1 to N+4. These are indicated by dotted green lines and labeled
“SS.” The Fermi arcs are furthermore illustrated schematically in
Fig. 1b, which have been investigated in the previous report28.
Meanwhile, the four diamond-like FS patches appear only in the
Γ–M–X plane around BZ center (Fig. 1g) but not in X–R–M plane
(Fig. 1h), indicating that these pieces of FS belong to bulk states.

Singular WP surrounded by WNWs. Considering the effect of
SOC, the band crossing node at the Γ point splits into one RSW
point and one spin-1/2 WP17 (Fig. 1f). The spin-1/2 WP is the
crossing point of bands N−2 and N−3 and is protected by time-
reversal symmetry. We will show that this is the awaited singular
WP whose existence lies within the extended no-go theorem.
Preserved by the combination of time-reversal symmetry and
nonsymmorphic screw symmetry, the two bands (N−2 and N−3)
are degenerate at all the boundaries of the bulk BZ. In this
situation, no surface Fermi arc can be topologically protected
relevant to these two bands as the Chern number cannot be
defined in the 2D slices of the 3D BZ, which is different to the
large surface Fermi arc28 as discussed above between bands N−1
and N+4. In Fig. 2b, c, we show the ARPES spectra and the
curvature intensity plot along Γ–X direction. In agreement with
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the calculated band structure (Fig. 2d), two band crossings are
observed at the Γ point near the Fermi level, and the SOC-
induced band splitting is clearly resolved. The lower band
crossing indicated by the red arrows is an unpaired WP, which
carries a positive topological charge +1. The related two bands
linearly cross at X point forming the WNW, which is clearly
resolved in Fig. 2c. To further explore the singular WP, we have
also acquired ARPES spectra along the Γ–M direction in the
second BZ with hv= 620 eV (Fig. 2e, f), which also agree well
with the calculated band structure (Fig. 2g). Nevertheless, the WP
below the RSW node is clearly observed. An essential condition
for the WSM in our scenario is the existence of the symmetry-
protected nodal walls on the boundaries of the BZ13. In PtGa, the
doubly degenerate WNWs on all the BZ boundaries are protected
by time-reversal and nonsymmorphic screw symmetries (Fig. 1f).
To verify that the WNWs are formed on the BZ boundaries, we
collected the ARPES spectra along all the high-symmetry lines on
different boundary lines of the bulk BZ (Fig. 2i, k, m, o), i.e., along
the MX1, MX2, MR, and XR lines in Fig. 1d. The WNWs formed
by the crossings of nondegenerate bands N−2 and N−3 obtained
from the band structure calculations (black lines in Fig. 2j, l, n, p)
indeed appear in the ARPES spectra, as indicated by the red

arrows in Fig. 2i, k, m, o. The remarkable agreement between the
results from band structure calculations and ARPES measure-
ments provides compelling evidence that a single unpaired WP at
the center of the BZ is surrounded by the WNWs on the BZ
boundary, as it is demonstrated in the 3D plot of the electronic
structure in the kz= 0 plane (Fig. 2h).

Nontrivial FSs. The nontrivial electronic structure in PtGa
associated with bands N−2 and N−3, which connect the WNW
and singular WP, do cross the EF in the vicinity of the M point.
The 3D ARPES intensity plots in the R–M–X and Γ–X–M planes
show that band N−2 and band N−3 cross the Fermi level and
form the FS pockets around M points (Fig. 3a, b), which agrees
well with the calculated band structure. In our calculations, the
WNW spans energies from −1 to 0.3 eV, and the corresponding
FSs around the M points are shown in Fig. 3d. To inspect the
topological properties of the FS near the M points, we calculated
the x, y, z components of the Berry curvature field on the FS
pockets formed by bands N−3 (top row of Fig. 3d) and N−2
(bottom row of Fig. 3d), respectively. Since the two FS pockets
degenerate at the BZ boundary, it is not possible to find a path
that enclose only one FS pocket to calculate the Chern number.

-1.5

-1.0

-0.5

0.0
WP

Γ M

2.0

1.0

0.0k x
2 

(Å
-1

)

1.00.0-1.0

kx1 (Å
-1

)

Γ

Γ'

X

X

M

M

WP

WNW

0

-1

-2

E
 -

 E
F 

(e
V

)

X1

M

M

X2

M

Γ

WNW

-1.5

-1.0

-0.5

0.0

E
 -

 E
F 

(e
V

) WP

ΓX X

-2.0

-1.0

0.0

1.00.50.0

k// (Å
-1

)

M R

WNW

SS

-2.0

-1.0

0.0

E
 -

 E
F 

(e
V

)

-0.5 0.0 0.5

k// (Å
-1

)

X1M M

WNW

SS

-2.0

-1.0

0.0

1.51.00.50.0

k// (Å
-1

)

X2M

WNW

-2.0

-1.0

0.0

-1.0 -0.5 0.0 0.5

k// (Å
-1

)

X R

WNW

SS

-2.0

-1.0

0.0

M X1 M
-2.0

-1.0

0.0

X2 M X2
-2.0

-1.0

0.0

M R M
-2.0

-1.0

0.0

X R X

a

h

i j k l m n o p

maxmin

max

min

-1.5

-1.0

-0.5

0.0

E
 -

 E
F 

(e
V

)
-2.0 -1.5 -1.0 -0.5

k// (Å
-1

)

ΓX X

WP

RSW

-1.5

-1.0

-0.5

0.0

-2.0 -1.6 -1.2 -0.8 -0.4

k// (Å
-1

)

ΓX X

WP

RSW

WNW

-1.5

-1.0

-0.5

0.0

E
 -

 E
F 

(e
V

)

2.52.01.51.0

k// (Å
-1

)

M Γ M

WP

RSW

-1.5

-1.0

-0.5

0.0

2.42.01.61.2

k// (Å
-1

)

Γ

RSW

WP

M

b c d

e f g

max

min
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the calculated band structure (Fig. 2d), two band crossings are
observed at the Γ point near the Fermi level, and the SOC-
induced band splitting is clearly resolved. The lower band
crossing indicated by the red arrows is an unpaired WP, which
carries a positive topological charge +1. The related two bands
linearly cross at X point forming the WNW, which is clearly
resolved in Fig. 2c. To further explore the singular WP, we have
also acquired ARPES spectra along the Γ–M direction in the
second BZ with hv= 620 eV (Fig. 2e, f), which also agree well
with the calculated band structure (Fig. 2g). Nevertheless, the WP
below the RSW node is clearly observed. An essential condition
for the WSM in our scenario is the existence of the symmetry-
protected nodal walls on the boundaries of the BZ13. In PtGa, the
doubly degenerate WNWs on all the BZ boundaries are protected
by time-reversal and nonsymmorphic screw symmetries (Fig. 1f).
To verify that the WNWs are formed on the BZ boundaries, we
collected the ARPES spectra along all the high-symmetry lines on
different boundary lines of the bulk BZ (Fig. 2i, k, m, o), i.e., along
the MX1, MX2, MR, and XR lines in Fig. 1d. The WNWs formed
by the crossings of nondegenerate bands N−2 and N−3 obtained
from the band structure calculations (black lines in Fig. 2j, l, n, p)
indeed appear in the ARPES spectra, as indicated by the red

arrows in Fig. 2i, k, m, o. The remarkable agreement between the
results from band structure calculations and ARPES measure-
ments provides compelling evidence that a single unpaired WP at
the center of the BZ is surrounded by the WNWs on the BZ
boundary, as it is demonstrated in the 3D plot of the electronic
structure in the kz= 0 plane (Fig. 2h).

Nontrivial FSs. The nontrivial electronic structure in PtGa
associated with bands N−2 and N−3, which connect the WNW
and singular WP, do cross the EF in the vicinity of the M point.
The 3D ARPES intensity plots in the R–M–X and Γ–X–M planes
show that band N−2 and band N−3 cross the Fermi level and
form the FS pockets around M points (Fig. 3a, b), which agrees
well with the calculated band structure. In our calculations, the
WNW spans energies from −1 to 0.3 eV, and the corresponding
FSs around the M points are shown in Fig. 3d. To inspect the
topological properties of the FS near the M points, we calculated
the x, y, z components of the Berry curvature field on the FS
pockets formed by bands N−3 (top row of Fig. 3d) and N−2
(bottom row of Fig. 3d), respectively. Since the two FS pockets
degenerate at the BZ boundary, it is not possible to find a path
that enclose only one FS pocket to calculate the Chern number.
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Fig. 2 Electronic structure of PtGa along the high-symmetry lines showing an singular WP at the center of the BZ surrounded by WNWs on the BZ
boundaries. a FS map in the Γ–X–M plane, acquired with hv= 605 eV at 12 K. b, c High-resolution ARPES spectra along the Γ–X line and the related
curvature intensity plot. The red arrows indicate the WP (Weyl point) at the Γ point. d Calculated band dispersion along the X–Γ–X line. The singular WP at
the Γ point is highlighted by the circle. e, f The high-resolution ARPES spectra along the Γ–M direction and the related curvature intensity plot. The red
arrows indicate the singular WP in the center of the BZ. g The calculated band dispersion along the M–Γ–M direction. The singular WP at the Γ point is
highlighted by the ellipse. h 3D intensity plot of the electronic structure in the Γ–X–M plane; the singular WP at the Γ point and the WNWs (Weyl nodal
walls) on the BZ boundary are marked with the filled green circle and black dotted lines, respectively. i–p The ARPES spectra and the related calculated
band dispersions along high-symmetry lines on the BZ boundaries are displayed alternately. The black dispersive curves represent the WNWs. “SS”
denotes surface state.
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Our argument is based on the response of the system to the inser-

tion of a gauge flux that couples minimally to the conserved charge
Q. We first give a heuristic argument, and then a more formal one.
The strategy is as follows: we wish to show that if the system is an
insulator, the ground state cannot be unique in the thermodynamic
limit. Hence, the system cannot be a trivial insulator that respects all
symmetries, which should have a unique ground state. A degenerate
ground state implies either a broken symmetry or a gapless phase or
topological order. That is, it is topologically ordered if it is gapped
and breaks no symmetries. To show this, we begin with a ground
state |Ψ〉 and thread a flux quantum through a periodic direction,
which, by gauge invariance, returns us to the original Hamiltonian.
This procedure produces an eigenstate |Ψ̃〉. Earlier work1,2,19,20 has
argued that for an insulator, |Ψ̃〉must be a low-energy state; that is,
its energy approaches that of the ground state in the thermodynamic
limit. Although rigorous energy bounds can be given only for a
different—but gauge-equivalent—flux insertion, for pedagogical
reasons we keep a simpler choice with the understanding that
the arguments of ref. 2 can be applied, mutatis mutandis, to
non-symmorphic symmetries. The key step is to show that |Ψ̃〉
is distinct from |Ψ〉, which would then establish ground-state
degeneracy. In the case of fractional filling, these states differ in
crystal momentum1,2,19,20. For integer filling, crystal momentum
fails to differentiate between them. However, we will show that on
non-symmorphic lattices, one can still distinguish these states using
the quantumnumbers of the non-symmorphic operations.

Consider threading flux through the system by introducing a
vector potential A = k/N , where k is a reciprocal lattice vector;
this is the most general vector potential that is pure gauge so that
ei

∫
CA·dr = 1 for any loop C that threads the system. The change in

energy on inserting flux is proportional to the total current and
is thus bounded in an insulator, where this procedure produces a
state degenerate with the ground state in the thermodynamic limit.
If the flux threading changes the quantumnumbers, the final state is
distinct from the initial one and thus the ground state is degenerate.
We use units where h̄= e = 1, in which the flux quantum φ0 = 2π.
In the case of spinful fermions, we consider coupling to a single spin
species, justified by the fact that spin is assumed to be a spectator.

To determine the change in quantum numbers of the symmetry
operators, it is useful to first ignore the lattice potential, in which
case it is straightforward to identify the change of the centre-
of-mass momentum by computing the force imparted to each
charge as the flux is adiabatically switched on. Faraday’s law gives
Fi =

∫
Ȧ ·dr , so that

"P =
Q∑

i=1

∫
Fi dt =

Q
N
k =N 2νk

We now reintroduce the lattice. If "P is not in the reciprocal
lattice, then it is observable even within the reduced symmetry
of the crystal, and we have succeeded in producing a distinct
degenerate ground state. For a fractional filling ν = p/q, it is clear
that this is the case as long as we choose N relatively prime to q. In
other words, the state following flux insertion has a distinct crystal
momentum, which means that the quantum number associated
with translational symmetry has changed. This is the essence of the
Hastings–Oshikawa argument1–3. At integer filling, it is clear that
no choice ofN allows us to distinguish the initial and final states on
the basis of lattice translational symmetry. For symmorphic crystals,
the argument ends here: no more information about the insulating
phase can be obtained purely from lattice symmetries.

For non-symmorphic crystals, in contrast, we demonstrate
below that if we can choose "P to correspond to an extinguished
Bragg peak, the initial and final states will have different quantum
numbers for the non-symmorphic operation responsible for that
extinction. We show that such a choice is always possible at

T̂c/2

R̂π/3

M K ΓΓ A L H A L M K H

a

b

Figure 2 | Band structure on hcp lattices. a, hcp crystal showing screw
rotation comprised of sixfold rotation (R̂π/3) followed by half-c axis
translation (T̂c/2) out of the page; green arrows show transformation of
some sites. b, Bottom: tight-binding band structure (blue solid lines)
showing symmetry-enforced contacts12 between the pair of bands, leading
to a minimum filling of S = 2 to achieve a band insulator. Top: on breaking
the screw symmetry, gaps open and allow the bands (red dot–dashed lines)
to separate.

unit-filling, implying that an insulator with a unique ground state
is forbidden. Intuitively, the absence of Bragg peaks at special
crystal momenta indicates that they can serve as a good quantum
number to distinguish initial and final states, in the presence of a
crystalline potential. In general, as long as ν is not a multiple of
the non-symmorphic rank S, a unique ground state is forbidden
(see below and Supplementary Section S3). This result may also be
understood by the exercise of trying to isolate a single Bloch band
in a non-symmorphic crystal without breaking symmetry. Were
such a band to exist, its exponentially localized Wannier orbitals
would define centres of electronic charge in each unit cell. One
now encounters an obstruction: owing to non-symmorphicity, it
is impossible to define a charge centre that is invariant, modulo
translations, under all crystal symmetries.

We now bolster this intuitive picture with a more formal
argument. Consider a crystal that has a non-symmorphic space
group G, which contains a non-symmorphic operation Ĝ. This
comprises a point-group operation g followed by a fractional
translation τ in a direction left invariant by g ; that is,

Ĝ : r → g r+τ
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tion of a gauge flux that couples minimally to the conserved charge
Q. We first give a heuristic argument, and then a more formal one.
The strategy is as follows: we wish to show that if the system is an
insulator, the ground state cannot be unique in the thermodynamic
limit. Hence, the system cannot be a trivial insulator that respects all
symmetries, which should have a unique ground state. A degenerate
ground state implies either a broken symmetry or a gapless phase or
topological order. That is, it is topologically ordered if it is gapped
and breaks no symmetries. To show this, we begin with a ground
state |Ψ〉 and thread a flux quantum through a periodic direction,
which, by gauge invariance, returns us to the original Hamiltonian.
This procedure produces an eigenstate |Ψ̃〉. Earlier work1,2,19,20 has
argued that for an insulator, |Ψ̃〉must be a low-energy state; that is,
its energy approaches that of the ground state in the thermodynamic
limit. Although rigorous energy bounds can be given only for a
different—but gauge-equivalent—flux insertion, for pedagogical
reasons we keep a simpler choice with the understanding that
the arguments of ref. 2 can be applied, mutatis mutandis, to
non-symmorphic symmetries. The key step is to show that |Ψ̃〉
is distinct from |Ψ〉, which would then establish ground-state
degeneracy. In the case of fractional filling, these states differ in
crystal momentum1,2,19,20. For integer filling, crystal momentum
fails to differentiate between them. However, we will show that on
non-symmorphic lattices, one can still distinguish these states using
the quantumnumbers of the non-symmorphic operations.

Consider threading flux through the system by introducing a
vector potential A = k/N , where k is a reciprocal lattice vector;
this is the most general vector potential that is pure gauge so that
ei

∫
CA·dr = 1 for any loop C that threads the system. The change in

energy on inserting flux is proportional to the total current and
is thus bounded in an insulator, where this procedure produces a
state degenerate with the ground state in the thermodynamic limit.
If the flux threading changes the quantumnumbers, the final state is
distinct from the initial one and thus the ground state is degenerate.
We use units where h̄= e = 1, in which the flux quantum φ0 = 2π.
In the case of spinful fermions, we consider coupling to a single spin
species, justified by the fact that spin is assumed to be a spectator.

To determine the change in quantum numbers of the symmetry
operators, it is useful to first ignore the lattice potential, in which
case it is straightforward to identify the change of the centre-
of-mass momentum by computing the force imparted to each
charge as the flux is adiabatically switched on. Faraday’s law gives
Fi =

∫
Ȧ ·dr , so that

"P =
Q∑

i=1

∫
Fi dt =

Q
N
k =N 2νk

We now reintroduce the lattice. If "P is not in the reciprocal
lattice, then it is observable even within the reduced symmetry
of the crystal, and we have succeeded in producing a distinct
degenerate ground state. For a fractional filling ν = p/q, it is clear
that this is the case as long as we choose N relatively prime to q. In
other words, the state following flux insertion has a distinct crystal
momentum, which means that the quantum number associated
with translational symmetry has changed. This is the essence of the
Hastings–Oshikawa argument1–3. At integer filling, it is clear that
no choice ofN allows us to distinguish the initial and final states on
the basis of lattice translational symmetry. For symmorphic crystals,
the argument ends here: no more information about the insulating
phase can be obtained purely from lattice symmetries.

For non-symmorphic crystals, in contrast, we demonstrate
below that if we can choose "P to correspond to an extinguished
Bragg peak, the initial and final states will have different quantum
numbers for the non-symmorphic operation responsible for that
extinction. We show that such a choice is always possible at

T̂c/2

R̂π/3

M K ΓΓ A L H A L M K H

a

b

Figure 2 | Band structure on hcp lattices. a, hcp crystal showing screw
rotation comprised of sixfold rotation (R̂π/3) followed by half-c axis
translation (T̂c/2) out of the page; green arrows show transformation of
some sites. b, Bottom: tight-binding band structure (blue solid lines)
showing symmetry-enforced contacts12 between the pair of bands, leading
to a minimum filling of S = 2 to achieve a band insulator. Top: on breaking
the screw symmetry, gaps open and allow the bands (red dot–dashed lines)
to separate.

unit-filling, implying that an insulator with a unique ground state
is forbidden. Intuitively, the absence of Bragg peaks at special
crystal momenta indicates that they can serve as a good quantum
number to distinguish initial and final states, in the presence of a
crystalline potential. In general, as long as ν is not a multiple of
the non-symmorphic rank S, a unique ground state is forbidden
(see below and Supplementary Section S3). This result may also be
understood by the exercise of trying to isolate a single Bloch band
in a non-symmorphic crystal without breaking symmetry. Were
such a band to exist, its exponentially localized Wannier orbitals
would define centres of electronic charge in each unit cell. One
now encounters an obstruction: owing to non-symmorphicity, it
is impossible to define a charge centre that is invariant, modulo
translations, under all crystal symmetries.

We now bolster this intuitive picture with a more formal
argument. Consider a crystal that has a non-symmorphic space
group G, which contains a non-symmorphic operation Ĝ. This
comprises a point-group operation g followed by a fractional
translation τ in a direction left invariant by g ; that is,

Ĝ : r → g r+τ
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Table 1 | Some non-symmorphic groups and their ranks,
colloquial structure names and representative materials.

d Name Examples Space group S

2 Shastry–Sutherland SrCu2(BO3)2 p4g 2
3 hcp Be, Mg, Zn P63/mmc 2
3 Diamond C, Si Fd3̄m 2
3 Pyrochlore Dy2Ti2O7 (spin ice) Fd3̄m 2
3 – α-SiO2, GeO2 P3121 3
3 – CrSi2 P6222 3
3 – Pr2Si2O7,La2Si2O7 P41 4
3 Hex. perovskite CsCuCl3 P61 6

Applications
Band theory. The fact that band insulators are forbidden unless
the filling is a multiple of the non-symmorphic rank S strongly
constrains the structure of the bulk energy dispersion: it is
impossible to detach a set of fewer than S bands so that they
touch no other bands, without breaking the crystal symmetry.
Non-symmorphic space groups often also describe the symmetry
of photonic crystals9,10; hence, their photonic band structures obey
similar constraints. For instance, the hcp structure has S = 2; we
show a tight-binding band structure for the hcp lattice in Fig. 2
where the enforced contacts are explicit. Although the subject
of band touchings in crystals has a long history11,12, and the
ubiquity of such degeneracies in non-symmorphic crystals has been
noted13,14, the connection to a minimum filling for band-insulating
behaviour has not been made previously. More importantly, these
previous results apply only to non-interacting systems, in contrast
to the non-perturbative approach taken here, which allows us to
determine the nature of the interacting insulating ground state.
Thus, for instance, our arguments also forbid interacting fragile
Mott insulators, which have unique ground states7.

Spin systems and bosonic insulators. A parallel set of conclusions
can be drawn for spin systems, where the filling is related to the total
magnetization, and an insulator now corresponds to a phase with
a spin gap. We demand at least a U(1) spin-rotation symmetry,
although the conclusions also apply to a larger symmetry such as
SU(2), as long as it contains a U(1) subgroup. The analogue of the
band insulator is a trivial paramagnet, which has gapped excitations,
and has neither conventional nor topological order. We conclude
that such a trivial paramagnet is disallowed in an SU(2) symmetric
spin-1/2 system on the diamond lattice, which is a common non-
symmorphic lattice with S = 2. In contrast, the pyrochlore lattice
has the same space group but twice as many sites per unit cell as
diamond, and a trivial quantumparamagnet is not forbidden by our
arguments. Another application is to magnetization plateaux in an
applied Zeeman field. For example, half-magnetization plateaux of
spin-1/2 moments on the two-dimensional (2D) non-symmorphic
Shastry–Sutherland lattice15 (SSL) cannot be trivial paramagnets.
Applications to SrCu2(BO3)2 (SCBO), a material realizing the SSL
where a half-magnetization plateau is observed16,17, will be dis-
cussed below. Yet another application is to bosonicMott insulators.
Our arguments demonstrate that on non-symmorphic lattices,
Mott insulators at fillings that are not a multiple of S must be
topologically ordered, if they are gapped and respect all symmetries.

Flux-threading argument and non-symmorphic rank
In the rest of this paper we outline our argument, and demonstrate
its use in specific examples by substantiating the claimsmade above.
For clarity and to fix notation we digress briefly to review some
relevant crystallography. We will consider crystalline systems with
a given space group, G. This has two ingredients: the subgroup

A

 = ∫A⋅dr

T̂a
1
/2

ˆ2A

PfPi

a b
Φ

σ

Figure 1 | Flux threading on a non-symmorphic lattice. a, A 2D
non-symmorphic lattice, with p4g space group. An essential glide
symmetry is shown, consisting of a mirror (σ̂2) and half-translation (T̂a1/2).
b, Flux threading changes ground-state momentum from Pi to Pf . At odd
integer filling, Pf is an extinguished reciprocal lattice vector, denoted by
open circles, implying a distinct ground state. At even filling, Pf lands on an
allowed reciprocal lattice vector, allowing for a unique ground state.

of translations T , generated by the set of primitive translations
t̂ai : r → r+ai, i= 1,2,3, where the ai generate a specific Bravais
lattice, and a point group P consisting of discrete rotations, inver-
sions and reflections. By combining the 14 Bravais lattices with the
32 crystallographic point groups, we obtain the 230 space groups.Of
these, 73 are symmorphic: there exists at least one point that is left
invariant by all of the symmetries, up to translations by a lattice vec-
tor. The remaining 157 space groups for which no such point exists
are non-symmorphic. Intuitively, a non-symmorphic space group
contains one or more essential non-symmorphic operations (glide
mirrors or screw rotations) that combine a point-group operation
with a fractional lattice translation, and that cannot by any change
of origin be rewritten as the product of a point-group operation and
an ordinary translation. The latter caveat is important to distinguish
these from trivial glides/screws, which can occur even in symmor-
phic crystals18. There are however two exceptional space groups,
which are non-symmorphic despite the absence of essential glide or
screwoperations (see Supplementary Section S1 for further details).

In the remainder, we focus on the 155 non-symmorphic
groups that have glide mirrors or screw rotations. Under a non-
symmorphic symmetry Ĝ consisting of a point-group operation
g and non-lattice translation τ, the Fourier components of a
scalar field (such as the density) transform as nk → ngkeiτ·k . If
gk = k and τ · k is not an integer multiple of 2π, nk = 0: the
associated Fourier component vanishes. An essential glide or screw
always has an infinite set of such reciprocal lattice vectors k. Thus,
non-symmorphicity (barring two exceptions) has a pronounced
experimental manifestation: there are systematic absences in the
diffraction patternwhere the (scalar) Bragg intensity vanishes.

We assume that the systems we study are described by a Hamil-
tonian Ĥ that preserves all of the symmetries of G and in addition
that there is a conserved U(1) charge, Q̂ (assumed to take a fixed
integer eigenvalue and thus replaceable by a c-number throughout)
with [Ĥ ,Q̂] = 0. We make no assumptions as to the origins of
the conserved charge, so for instance the systems we consider
could be built out of: spinless fermions or bosons, where Q is just
the conserved particle number; spinful fermions with SU(2) spin
symmetry, in which case Q is one-half the total fermion number
(because the two spin components may be treated independently);
or lattice spins with (at least) U(1) spin-rotational invariance, in
which case we may take the charge on lattice site r to be S+ Ŝzr ,
where S and Ŝzr are its total spin and magnetization, and define Q
accordingly. Considering a finite system with Nc =N 3 unit cells,
we may then define the filling to be the charge per unit cell, that is,
ν=Q/Nc, which will be held fixed in the thermodynamic limit. We
impose periodic boundary conditions that identify r and r+Nai.
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in Fig. 2a. Here, both the probe and the source are inserted into
the sample via the vertical air tubes indicated in blue in Fig. 1c.
The point source is located 4 cm away from the measurement
plane, and therefore the sound waves measured along the plane
carry both in-plane and out-of-plane momenta. We apply spatial
Fourier transforms to the measured complex acoustic field dis-
tributions, and hence obtain the projected bulk bandstructure
shown in Fig. 2c. For comparison, the numerically calculated
projected band diagram is shown in Fig. 2d. As can be seen, there
is a good quantitative agreement between experimental and
numerical results, and the projections of the nodal surface and
Weyl points are clearly visible in both sets of results.

Next, we probe for surface waves at a boundary between the
acoustic crystal and acrylic board. The experimental configura-
tion is shown in Fig. 3a. In the results shown in Fig. 3b, and the
corresponding numerical results of Fig. 3c, we observe a family of
surface states in the 6.0 to 8.0 kHz frequency range (see Fig. 1e).
Note that the slight difference between the measured (Fig. 3b) and
simulated (Fig. 3c) results is due to the experimental error caused
by a limited resolution in momentum space. The numerical
isofrequency plots in Fig. 3d, f indicate that there are two surface
states that emanate from the projected nodal surface, each
connecting to one of the two projected Weyl cones. This is
consistent with the aforementioned fact that the nodal surface
possesses a nontrivial topological charge of +2. Note that due to
the time-reversal symmetry preserved in our system, we have
employed the inversion symmetry operator to make the measured
dispersion more symmetric. The experimental results, shown in
Fig. 3e, g, are in good agreement. Besides, due to the limited
accuracy of the fabrication and measurement, there are slight
differences between the simulated and measured results. As the

frequency decreases and the corresponding wavelength increases,
the acoustic dispersion becomes more insensitive to the details.
Therefore, the agreement between simulation and measured data
look better at lower frequencies.

Finally, we probe the robustness of the Fermi-arc-like surface
states. As indicated in Fig. 4a, iron rods of radius 1.5 mm are
inserted into the vertical air tubes in a region of the lattice
adjacent to the boundary with the acrylic board. The iron rods
block the flow of sound within the affected tubes, which are the
principal route over which energy can pass between different
layers of the structure (see Fig. 1c); hence, they should have a
dramatic effect on the acoustic modes. Surface waves are then
launched from one side of the disorder region, and the sound
pressure is measured along the y= 0 mm plane. The results in
Fig. 4b clearly show the surface waves passing through the
disorder region. A spatial Fourier transform is applied to these
results, producing the momentum space plot shown in Fig. 4c.
This reveals that the acoustic waves are predominantly concen-
trated in the forward direction, with negligible back-reflection
from the disorder region. It can be well explained as follows: in
our experiment, the excitation is optimized and almost only the
open-arc surface states with kz located in [0.1π/pz, 0.75π/pz] are
excited at 6.45 kHz. In this range, one can view each kx, ky plane
for a fixed kz (preserved as a result of translational symmetry
along the z axis) as a 2D Chern insulator15 (see Fig. 3d, e).
Therefore, the back-reflection is strongly suppressed.

Discussion
We have experimentally observed a twofold topological nodal
surface stabilized by the symmetries of a 3D non-symmorphic
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Fig. 1 A 3D artificial acoustic crystal with a topological nodal surface and two Weyl points. a, b Perspective and top views of the fabricated 3D acoustic
crystal sample, consisting of 23 × 13 × 20 unit cells. The dashed hexagon in (b) denotes a unit cell. c Schematic of a unit cell. The background is solid resin,
and blue, red, and green regions represent hexagonal air tubes which have identical cross-sectional profiles. Here, h= 15 mm, r= 11.55 mm, and t= 2 mm.
d, e 3D Brillouin zone and bandstructure of the acoustic crystal. The bands enclosed by the green dashes form the topological nodal surface, and red dots
indicate the two additional Weyl points. The horizontal red lines indicate the topologically nontrivial frequency range where Fermi-arc-like surface states
can exist. (f) 2D band structures around the Weyl points and the topological nodal surface. Each Weyl point has a topological charge of −1, and the
topological nodal surface has a topological charge of +2, revealed via our numerical calculations (see Supplementary Note 1)
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acoustic crystal. Our results clearly demonstrate that the nodal
surface carries a topological charge of 2, and therefore con-
stitutes the first realization of topologically charged band
degeneracy beyond the previously realized Weyl points and
their variants. We observe topological bulk-edge correspon-
dence in the form of paired Fermi-arc-like surface states, which
connect the topological nodal surface to two different Weyl
points. The present acoustic crystal provides an excellent
platform for studying the topological nodal surface phenom-
enon since the surface-state arcs exist over a relatively broad
(~20%) frequency range. In future work, similar acoustic
crystals may be used to explore other types of band degen-
eracies. It would be interesting to perform a detailed study of
the topological nodal surface states, due to the possibility of
realizing exotic one-way chiral zero modes that cannot be
achieved with standard Weyl points40,41.

Methods
Numerical methods. All simulations are performed in the acoustic module of
commercial finite element method software COMSOL Multiphysics. Due to the
large impedance difference between air and the photosensitive resin the surfaces of
the resin region are simulated as hard boundaries. Besides, due to the limited sound
pressure in our experiment, the nonlinear effects are negligible, as manifested in
previous works9,19,21. The air density is 1.18 kg m−3 and the speed of sound is 343
m s−1. To calculate the bulk dispersion of the unit cell, periodic boundary con-
ditions are applied in all directions. To calculate the surface wave modes, periodic
boundary conditions are applied in the x and z directions, with a hard boundary in
the y-direction. The simulations use only 10 unit cells in the y-direction, which is
sufficient since the surface waves are extremely well confined.

Sample fabrication. The sample is manufactured via an additive manufacturing
technique (stereolithography). The material is photosensitive resin with modulus
2880MPa and density 1.10 g cm−3.

Experimental setup. In the surface-state measurement, a square acrylic plate
(length of 500 mm), whose surfaces act as hard boundaries, covers the right side of
the sample. A balanced armature speaker (radius of about 1 mm) driven by a power
amplifier, working as a broadband sound source, is placed at the center of the
interface between the acrylic plate and the sample. For the bulk state measurement,
the broadband sound signal is launched from a narrow tube (radius of about 1.5
mm and length of about 200 mm), which penetrates into the sample from sample’s
bottom. The distance between the tube and the right surface is about 100 mm.

To measure acoustic pressure fields, two microphones (radius of about 3.2 mm,
Brüel&Kjær Type 4961) are separately placed in a sealed sleeve with a tube (radius
of 1 mm and length of 350 mm) that penetrates deep into the sample During each
measurement, microphone 1 is scanned point-by-point through one of the vertical
air holes of the structure, to detect the input acoustic signal. Microphone 2 is fixed
towards the sound source to detect the reference acoustic signal. The scanning steps
in the x and z directions are 20 mm and 15mm, respectively. The distances
between the measured plane and the right surface of the sample are about 5 mm
and 140mm for the surface and bulk states, respectively. Both the amplitude and
phase of the acoustic pressure field are recorded by Brüel&Kjær 3160-A-022
module. The bulk and surface-state dispersions are obtained by applying Fourier
transform to the measured complex acoustic pressure fields.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon request.

Received: 31 May 2019; Accepted: 30 October 2019;

a
Probe

Source

xy
z

Acoustic
crystal 

–Max

Max

4

6

8

F
re

qu
en

cy
 (

kH
z)

Numerical dispersiondMeasured dispersion Max

0

c

2

10

12

Wave vector
MΓ Y Γ

4

6

8

F
re

qu
en

cy
 (

kH
z)

2

10

12

Γ

X

Y
M

K′

K

Γ

H

A

kxky

kz

Projection of
the nodal surface

X
Wave vector

MΓ Y Γ X

Projection of
 the Weyl point

Projection of
the nodal surface

Projection of
the Weyl point 

b

Fig. 2 Observation of a topological nodal surface and Weyl points. a Schematic of the experimental setup. The sound pressure field distribution is measured
along an x–z plane passing through the middle of the sample, with the source located 4 cm away from the plane in the y-direction. b Projection of the
Brillouin zone onto the 2D measurement plane. The green plane (line) and red dots indicate the projected nodal surface and Weyl points, respectively. The
red lines denote the surface-state arcs that connect the topological nodal surface to each Weyl point. c, dMeasured and simulated projected band spectra.
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in Fig. 2a. Here, both the probe and the source are inserted into
the sample via the vertical air tubes indicated in blue in Fig. 1c.
The point source is located 4 cm away from the measurement
plane, and therefore the sound waves measured along the plane
carry both in-plane and out-of-plane momenta. We apply spatial
Fourier transforms to the measured complex acoustic field dis-
tributions, and hence obtain the projected bulk bandstructure
shown in Fig. 2c. For comparison, the numerically calculated
projected band diagram is shown in Fig. 2d. As can be seen, there
is a good quantitative agreement between experimental and
numerical results, and the projections of the nodal surface and
Weyl points are clearly visible in both sets of results.

Next, we probe for surface waves at a boundary between the
acoustic crystal and acrylic board. The experimental configura-
tion is shown in Fig. 3a. In the results shown in Fig. 3b, and the
corresponding numerical results of Fig. 3c, we observe a family of
surface states in the 6.0 to 8.0 kHz frequency range (see Fig. 1e).
Note that the slight difference between the measured (Fig. 3b) and
simulated (Fig. 3c) results is due to the experimental error caused
by a limited resolution in momentum space. The numerical
isofrequency plots in Fig. 3d, f indicate that there are two surface
states that emanate from the projected nodal surface, each
connecting to one of the two projected Weyl cones. This is
consistent with the aforementioned fact that the nodal surface
possesses a nontrivial topological charge of +2. Note that due to
the time-reversal symmetry preserved in our system, we have
employed the inversion symmetry operator to make the measured
dispersion more symmetric. The experimental results, shown in
Fig. 3e, g, are in good agreement. Besides, due to the limited
accuracy of the fabrication and measurement, there are slight
differences between the simulated and measured results. As the

frequency decreases and the corresponding wavelength increases,
the acoustic dispersion becomes more insensitive to the details.
Therefore, the agreement between simulation and measured data
look better at lower frequencies.

Finally, we probe the robustness of the Fermi-arc-like surface
states. As indicated in Fig. 4a, iron rods of radius 1.5 mm are
inserted into the vertical air tubes in a region of the lattice
adjacent to the boundary with the acrylic board. The iron rods
block the flow of sound within the affected tubes, which are the
principal route over which energy can pass between different
layers of the structure (see Fig. 1c); hence, they should have a
dramatic effect on the acoustic modes. Surface waves are then
launched from one side of the disorder region, and the sound
pressure is measured along the y= 0 mm plane. The results in
Fig. 4b clearly show the surface waves passing through the
disorder region. A spatial Fourier transform is applied to these
results, producing the momentum space plot shown in Fig. 4c.
This reveals that the acoustic waves are predominantly concen-
trated in the forward direction, with negligible back-reflection
from the disorder region. It can be well explained as follows: in
our experiment, the excitation is optimized and almost only the
open-arc surface states with kz located in [0.1π/pz, 0.75π/pz] are
excited at 6.45 kHz. In this range, one can view each kx, ky plane
for a fixed kz (preserved as a result of translational symmetry
along the z axis) as a 2D Chern insulator15 (see Fig. 3d, e).
Therefore, the back-reflection is strongly suppressed.

Discussion
We have experimentally observed a twofold topological nodal
surface stabilized by the symmetries of a 3D non-symmorphic
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Fig. 1 A 3D artificial acoustic crystal with a topological nodal surface and two Weyl points. a, b Perspective and top views of the fabricated 3D acoustic
crystal sample, consisting of 23 × 13 × 20 unit cells. The dashed hexagon in (b) denotes a unit cell. c Schematic of a unit cell. The background is solid resin,
and blue, red, and green regions represent hexagonal air tubes which have identical cross-sectional profiles. Here, h= 15 mm, r= 11.55 mm, and t= 2 mm.
d, e 3D Brillouin zone and bandstructure of the acoustic crystal. The bands enclosed by the green dashes form the topological nodal surface, and red dots
indicate the two additional Weyl points. The horizontal red lines indicate the topologically nontrivial frequency range where Fermi-arc-like surface states
can exist. (f) 2D band structures around the Weyl points and the topological nodal surface. Each Weyl point has a topological charge of −1, and the
topological nodal surface has a topological charge of +2, revealed via our numerical calculations (see Supplementary Note 1)
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in Fig. 2a. Here, both the probe and the source are inserted into
the sample via the vertical air tubes indicated in blue in Fig. 1c.
The point source is located 4 cm away from the measurement
plane, and therefore the sound waves measured along the plane
carry both in-plane and out-of-plane momenta. We apply spatial
Fourier transforms to the measured complex acoustic field dis-
tributions, and hence obtain the projected bulk bandstructure
shown in Fig. 2c. For comparison, the numerically calculated
projected band diagram is shown in Fig. 2d. As can be seen, there
is a good quantitative agreement between experimental and
numerical results, and the projections of the nodal surface and
Weyl points are clearly visible in both sets of results.

Next, we probe for surface waves at a boundary between the
acoustic crystal and acrylic board. The experimental configura-
tion is shown in Fig. 3a. In the results shown in Fig. 3b, and the
corresponding numerical results of Fig. 3c, we observe a family of
surface states in the 6.0 to 8.0 kHz frequency range (see Fig. 1e).
Note that the slight difference between the measured (Fig. 3b) and
simulated (Fig. 3c) results is due to the experimental error caused
by a limited resolution in momentum space. The numerical
isofrequency plots in Fig. 3d, f indicate that there are two surface
states that emanate from the projected nodal surface, each
connecting to one of the two projected Weyl cones. This is
consistent with the aforementioned fact that the nodal surface
possesses a nontrivial topological charge of +2. Note that due to
the time-reversal symmetry preserved in our system, we have
employed the inversion symmetry operator to make the measured
dispersion more symmetric. The experimental results, shown in
Fig. 3e, g, are in good agreement. Besides, due to the limited
accuracy of the fabrication and measurement, there are slight
differences between the simulated and measured results. As the

frequency decreases and the corresponding wavelength increases,
the acoustic dispersion becomes more insensitive to the details.
Therefore, the agreement between simulation and measured data
look better at lower frequencies.

Finally, we probe the robustness of the Fermi-arc-like surface
states. As indicated in Fig. 4a, iron rods of radius 1.5 mm are
inserted into the vertical air tubes in a region of the lattice
adjacent to the boundary with the acrylic board. The iron rods
block the flow of sound within the affected tubes, which are the
principal route over which energy can pass between different
layers of the structure (see Fig. 1c); hence, they should have a
dramatic effect on the acoustic modes. Surface waves are then
launched from one side of the disorder region, and the sound
pressure is measured along the y= 0 mm plane. The results in
Fig. 4b clearly show the surface waves passing through the
disorder region. A spatial Fourier transform is applied to these
results, producing the momentum space plot shown in Fig. 4c.
This reveals that the acoustic waves are predominantly concen-
trated in the forward direction, with negligible back-reflection
from the disorder region. It can be well explained as follows: in
our experiment, the excitation is optimized and almost only the
open-arc surface states with kz located in [0.1π/pz, 0.75π/pz] are
excited at 6.45 kHz. In this range, one can view each kx, ky plane
for a fixed kz (preserved as a result of translational symmetry
along the z axis) as a 2D Chern insulator15 (see Fig. 3d, e).
Therefore, the back-reflection is strongly suppressed.

Discussion
We have experimentally observed a twofold topological nodal
surface stabilized by the symmetries of a 3D non-symmorphic
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Fig. 1 A 3D artificial acoustic crystal with a topological nodal surface and two Weyl points. a, b Perspective and top views of the fabricated 3D acoustic
crystal sample, consisting of 23 × 13 × 20 unit cells. The dashed hexagon in (b) denotes a unit cell. c Schematic of a unit cell. The background is solid resin,
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can exist. (f) 2D band structures around the Weyl points and the topological nodal surface. Each Weyl point has a topological charge of −1, and the
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acoustic crystal. Our results clearly demonstrate that the nodal
surface carries a topological charge of 2, and therefore con-
stitutes the first realization of topologically charged band
degeneracy beyond the previously realized Weyl points and
their variants. We observe topological bulk-edge correspon-
dence in the form of paired Fermi-arc-like surface states, which
connect the topological nodal surface to two different Weyl
points. The present acoustic crystal provides an excellent
platform for studying the topological nodal surface phenom-
enon since the surface-state arcs exist over a relatively broad
(~20%) frequency range. In future work, similar acoustic
crystals may be used to explore other types of band degen-
eracies. It would be interesting to perform a detailed study of
the topological nodal surface states, due to the possibility of
realizing exotic one-way chiral zero modes that cannot be
achieved with standard Weyl points40,41.

Methods
Numerical methods. All simulations are performed in the acoustic module of
commercial finite element method software COMSOL Multiphysics. Due to the
large impedance difference between air and the photosensitive resin the surfaces of
the resin region are simulated as hard boundaries. Besides, due to the limited sound
pressure in our experiment, the nonlinear effects are negligible, as manifested in
previous works9,19,21. The air density is 1.18 kg m−3 and the speed of sound is 343
m s−1. To calculate the bulk dispersion of the unit cell, periodic boundary con-
ditions are applied in all directions. To calculate the surface wave modes, periodic
boundary conditions are applied in the x and z directions, with a hard boundary in
the y-direction. The simulations use only 10 unit cells in the y-direction, which is
sufficient since the surface waves are extremely well confined.

Sample fabrication. The sample is manufactured via an additive manufacturing
technique (stereolithography). The material is photosensitive resin with modulus
2880MPa and density 1.10 g cm−3.

Experimental setup. In the surface-state measurement, a square acrylic plate
(length of 500 mm), whose surfaces act as hard boundaries, covers the right side of
the sample. A balanced armature speaker (radius of about 1 mm) driven by a power
amplifier, working as a broadband sound source, is placed at the center of the
interface between the acrylic plate and the sample. For the bulk state measurement,
the broadband sound signal is launched from a narrow tube (radius of about 1.5
mm and length of about 200 mm), which penetrates into the sample from sample’s
bottom. The distance between the tube and the right surface is about 100 mm.

To measure acoustic pressure fields, two microphones (radius of about 3.2 mm,
Brüel&Kjær Type 4961) are separately placed in a sealed sleeve with a tube (radius
of 1 mm and length of 350 mm) that penetrates deep into the sample During each
measurement, microphone 1 is scanned point-by-point through one of the vertical
air holes of the structure, to detect the input acoustic signal. Microphone 2 is fixed
towards the sound source to detect the reference acoustic signal. The scanning steps
in the x and z directions are 20 mm and 15mm, respectively. The distances
between the measured plane and the right surface of the sample are about 5 mm
and 140mm for the surface and bulk states, respectively. Both the amplitude and
phase of the acoustic pressure field are recorded by Brüel&Kjær 3160-A-022
module. The bulk and surface-state dispersions are obtained by applying Fourier
transform to the measured complex acoustic pressure fields.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon request.
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Semi-classical electron motion & Landau quantisation

B=0
358 9 Elektronische Transporteigenschaften

B

Bild 9.28: Landau-Röhren des freien Elektronengases.
Die besetzten Zylinder werden durch die Fermi-Kugel
begrenzt. Ebenfalls dargestellt ist die Projektion der
Zylinder in die xy-Ebene.

Auf einem Kreis mit der Quantenzahl ! kondensieren die Zustände, die sich ohne
Magnetfeld in der kxky-Ebene in dem Kreisring befinden, der durch die Bedingung
k2

!−1/2 < k2
! ≤ k2

!+1/2 festgelegt ist. Die Fläche ∆S! = 2πm∗ωc/! des Kreisrings
ist unabhängig von der Quantenzahl. Da ohne Magnetfeld die Dichte der Zustände in
der kxky-Ebene bei einer quadratischen Probe der Kantenlänge L nach Abschnitt 8.1
durch $(2)

k = L2/4π2 gegeben ist, sind auf jedem Ring $(2)
k · 2πm∗ωc/! Plätze

vorhanden. Also weist jedes Landau-Niveau den Entartungsgrad

ge =
L2

2π

m∗ωc

!
=

e

h
L2B (9.70)

auf. Voraussetzung für die Ausbildung der Quantisierung, d.h. für eine zeitliche und
räumliche Festlegung der Phase der Wellenfunktion, sind mehrere ungestörte Umläufe.
Wie bei der Zyklotronresonanz muss daher für die Ausbildung wohldefinierter Zustän-
de die Bedingung ωcτ " 1 erfüllt sein, wobei τ wieder die mittlere Stoßzeit angibt.
Durch Stöße der Elektronen mit dem Gitter oder an Defekten werden die im Idealfall
unendlich dünnwandigen Zylinder verbreitert. Wird ein Elektron angeregt, z.B. bei der
Zyklotronresonanz, so erfolgt ein Übergang von einer Landau-Röhre zu einer Röhre
mit höherer Quantenzahl !. Übergänge sind natürlich nur an der Fermi-Fläche möglich,
da nur dort freie Zustände vorhanden sind.

9.3.3 Zustandsdichte im Magnetfeld

Die Quantisierung der Elektronenbewegung und die Entartung der Zustände im Ma-
gnetfeld hat erstaunliche Auswirkungen auf die Zustandsdichte und Magnetisierung

9.3 Elektronen im Magnetfeld 357

Eine eingehende Inspektion von (9.60) und des Lösungsansatzes zeigt, dass die
Operatoren für kx und ky nicht vertauschen und ihre Erwartungswerte damit nicht
mehr unabhängig voneinander festgelegt werden können. Dies bedeutet, dass das
Magnetfeld einen Zusammenbruch des bisher verwendeten Quantisierungsschemas
der Wellenvektoren verursacht. Die Größen kx und ky verlieren ihre Bedeutung als
gute Quantenzahlen. Ohne Magnetfeld sind die erlaubten Wellenvektoren gleichmäßig
im k -Raum verteilt, mit Magnetfeld liegen sie, wie in Bild 9.27b veranschaulicht, auf
Kreisen. Diese Darstellung, bei der wir als Koordinaten noch die Achsen mit den alten
Quantenzahlen kx und ky benutzt haben, ist jedoch nicht ganz korrekt. Die Zustände
auf den Kreisen sind nicht wirklich durch Punkte darstellbar, denn sie rotieren mit der
Kreisfrequenz ωc.
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Bild 9.27: Einfluss eines Magnetfelds auf die Eigenwerte der Wellenvektoren freier Elektronen in der
xy-Ebene. Die Komponente der Wellenvektoren in Feldrichtung wird nicht beeinflusst. a) Erlaubte
Wellenvektoren ohne Magnetfeld, b) erlaubte Wellenvektoren im Magnetfeld.

Stellen wir die erlaubten Zustände dreidimensional dar, so liegen sie im k -Raum
auf Zylinderoberflächen, den so genannten Landau-Röhren. Im allgemeinen Fall
wird die Form der Röhren von der Energiefläche E(k) bestimmt und kann dann
von der zylindrischen Form abweichen. Die Zustände, die ohne Magnetfeld erlaubt
sind, „kondensieren“ auf der nächstliegenden Röhre. Alle Zustände auf einer Röhre
sind bezüglich kx und ky entartet und besitzen die gleiche Quantenzahl ". Der
Wellenvektor in Richtung des Magnetfeldes wird dagegen nach wie vor durch die
geometrischen Randbedingungen vorgegeben. In Bild 9.28 sind die von Elektronen
besetzten Zylinder dargestellt. Die kugelförmige Begrenzung spiegelt die ursprünglich
vorhandene Fermi-Kugel wider.
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9.3 Elektronen im Magnetfeld 359

von Metallen. Betrachten wir nochmals Gleichung (9.64), welche die Energieeigen-
werte freier Elektronen im Magnetfeld beschreibt, so können wir uns bereits ein Bild
von der Zustandsdichte von zwei- und dreidimensionalen Systemen im Magnetfeld
machen. Das Magnetfeld führt in der xy-Ebene zu einer Quantisierung, bei der nur
noch die Energiewerte (! + 1/2) !ωc auftreten. In zweidimensionalen Systemen,
deren Zustandsdichte nach (8.9) konstant ist, resultiert daraus eine vollständige Quan-
tisierung der Zustände. In diesem Fall ist die Zustandsdichte, wie bei harmonischen
Oszillatoren, eine Summe von Delta-Funktionen (vgl. Bild 9.29a), deren Gewicht
durch den Entartungsgrad ge gegeben ist.
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Bild 9.29: Elektronische Zustandsdichte mit und ohne (gestrichelt) Magnetfeld. Die Spinaufspaltung
wurde bei dieser Darstellung nicht berücksichtigt. a) Zustandsdichte eines zweidimensionalen Systems,
b) Zustandsdichte eines dreidimensionalen Systems.

Natürlich macht sich auch in dreidimensionalen Proben die Quantisierung der Elek-
tronbewegung in der Zustandsdichte bemerkbar, deren Verlauf in Bild 9.29b gezeigt
ist. Ein Blick auf Bild 9.26, in dem das Energiespektrum der Elektronen in den
Subbändern zu sehen ist, und ein Vergleich mit Bild 8.5 machen diesen Verlauf
verständlich. Offensichtlich handelt es sich um eine Überlagerung von Zustandsdich-
ten der Form (8.18), die wir bei eindimensionalen Systemen angetroffen haben. Der
Abstand der Van-Hove-Singularitäten ist durch !ωc gegeben. Da sich durch das Ma-
gnetfeld zwar die Verteilung der Zustände, nicht aber deren Anzahl ändert, sind die
Flächen unter der Zustandsdichte ohne (gestrichelte Linie) und mit Feld (durchgezo-
gene Linie) gleich.

Viele thermodynamische Größen hängen eng mit der inneren Energie zusammen. Wie
wir gleich sehen werden, verändert ein Magnetfeld die innere Energie und beein-
flusst damit das Verhalten von Festkörpern. Betrachten wir zunächst die Verhältnisse
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der De-Haas-van-Alphén-Oszillation
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Die im Experiment gemessene Periode der Oszillation ist also proportional zu 1/SF,
der inversen Querschnittsfläche im k -Raum. Wie bei der Zyklotronresonanz tragen
auch hier praktisch nur Elektronen auf Extremalbahnen zum Messsignal bei.

In Bild 9.33a ist ein Messergebnis an Gold wiedergegeben, bei dem das Feld in
[111]-Richtung angelegt war. Deutlich zu erkennen ist, dass die Oszillation der Ma-
gnetisierung mit zwei unterschiedlichen Perioden erfolgt, die auf die Halsbahn H111

bzw. die Bauchbahn B111 zurückgeführt werden können. Aus den beiden Perioden
der De-Haas-van-Alphén-Oszillationen ergibt sich für Gold das Verhältnis 1:29 für
die Querschnittsflächen. Weiter findet man die Zahlenwerte SF = 1,5 · 1015 cm−2

für die Hals- und SF = 4,3 · 1016 cm−2 für die Bauchbahn. Liegt das Magnetfeld in
[100]-Richtung an, so fehlt der Beitrag der Halsbahn. Neben der in Bild 9.33b ein-
gezeichneten Bauchbahn B100 tritt noch die Rosettenbahn auf, deren Lage sich mit
Hilfe des periodischen Zonenschemas finden lässt. Führt man De-Haas-van-Alphén-
Messungen mit unterschiedlicher Orientierung der Probe durch, so lässt sich die Form
der Fermi-Fläche sehr gut rekonstruieren.
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Bild 9.33: De-Haas-van-Alphén-Effekt in Gold. a) Das Magnetfeld liegt in [111]-Richtung an. Die
niederfrequente Oszillation wird von der Halsbahn H111, die hochfrequente von der Bauchbahn B111

hervorgerufen. (Mit freundlicher Genehmigung von B. Lengeler, RWTH Aachen). b) Fermi-Fläche von
Gold. Die Halsbahn H111 wie auch beide Bauchbahnen B111 und B100 sind eingezeichnet.
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Fig. 5.1 The semiclassical orbit of a wave packet on a two-dimensional Fermi surface, in the
presence of an applied field B = Bẑ. a shows a Fermi surface having no dispersion along the
c-axis. b is a top view of a slice of k-space perpendicular to B. The shaded region shows occupied
states, and the dark region shows the area of k-space between two adjacent Landau levels. The
large dot indicates the center of a semi-classical wave-packet located at the Fermi surface. c shows
a cyclotron orbit of the semiclassical packet in real-space, with x and y measured from the center
of the orbit. (Note that the Landau levels are highly degenerate, and the classical orbit shown in (c)
is just one of many possible orbits that can be constructed [11].)

which we discuss in detail in Sect. 5.4, dHvA measurements can be used to fix the
parameters of a tight-binding fit to the electronic structure. In general this can place
strong constraints on model Hamiltonians for a strongly correlated electron system,
providing important input to theories of exotic electronic states. In the iron-pnictide
superconductors, quantum oscillation measurements have been very prominent in
this role [10].

To simplify subsequent mathematics, it is useful to start by considering an energy
band with no dispersion along the z-axis, such as would arise in a quasi-two-
dimensional metal composed of decoupled two-dimensional sheets. The Fermi sur-
face then consists of tubes parallel to the z-axis, such as that shown in Fig. 5.1a.

A semi-classical wave-packet on a two-dimensional Fermi surface, moving under
the influence of a uniform magnetic field as shown in Fig. 5.1, moves with velocity
vF (k) and has equation of motion

!k̇ = −evF (k) × B, where vF (k) =
1
!

∂ε(k)
∂k

, (5.1)

and !k is the crystal momentum. Since the Lorentz force is perpendicular to the
gradient of the energy, the wave-packet moves on a surface of constant energy, which

S. R. Julian, Solid-State Sciences 180, 137 (2015)

Key information contained in quantum oscillations

Reciprocal space trajectory
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Consider now the passage of successive Landau levels through the Fermi surface
of area A as the magnitude of the magnetic field, Bz , changes. If at a given field, Bn
say, leveln coincides with the Fermi energy so that, from (5.3), Bn = !A/2πe(n+γ ),
then level (n − 1) will have the same area when the field has increased to Bn−1 =
!A/2πe(n − 1 + γ ). From this we see that

#

(
1
B

)
≡ 1

Bn
− 1

Bn−1
= 2πe

!A
. (5.8)

At T = 0 K, the Fermi function dictates that only those states with energy less
than the Fermi energy can be occupied. Thus, with increasing magnetic field, as each
Landau level crosses the Fermi energy it will empty into states below εF . The passage
of consecutive Landau levels through εF will cause the density of states at the Fermi
surface to vary periodically as a function of 1/B. Consequently, all properties of the
system dependent on the density of states, such as the diamagnetic moment of the
conduction electrons in the de Haas-van Alphen effect, will oscillate. The oscillations
are periodic in 1/B, with corresponding frequency given by the Onsager equation

F = !A
2πe

. (5.9)

5.2.2 The Effect of Temperature and Scattering

Another powerful capability of quantum ocillation measurements is the determina-
tion of quasiparticle effective masses and scattering rates on a Fermi surface specific
basis. When applied to heavy fermion systems, such measurements have revealed
that, although LDA band-structure calculations can predict Fermi surface topologies
that are approximately correct, they typically predict effective masses that are much
too small [59], because they fail to account for many-body mass enhancements. In
some systems, the mass enhancement is found to be radically different on different
sheets of the Fermi surface [2, 32], and even to vary by a large amount over a sin-
gle sheet of Fermi surface [16], information which cannot be obtained from bulk
measurements such as specific heat which average over all of the Fermi surfaces in
a material. In other cases, the mass enhancement at high magnetic field has been
found to be spin-dependent [40, 55]. In strongly correlated oxide metals, Fermi-
surface-specific mass enhancements again provide an important guide to the nature
of many-body effects, e.g. [35].
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Fig. 5.2 The effect of electron-electron interactions and scattering on quantum oscillations. The
occupancy of the Landau levels is determined by the Fermi-Dirac function. The top panel shows
this function superposed on the Landau levels of a Fermi gas, which are a set of equally spaced
delta functions. When interactions are turned on, each Landau level is shifted by the real part of the
self-energy, and broadened to a Lorentzian by the imaginary part of the self energy (middle panel),
as described in the text. The set of Lorentzians can be analyzed into “harmonics”: the bottom panel
shows the p = 1 term. Integrating the product of this term with the Fermi function gives the p = 1
term in (5.17)

Here we give a simplified, intuitive, derivation of the temperature dependence of
the quantum oscillation amplitude that goes beyond the standard textbook treatment
to allow for both Fermi-liquid and weakly non-Fermi-liquid states [18, 42]. The main
steps in the calculation are illustrated in Fig. 5.2.

We start from a two-dimensional Fermi gas at constant chemical potential in an
applied magnetic field, for which the electrons condense onto Landau levels with
energies (n+ 1/2)!ωc + γ , where n is an integer, ωc = eB/me, and γ is a constant
phase factor [30]. The Landau levels are shown, superposed on the Fermi-Dirac
distribution function, in the top panel of Fig. 5.2. As the magnetic field increases,
!ωc increases and successive Landau levels cross the Fermi energy. We calculate the
temperature dependence of the electron number N for the energy band of interest at
constant chemical potential which for the Fermi gas is:

Onsager:
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Fig. 5.3 Calculated temperature damping factor X/sinhX for different quasiparticle masses at a
magnetic field of 10 T. Effective masses can vary enormously, from much less than 1me in semi-
conductors and in topological insulators, to over 100me in heavy fermion systems. The temperature
dependence of the quantum oscillation signal enables effective masses to be measured with high
accuracy. In materials with multiple extremal orbits (see below) the effective mass on different
orbits can be measured

to be the Fourier transform of the Fermi-Dirac distribution. If impurity damping
is included, all levels are broadened equally, so Σ ′′(iωn) = −!/2τ , where τ is
the scattering lifetime (including all scattering, with no preferential weight given
to large-angle scattering, so in general the quantum oscillation τ is shorter than the
transport τ ) giving the famous exponential “Dingle factor” damping

Rp,D ≡ e−2πp2/τ!ωc = e−pπrc/ l◦ (5.19)

where rc = !kF/eB is the cyclotron radius, and l◦ is the mean-free-path.
In a Fermi liquid, the frequency-dependent part of the self-energy (which adds to

the constant impurity scattering part) is Σ(ω) = −λω− iΓ ω2, so that the imaginary
part of the self-energy on the imaginary axis is Σ ′′(iωn) = −λωn+Γ ω2

n . To leading
order this is the same dependence on ωn as in the Fermi gas, so the oscillations
still follow an X/sinhX behaviour, but with a modified cyclotron frequency ωc =
eB/(1+λ)mb, equivalent to an enhanced mass m∗ = (1+λ)mb, as was first shown
by Bychkov and Gork’ov in 1962 [9]. The X/sinhX temperature dependence thus
allows quasiparticle effective masses to be obtained from the temperature dependence
of the amplitude, as illustrated in Fig. 5.3.

Equation (5.17) also allows for non-Fermi-liquid forms of the self-energy, as
explored in [41, 42, 62].
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Fig. 5.1 The semiclassical orbit of a wave packet on a two-dimensional Fermi surface, in the
presence of an applied field B = Bẑ. a shows a Fermi surface having no dispersion along the
c-axis. b is a top view of a slice of k-space perpendicular to B. The shaded region shows occupied
states, and the dark region shows the area of k-space between two adjacent Landau levels. The
large dot indicates the center of a semi-classical wave-packet located at the Fermi surface. c shows
a cyclotron orbit of the semiclassical packet in real-space, with x and y measured from the center
of the orbit. (Note that the Landau levels are highly degenerate, and the classical orbit shown in (c)
is just one of many possible orbits that can be constructed [11].)

which we discuss in detail in Sect. 5.4, dHvA measurements can be used to fix the
parameters of a tight-binding fit to the electronic structure. In general this can place
strong constraints on model Hamiltonians for a strongly correlated electron system,
providing important input to theories of exotic electronic states. In the iron-pnictide
superconductors, quantum oscillation measurements have been very prominent in
this role [10].

To simplify subsequent mathematics, it is useful to start by considering an energy
band with no dispersion along the z-axis, such as would arise in a quasi-two-
dimensional metal composed of decoupled two-dimensional sheets. The Fermi sur-
face then consists of tubes parallel to the z-axis, such as that shown in Fig. 5.1a.

A semi-classical wave-packet on a two-dimensional Fermi surface, moving under
the influence of a uniform magnetic field as shown in Fig. 5.1, moves with velocity
vF (k) and has equation of motion

!k̇ = −evF (k) × B, where vF (k) =
1
!

∂ε(k)
∂k

, (5.1)

and !k is the crystal momentum. Since the Lorentz force is perpendicular to the
gradient of the energy, the wave-packet moves on a surface of constant energy, which
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which we discuss in detail in Sect. 5.4, dHvA measurements can be used to fix the
parameters of a tight-binding fit to the electronic structure. In general this can place
strong constraints on model Hamiltonians for a strongly correlated electron system,
providing important input to theories of exotic electronic states. In the iron-pnictide
superconductors, quantum oscillation measurements have been very prominent in
this role [10].

To simplify subsequent mathematics, it is useful to start by considering an energy
band with no dispersion along the z-axis, such as would arise in a quasi-two-
dimensional metal composed of decoupled two-dimensional sheets. The Fermi sur-
face then consists of tubes parallel to the z-axis, such as that shown in Fig. 5.1a.

A semi-classical wave-packet on a two-dimensional Fermi surface, moving under
the influence of a uniform magnetic field as shown in Fig. 5.1, moves with velocity
vF (k) and has equation of motion

!k̇ = −evF (k) × B, where vF (k) =
1
!

∂ε(k)
∂k

, (5.1)

and !k is the crystal momentum. Since the Lorentz force is perpendicular to the
gradient of the energy, the wave-packet moves on a surface of constant energy, which

Real space trajectory

Effects of finite temperature
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Consider now the passage of successive Landau levels through the Fermi surface
of area A as the magnitude of the magnetic field, Bz , changes. If at a given field, Bn
say, leveln coincides with the Fermi energy so that, from (5.3), Bn = !A/2πe(n+γ ),
then level (n − 1) will have the same area when the field has increased to Bn−1 =
!A/2πe(n − 1 + γ ). From this we see that

#

(
1
B

)
≡ 1

Bn
− 1

Bn−1
= 2πe

!A
. (5.8)

At T = 0 K, the Fermi function dictates that only those states with energy less
than the Fermi energy can be occupied. Thus, with increasing magnetic field, as each
Landau level crosses the Fermi energy it will empty into states below εF . The passage
of consecutive Landau levels through εF will cause the density of states at the Fermi
surface to vary periodically as a function of 1/B. Consequently, all properties of the
system dependent on the density of states, such as the diamagnetic moment of the
conduction electrons in the de Haas-van Alphen effect, will oscillate. The oscillations
are periodic in 1/B, with corresponding frequency given by the Onsager equation

F = !A
2πe

. (5.9)

5.2.2 The Effect of Temperature and Scattering

Another powerful capability of quantum ocillation measurements is the determina-
tion of quasiparticle effective masses and scattering rates on a Fermi surface specific
basis. When applied to heavy fermion systems, such measurements have revealed
that, although LDA band-structure calculations can predict Fermi surface topologies
that are approximately correct, they typically predict effective masses that are much
too small [59], because they fail to account for many-body mass enhancements. In
some systems, the mass enhancement is found to be radically different on different
sheets of the Fermi surface [2, 32], and even to vary by a large amount over a sin-
gle sheet of Fermi surface [16], information which cannot be obtained from bulk
measurements such as specific heat which average over all of the Fermi surfaces in
a material. In other cases, the mass enhancement at high magnetic field has been
found to be spin-dependent [40, 55]. In strongly correlated oxide metals, Fermi-
surface-specific mass enhancements again provide an important guide to the nature
of many-body effects, e.g. [35].
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Abb. 9.41: (a) Bahn eines freien Elektrons imMagnetfeld. (b) Im periodischen Gitterpotenzial werden
die Bahnen an der Zonengrenze getrennt und man erhält offene Bahnen im 1. Band und geschlossene
Bahnen im 2. Band. In einem genügend starken Magnetfeld kann die Bahn aber wieder zurück auf die
ursprüngliche Bahn des freien Elektrons springen.

für das Zener-Tunneln benutzt werden, den wir hier nicht ableiten wollen.71 Beim Zener-
Tunneln kann ein elektrisches FeldEdas Tunneln durch einGebietmit einer Energielücke EL
hervorrufen, falls

e ∣E∣ a EF

E2
L

> 1 . (9.7.35)

Hierbei ist a die Gitterkonstante und EF die Fermi-Energie, die der kinetischen Energie des
Elektrons entspricht.

Wirmüssennunüberlegen,welcheGröße beimmagnetischenDurchbruchdemelektrischen
Feld E in (9.7.35) entspricht. Ein Elektron, das den Punkt A im wiederholten Zonenschema
erreicht, hat die Geschwindigkeit

v ∼ ħkF
m

, (9.7.36)

wobei der Fermi-Wellenvektor kF den Radius der Kreisbahn angibt. Dies gilt natürlich nur
näherungsweise an der Zonengrenze, da hier die Energiefläche durch die Existenz einer
Energielücke etwas gestört ist. Die Bewegung des Elektrons mit dieser Geschwindigkeit ver-
ursacht eine Lorentz-Kra" FL = −ev × B. Setzen wir diese der Kra" −eE durch ein äquiva-
lentes elektrisches Feld gleich, so erhalten wir das äquivalente elektrische Feld zu

∣E∣ ∼ ∣v × B∣ = vB . (9.7.37)

Dieses „elektrische Feld“ steht senkrecht zu v und kann ein Tunneln hervorrufen, wenn
(9.7.35) erfüllt ist, d. h. wenn gilt:

evBa EF

E2
L

≃ eħkFBa
m

EF

E2
L
≃ ħωc kFa

EF

E2
L
≃ ħωc EF

E2
L
> 1 . (9.7.38)

Hierbei habenwir kFa ≃ 1 gesetzt. Gleichung (9.7.38) ist das so genannteBlount-Kriterium72

für den magnetischen Durchbruch. Dieses kann für einige Metalle bereits bei Feldern in der
Größenordnung von einigen Tesla erfüllt sein.
71 siehe z. B. Principles of the!eory of Solids, J.M. Ziman, Cambridge University Press, Cambridge

(1972).
72 E. I. Blount, Bloch Electrons in a Magnetic Field, Phys. Rev. 126, 1636 (1962).
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Magnetic breakdown

region. If the FS is as shown schematically in fig. 7.3, Ho can be expressed
to a good approximation as

nhc(
Ho=—{ (7.14)

where I/a and l/b are the radii of curvature of the two FS sections at 1 and 2
and /cg is their separation. Since for the special case of almost free electrons
a + fc~ l//cg and kJkF ~ eg/( (/cg is essentially the same as the A/c of (7.2)), it
can easily be seen that for this case (7.14) is essentially the same as (7.8); a
more quantitative comparison shows indeed that (7.14) reduces exactly to
(7.13).

As already pointed out in the introduction, the importance of (7.7) and
(7.8) (or the more general form (7.13)) is that MB occurs much more readily
than had at first been supposed, since the Ho of the Blount criterion is eg/(
times the value originally suggested by Cohen and Falicov (1961). Even so,
it is only for extremely small energy gaps that MB can be observed in
reasonably modest magnetic fields. If for instance eg ~ 0.1 eV, typical of a
small gap at a zone boundary associated with a weak pseudopotential, (7.8)
gives Ho of order 100 kG. In fact in typical MB situations, such as the giant
orbit in Mg, Ho is found to be only a few kG, corresponding to eg ~ 0.02 eV.
As pointed out by Priestley, Falicov and Weiss (1963), this small gap may
plausibly be interpreted in terms of the lifting of an accidental degeneracy
due to spin-orbit coupling.

Fig. 7.3. Illustrating the breakdown region between two orbits on the
FS (after Chambers 1966). Essentially this is a generalized version of
fig. 7.2(6), with /cg replacing A/c; the radii of curvature at 1 and 2 are I/a and
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Magnetic breakdown

'forbidden' region, a fraction exp( — R A0/£) of the electrons will be able to
continue on the free electron path, without Bragg reflection, and this then is
the probability of magnetic breakdown.

The orders of magnitude of both A0 and £ can be estimated in terms of
the separation A/c between the two branches of the FS in the absence of
MB (fig. 1.2(b)). The order of magnitude of this A/c is given by

A/c//cF - eJC (7.2)

where eg is the energy gap at the zone boundary, £ the Fermi energy and kF

the radius of the free electron sphere.
Since the condition of Bragg reflection gives sin 0oc l//cF, it is plausible to

associate the range A0 over which appreciable Bragg reflection occurs with
the 'uncertainty' A/c specified by (7.2), and we have, apart from factors of
order unity

A0 - Ak/kF (7.3)

Similarly the extinction distance I; may plausibly be associated with A/c by

£ ~ 1/A/c (7.4)

We have also (for free electrons) that

R = VF/O)C = chkF/eH (7.5)

and

C = h2kH2m (7.6)

so that the probability P of MB can be expressed as

with the breakdown field, //0 , given by

H0~^El = JLlf (7.8)
eh C hcoc C

Thus the criterion for appreciable MB, i.e. H > Ho, is equivalent to (7.1).
Another simple argument is to treat MB as the magnetic analogue of

Zener breakdown (Kane 1960, Ziman 1964 p. 163), in which electrons
tunnel across an energy gap in an insulator or semiconductor under the
influence of an electric field. It was in fact shown by Blount (1962) that the
probability of MB in a weak field is governed by the same analysis as for
Zener breakdown, but with the electric force eE, replaced by the Lorentz
force evH/c.

These are essentially 'low field' arguments, since the magnetic field is
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DFT band structure of CoSi with SOC 7

FIG. S2. (a) DFT band structure of CoSi with SOC. Band degen-
eracies are marked by different colors. The Chern numbers of these
crossing are denoted by curly brackets {..} (see text for details of
notation). The trio of topological NPs is marked in red. The insets
(b)-(e) show close-up views of crossings (b) along �–X, (c) R–�, (d)
at R and (e) at �. Further close-up views along the high-symmetry
lines are are shown in Fig. S3.

bulk-boundary correspondence cannot be applied.

• For a filling up to band 2, the nodal plane does not
contribute a net topological charge. Therefore, we
checked whether the crossings on the high-symmetry
points and lines cancel out between them (see Fig. S3).
The fourfold point at M has multiplicity 3 and charge
�2. Hence, it contributes 3⌫2M = �6 (see Table SII).
Further, on the �–X line there is a Weyl point with mul-
tiplicity 6 and charge +1, giving 6⌫2�X,1 = 6. The Weyl
points on the �–R line cancel each other since ⌫2�R,1 +
⌫2�R,2 = �1 + 1 = 0. On the M–R line there are four-
fold crossings with multiplicity 6 and charge +2, yield-
ing 6⌫2MR = 12. Finally, on �–M there are Weyl points
with charge +1 and multiplicity 12, giving 12⌫2�M = 12.
Adding these contributions, the total charge of all de-
generacies on all high-symmetry lines and planes is
3⌫2M+6⌫2�X,1+6⌫2MR+12⌫2�M = �6+6+12+12 = 24,
which does not cancel. Thus, there must be a set of
additional uncompensated Weyl points away from the
high-symmetry points / lines, such that the doubling
theorem is satisfied. For example, there could be an ad-
ditional Weyl point at a generic position in the BZ with
charge �1 and multiplicity 24, giving 24⌫2generic = �24.
Indeed, in our DFT calculations we found an uncom-
pensated Weyl point at (�0.49,�0.23,�0.49)2⇡ (and
symmetry related points) with charge �1 and multiplic-
ity 24, which is sufficient to compensate the charges
along the high-symmetry lines. Fermi arcs, connecting
the here stated charges projected onto the surface BZ,
are possible for this filling, if a suitable termination can

be found, such that the band gap on paths between these
crossings remains open on the surface BZ.

• For a filling up to band 3, we find the lowest band of
the fourfold point at � to yield the charge ⌫3� = 3 (see
Table SII). On the �–X line there is one Weyl point
with charge -1 and multiplicity 6, giving 6⌫3�X = �6,
while on the �–R line there are three Weyl points, two
of which cancel each other, yielding 8⌫3�R,1 + 8⌫3�R,2 +
8⌫3�R,3 = �8 (see Fig. S3). Apart from these charges
there are no other crossings on high-symmetry lines
/ planes. Hence, the nodal plane must compensate
these charges, i.e., ⌫3npt = �⌫3� � 6⌫3�X � 8⌫3�R,1 �
8⌫3�R,2 � 8⌫3�R,3 = �3 + 6 + 8 = +11. Comparing
this value to the value obtained in a direct calculation of
the charge of the nodal plane, which is ⌫3npt = �13
(see Table SII), we infer that there must be an addi-
tional accidental Weyl point somewhere at a generic po-
sition in the BZ, with charge +1 and multiplicity 24,
giving 24⌫3generic = +24. Indeed, our DFT calcula-
tions show that there is an uncompensated Weyl point
at (�0.20,�0.46,�0.47)2⇡ with charge of +1 and a
multiplicity of 24, which is sufficient to compensate the
other charges.

• For filling up to band 4, the nodal planes do not
contribute any topological charge, as an even num-
ber of bands is filled. We have therefore confirmed
that the charges of the high-symmetry points and high-
symmetry lines cancel each other. For the fourfold point
at � we need to add up the charges from bands 3 and 4,
giving ⌫3� + ⌫4� = 4, while the sixfold degeneracy at
R contributes a charge of ⌫4R = �4. Noting that there
are no other crossings on high-symmetry points / lines
that contribute, we find that the sum of these charges
vanishes, ⌫3� + ⌫4� + ⌫4R = 4 � 4 = 0, in agreement
with the fermion doubling theorem. The four resulting
Fermi arcs connecting � and R bulk states can be seen
in Ref. [14].

• For filling up to band 5, we find that the fourfold point
at � gives a total charge of +3 of bands 3, 4, and 5,
i.e., ⌫3� + ⌫4� + ⌫5� = 3. On the �–X line there is a
movable Weyl point with charge -1 and multiplicity 6,
resulting in a charge 6⌫5�X = �6. On the �–R line
there is a crossing very close to R contributing a charge
8⌫5�R = 8. Since an odd number of bands is filled, the
point crossings at M and R within the nodal plane do
not contribute any charge. Hence, the nodal plane must
compensate these charges, i.e., ⌫5npt = �⌫3��⌫4��⌫5��
6⌫5�X � 8⌫5�R = �3 + 6 � 8 = �5. Since this value
agrees with the value obtained from direct calculations
(see Table SII), we conclude that there are no additional
uncompensated Weyl points at generic positions within
the BZ.

• For filling up to band 6, the sixfold crossing at R con-

6

ial, i.e., ⌫̃3npt = 0. This conjecture is in perfect agreement
with the direct calculation of the Chern numbers of the nodal
planes, using the method described in Sec. I B 2. Moreover,
from our DFT calculations we find that the nodal planes at
higher energies have the charges (⌫̃5npt, ⌫̃

7
npt, ⌫̃

9
npt, ⌫̃

11
npt) =

(28,�24, 8, 80). It is remarkable that some of the trios of
nodal planes in CoSi carry such high Chern numbers, which
are likely to be among the largest reported ever for any real
material.

E. CoSi with spin-orbit coupling

We turn now to the properties of CoSi when taking into ac-
count the effects of SOC. This corresponds to the properties
of the real material as investigated experimentally by means
of Shubnikov-de Haas spectroscopy reported in the main text.
We note that the SdH data are sensitive to SOC-induced band
splitting. The SOC renders the band topology of CoSi consid-
erably more complicated, as it increases the number of bands
and leads to numerous accidental crossings between the spin-
split bands. Therefore, on the one hand, the results discussed
in the previous section are of limited use, as the additional ac-
cidental crossings change the topological charges of the nodal
planes. On the other hand, since previous experimental studies
reported in the literature were analyzed without account of the
effects of SOC and the presence of nodal planes, the analysis
summarized in Sec. I D above represents an important point of
reference.

In stark contrast to the band structure without SOC and as
the main difference, the presence of SOC enforces a non-zero
topological charge of the nodal planes by symmetry alone [2,
13]. This differences originates from a fourfold point or a
single Weyl point at � with an odd topological charge (see
Table SI), which can only be compensated by the trio of nodal
planes. Namely, all other possible band crossings contributing
to the charge of the NPs have even multiplicity, which cannot
cancel the odd contribution from the crossing at �. Hence,
with SOC all trios of nodal planes must be topological.

Band crossings & Chern numbers in Quantum Espresso —
We now address all topological crossings on high-symmetry
points and along high-symmetry lines for the eight bands be-
tween -0.5 eV and 1 eV above the global gap as shown in
Figs. S2 and S3. The bands are numbered consecutively from
low to high energy, starting from n = 1 for the band above
the global band gap at �0.5 eV. We used DFT to compute
the Abelian and non-Abelian Chern numbers of these cross-
ings directly and check for each band, whether the topologi-
cal charges (Chern numbers) cancel out in the entire BZ, as
required by the Nielsen-Ninomiya fermion doubling theorem.
If the charges of the crossings on high-symmetry points and
lines do not cancel out for a given filling, there must be addi-
tional uncompensated accidental crossings, somewhere away
from the high-symmetry lines, such that the doubling theorem
is satisfied.

While pursuing such an assessment, it is important to note

Band index � M R NP
1 +1 - - -1
2 -1 -2 - +1
3 +3 - - -13
4 +1 +2 -4 +13
5 -1 - - -5
6 -3 +2 0 +5
7 -3 - - -1
8 -1 -2 +4 +1

TABLE SII. Topological charges, i.e., Chern numbers, obtained
from the DFT calculations for the eight bands of CoSi with SOC
above the global band gap, between roughly �0.5 eV and 1 eV. The
second, third, and fourth columns give the topological charges of the
point crossings at � (twofold or fourfold), at M (fourfold), and at R
(sixfold), respectively. As R and M are situated on twofold degen-
erate NPs, their Chern numbers are calculated with the non-Abelian
Berry curvature for every other band index, since for odd fillings the
Chern number is not well defined. The fifth column gives the topo-
logical charge of the trio of NPs, as computed from the DFT (see
Sec. I B 2).

that the fermion doubling theorem must be satisfied for the
sum of all topological charges (i.e., Abelian or non-Abelian
Chern numbers) that can be computed for a given filling. For
example, for the fourfold degeneracy at M formed by the
bands 1 to 4, the charge must cancel when bands 1 and 2 are
filled, and also when all bands 1 to 4 are filled. However,
when only bands 1 (or bands 1 to 3) are filled, the Chern num-
ber cannot be computed, since band 1 is degenerate with band
2 (band 3 is degenerate with band 4) on the nodal plane.

The relevant high-symmetry points that must be considered
are the time-reversal invariant momenta (TRIMs) listed in Ta-
ble SI. The degeneracies at these TRIMs are: twofold and
fourfold points at �, fourfold points at M, and sixfold points
at R. The Chern numbers of these degeneracies for each of the
eight bands (fillings) are listed in Table SII.

In the following, we consider in addition the accidental
crossings on the four high-symmetry lines �–X, �–M, �–R,
and M–R. These are shown in Fig. S3 and their Chern num-
bers are indicated by the color of the open circles. Adding
up the Chern numbers of all of these crossings for each of the
eight bands (fillings) and comparing the resulting sum with
the topological charge of the trio of nodal planes as computed
directly from the DFT (6th column of Table SII) we find:

• For band 1 we find that there is only one point cross-
ing, namely the Weyl point at �, which contributes
the charge ⌫1� = +1. Thus due to the fermion dou-
bling theorem the trio of nodal planes must have charge
⌫1npt = �1. This is in perfect agreement with a di-
rect calculation of the charge of the nodal plane (see
Table SII), suggesting that there are no other uncom-
pensated accidental crossings between bands 1 and 2.
For this filling and in general all odd fillings, all possi-
ble surface terminations lead, due to the NP trios, to a
closed band gap at every point in the BZ, so no Fermi
arcs are able to form in between these band pairs, as the



Generic tight-binding model of SG198 10

� X R � M R

En
er
gy

(a
.u
.)

(a)
NP NP

NP NP

� X R � M R

En
er
gy

(a
.u
.)

(b)

FIG. S4. Generic tight-binding models of SG 198 with up to next-
nearest neighbor hoppings. (a) Band structure without SOC. (b)
Band structure with SOC.

nondegenerate band at � only, which is sufficient for a qual-
itative comparison to CoSi in the vicinity of the Fermi en-
ergy. We find the Chern numbers of the trio of nodal planes
to be (⌫1npt,TB, ⌫

3
npt,TB) = (�4, 0) where spin degeneracy is in-

cluded. This corresponds to the expectation; cf Sec. I D. Here,
the charge of the threefold degeneracy at � must be compen-
sated by the nodal plane, where the upper nodal plane is not
associated with any charged crossing.

In our second model we study SG 198 with a spinful repre-
sentation, i.e. with SOC, resulting in eight bands, which com-
bine into four nodal planes. As shown above for CoSi, the �
point exhibits a twofold and a fourfold band crossing. For the
generic tight-binding model the accidental crossings do not
influence the nodal planes and thus we obtain the Chern num-
bers (⌫1npt,TB, ⌫

3
npt,TB, ⌫

5
npt,TB, ⌫

7
npt,TB) = (1, 3, 3,�1). The first

and fourth nodal planes receive their charges from an uncom-
pensated Weyl point at �, whereas for the second and third
nodal plane the fourfold point at � enforces a charge of 3.

In conclusion, the arguments of Sec. I E regarding the min-
imal topological charges of nodal planes in CoSi can be re-
produced to a large extent in generic tight-binding models
of SG 198 hence are expected to occur also in other non-
magentic representatives of SG 198, such as RhSi and PdGa.

no SOC

with SOC
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Shubnikov - de Haas Oscillations in CoSi



SdH Oscillations - Remarks on sample quality
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FIG. S6. Analysis of a possible asymmetry of the FFT peaks. (a) Typical FFT spectra of two different samples with different RRR, where
sample 2 exhibits the higher RRR. (b) Detailed view of the third order harmonics of sample 1. A clear splitting of the frequencies is visible.
(c) Detailed view of the third order harmonics of sample 2. No splitting visible suggesting that the asymmetry is not due to an intrinsic splitting
of oscillation frequencies.

splitting of the main frequencies and concluded that no split-
ting larger than 2.2 T is present in their samples. In summary,
while the origin of two close oscillation frequencies around ↵
and � in samples of lower RRR deserves further investigation,
we consider it not to be an intrinsic property of the electronic
structure of single crystal CoSi since it is not detectable in the
sample exhibiting the highest RRR.

While the sample dependence of the putative asymmetry
of the FFT peaks provides strong empirical evidence against
an intrinsic frequency splitting due to SOC, it is nonetheless
instructive to consider the possible implications for the ex-
perimental behavior, if there would be such a small SOC-
induced frequency splitting of the frequency branches ↵ and
� in which the band connectivity at the NPs is neglected.

We begin by noting that the frequencies presented in
Ref. [18] are roughly consistent with the frequencies we ob-
served in our measurements. This is highlighted in Fig. S7 (a)
and (b) where we reproduce the FFTs of Wang et al. for B k
[100] and B k [110] and the FFTs performed with the same
rectangular window function Wang et al. used on our data as
recorded in sample 1. Here the corresponding peaks reported
by Wang et al. and in our data coincide. Moreover, as shown
in Fig. S7 (c) for the selected field orientations reported by
Wang et al. the frequencies are in excellent agreement with
the angular dispersion we observed, highlighting the overall
agreement.

It follows that the arguments given in the main text in
Fig. 4 apply equally well for the data of Wang et al.. Fo-
cusing on the case of extremal orbits perpendicular to [110]
depicted in Fig. 4 (c) in the main text and ignoring the correct

band connectivity at the NPs, the DFT calculation predicts
two pairs of extremal orbits leading to four distinct frequency
branches away from the [100]. Close to [100], these branches
would merge pairwise, while at the same time two additional
branches would arise from the maximal orbits running on the
ridges of the constrictions of the second and fourth FS sheet.

The frequency difference between the minimal and max-
imal orbits close to [100] is indeed 8T as calculated in
Ref. [18]. However, the minimal and maximal orbits on each
sheet quickly merge into one frequency when rotating away
from [100], i.e., when the orbit is not running inside a ridge
anymore. At the same time, the two-fold degeneracy of the R-
centered orbits would be lifted, leading to a branch splitting
of 60 T to 85 T over most of the angular range. In contrast,
the separation of frequencies forming the asymmetrical peaks
is about 10 T over the whole angular range in our sample ex-
hibiting the frequency splitting as well as in the data reported
in [18]. That is, the measured frequency splitting, if present at
all, is almost an order of magnitude smaller than the splitting
expected in the scenario proposed in Ref. [18], showing that
this scenario is inconsistent with the data.

We finally note that the extracted effective masses of the
two main frequencies reported in [18] differ by a factor of al-
most 3 from the values obtained in [16, 17] and the consistent
values found from our data.

To conclude, the detection of two dominant oscillation fre-
quencies related to the FS sheets centered at the R-point in
CoSi is a clear signature of SOC-induced band splitting by
⇠ 15meV and the presence of four FS sheets when the cor-
rect band connectivity at the NPs is taken into account. As
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FIG. S7. Comparison of our FFT data with the data of Wang et al. (Ref. [18]). (a) and (b) FFT data of Wang et al. (red) and our
data (black) measured on sample 1 and analyzed in a rectangular window ranging from 1/7 to 1/14 T�1 with B along [100] and [110],
respectively. (b) Angular dispersion of the frequency branches associated with the R-centered FS pockets. The FFT-peak positions (symbols)
given in Ref. [18] are consistent with our data (grayscale).

emphasized above, the small splitting of the two dominant fre-
quencies observed in CoSi samples with lower RRR deserves
further investigation, but does not appear to be an intrinsic
property of the Fermi surface of CoSi.
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according to Chambers formula [9, 26]. Shown in Fig. 4
are the cyclotron orbits for selected field orientations
and comparisons of the experimental frequency branches
(gray scale) with the calculated behaviors (colored lines)
[Fig. 3(a-d)].

Without SOC and NPs, representing the interpretation
in Refs. 13 and 14, there are two spin-degenerate bands
crossing EF near R. For B k [100] the two extremal orbits
coincide [Fig. 4 (a)], resulting in a single SdH frequency.
A tiny splitting of the upper branch close to [100], re-
flecting the constrictions of the red FS sheet in Fig. 2 (a),
vanishes quickly under field rotation, whereas the main
branch splits into a dispersive inner and outer orbit in
stark contrast with experiment.

Further, neglecting SOC but taking into account the
band connectivity due the NPs [Fig. 4 (b),] the extremal
cross-sections of the two FS sheets will be the same, re-
sulting in a single SdH frequency [cf. Fig. 4 (b)]. Upon
field rotation the bands continue to cross at the NPs with
orthogonal wave functions and thus without interaction,
giving rise to a single non-dispersive SdH branch, in con-
trast with experiment.

Shown in Figure 4 (c) is the behavior when includ-
ing SOC but neglecting the NPs as proposed in Ref. 15.
Again, a small branch splitting is expected close to [100].
Due to SOC, four distinct FS sheets would exist around
R with pairwise degenerate extremal cross-sections for

FIG. 3. Typical SdH data. (a) Magnetoresistance ⇢xx(B);
Inset: experimental geometry using cubic equivalent direc-
tions. (b) Oscillatory part of the resistivity ⇢̃xx(1/B) for se-
lected temperatures. (c) FFTs of ⇢̃xx(1/B). Two frequencies
f↵ = 565T and f� = 663T and their harmonics are resolved.
Inset: Lifshitz-Kosevich-behavior of the FFT amplitudes,
yielding e↵ective masses m↵ = 0.90me and m� = 0.95me.
(d) FFT amplitude versus frequency and field direction ✓.
Both SdH branches exhibit a very low dispersion.

B k [100] that split into four branches under field rota-
tion. Since the extremal orbits on the intermediate sheets
2 and 3 would come close to each other at up to 12 break-
down junctions (yellow circles) up to 8192 (highly degen-
erate) breakdown branches are expected as indicated by
the shading between branches 2 and 3. None of this is
observed experimentally.

The presence of both SOC and NPs are, finally, shown
in Fig. 4 (d). Since the spin degeneracy is lifted and the
extremal orbits reside on a NP (cyan) for B k [100], two
extremal cross-sections and thus two SdH frequencies are
expected. Under field rotation these split into four orbits
that intersect at the NPs and remain pairwise degenerate.
Magnetic breakdown occurs at the same junctions as in
Fig. 4 (c). However, due to the band connectivities only
up to 6 breakdown junctions are expected for each pair of
orbits [Fig. 4 (d)]. Calculating the frequency spectra in
DFT [9] we find two dominant branches with a di↵erence
between 80T and 90T and a very low dispersion of ⇠
10T, as well as a tiny probability for other breakdown
branches, all in excellent agreement with experiment.

FIG. 4. Comparison of experimental SdH branches (gray
scale) and calculated branches (color). From the shapes of
extremal orbits for B k [100] and B k [110] an R-centered cir-
cle was subtracted for better visibility. Magnetic breakdown
junctions are marked by colored circles. (a) Without SOC
and without NPs. (b) With NPs (cyan) and without SOC.
(c) With SOC and without NPs. Shaded area reflects up to
8192 partly degenerate breakdown branches. (d) With SOC
and with NPs. Breakdown branches are calculated explicitly,
resulting in two strong almost dispersionless branches.

Huan Wang et al., PRB 102 115129 (2020)
scenario proposed by
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with time-reversal symmetry θ. These rotations act like mirror sym-
metries, as they relate Bloch wave functions at (kx, ky, kz) to those at 
(−kx, ky, kz) and (kx, ky, −kz), respectively, leaving the planes kx = 0 and 
kz = 0 and the BZ boundaries kx = ±π and kz = ±π invariant. Squaring θC̃

x
2 

and θC̃
z
2 and letting them operate on the Bloch state |ψ(k)$, one finds 

that k kθC ψ ψ( ˜ ) | ( )$ = e | ( )$
x k
2

2 i x  and k kθC ψ ψ( ˜ ) | ( )$ = e | ( )$
z k
2

2 i z . Hence, by 
Kramers theorem28, all Bloch states on planes with kx = ±π or kz = ±π are 
two-fold degenerate. Moving away from these BZ boundaries, the sym-
metries are lowered such that the Bloch states become non-degenerate. 
Therefore, all bands in ferromagnetic MnSi are forced to cross at kx = ±π 
and kz = ±π, representing a duo of NPs.

The topological charge ν of this duo of NPs (Fig. 1b) may be deter-
mined with the fermion doubling theorem29, which states that ν 
summed over all band crossings must be zero. We note that besides 
the NPs, there is an odd number of symmetry-enforced band cross-
ings on the Y1–Γ–Y and R1–U–R lines forming Weyl points (ν = ±1) and 
four-fold points (ν = ±2), respectively (Fig. 1c, d, Extended Data Fig. 2, 
Supplementary Note 1). Moreover, due to the effective mirror sym-
metries, accidental Weyl points away from these high-symmetry lines 
must form pairs or quadruplets with the same ν. As the sum over ν of all 
of these Weyl and four-fold points is odd, the duo of NPs must carry a 
non-zero topological charge to satisfy the fermion doubling theorem. 
Hence, the duo of NPs at the BZ boundary is the topological partner of a 
single Weyl point on the Y1–Γ–Y line (Fig. 1b). This is a counter-example 
to Weyl semimetals, in which Weyl points occur always in pairs.

Shown in Fig. 1d is the band structure of a generic tight-binding 
model satisfying SG 19.27 (Supplementary Note 2), where pairs of 
bands form NPs on the BZ boundaries kx = ±π and kz = ±π, whereas 
on the Y1–Γ–Y and R1–U–R lines there are Weyl and four-fold points, 
respectively. Explicit calculation of the Chern numbers shows that all 
of these band crossings, including those at the NPs, exhibit non-zero 
topological charges as predicted above. In turn, all of the FSs carry 
substantial Berry curvatures. The numerical analysis shows that 
these Berry curvatures become extremal at the NPs and close to the 
four-fold and Weyl points (Extended Data Fig. 3). By the bulk–boundary 
correspondence3,4, the non-trivial topology of these band crossings 
generates large Fermi arcs on the surface, which extend over half of 
the BZ of the surface (Extended Data Fig. 4). These arguments may 
be extended to 254 of the 1,651 magnetic SGs, of which 33 have NPs 
whose topological charges are enforced to be non-zero by symmetry 
alone (Supplementary Note 3).

Calculated electronic structure
Figure 1e shows the density functional theory (DFT) band structure of 
MnSi, taking into account spin–orbit coupling, for the experimental 
moment of 0.41 Bohr magnetons (µB) per Mn atom along the [010] 
direction (Methods, Extended Data Fig. 5). Ten bands are found to 
cross the Fermi level (Fig. 1e). In agreement with our symmetry analysis 
and the tight-binding model (Fig. 1d), we find the same generic band 
crossings, namely: (1) NPs on the BZ boundaries kx = ±π and kz = ±π;  
(2) an odd number of Weyl points along Y1–Γ–Y; and (3) an odd number 
of four-fold points along R1–U–R.

The calculated FSs as matched to experiment are shown in Fig. 1f, 
highlighting the NPs at the BZ boundaries at kx = ±π and kz = ±π (see 
Extended Data Table 1 for key parameters and Extended Data Fig. 5). 
Eight FS sheets centred at Γ comprise two small isolated hole pockets 
(sheets 1 and 2), two intersecting hole pockets with avoided crossings 
and magnetic breakdown due to spin–orbit coupling (sheets 3 and 4) 
and two pairs of jungle-gym-type sheets (sheets 5 and 6, and sheets  
7 and 8). Sheets 9 and 10 are centred at R, comprising eight three- 
fingered electron pockets around the [111] axes and a tiny electron 
pocket, respectively. The sheet pairs (5, 6), (7, 8) and (9, 10) extend 
beyond the BZ boundaries with pairwise sticking at the NPs. They rep-
resent TPs (marked in red) with extremal Berry curvatures protected 
by the magnetic screw rotations θC̃

x
2  and θC̃

z
2. In contrast, sheets 5 to 

10 do not form TPs at the BZ boundary ky = ±π, because the moment 
pointing along [010] breaks θC̃

y
2 .

Rotating the direction of the magnetization away from [010]  
distorts the FS sheets, where TPs exist only on those BZ boundaries 
parallel to the magnetization (Supplementary Videos 1 and 2). For 
instance, rotating the moments within the x–y plane away from [010] 
breaks the magnetic screw rotation θC̃

x
2, but keeps θC̃

z
2 intact. In turn, 

the TPs gap out on the ky = ±π and kx = ±π planes, whereas they remain 
degenerate at the kz = ±π planes (Extended Data Fig. 1, Supplementary 
Note 1).
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Fig. 1 | Symmetries, band topology, Fermi surface protectorates and band 
structure of ferromagnetic MnSi. a, Action of the magnetic screw rotations 
and time-reversal symmetry (TRS) on the k-points in the BZ. b, Pairs of energy 
bands E(k) close to the Fermi energy EF forming a topological NP (red line) on the 
BZ boundary that is perpendicular to the screw-rotation axis. This NP is the 
topological partner of a single Weyl point (WP) in the bulk (blue dot) of opposite 
topological charge. c, High-symmetry paths in the cubic primitive BZ. Special 
k-points are denoted by the orthorhombic primitive notation with subscripts 
for easier identification. d, Generic tight-binding band structure illustrating the 
generic band degeneracies of ferromagnetic MnSi with its magnetic space 
group, SG 19.27, namely Weyl points, four-fold degenerate points (FPs), NPs and 
TPs. e, Band structure of ferromagnetic MnSi for magnetization along [010] as 
calculated using DFT. Ten bands cross the Fermi level, as distinguished by 
different colours corresponding to the FS sheets numbered in f. f, Calculated FS 
sheets adapted to match the experimental data under magnetic field along 
[010], as discussed in Methods. Note the presence of NPs on the BZ boundaries, 
kx = ±π and kz = ±π, as well as TPs marked in red. a.u., arbitrary units.
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with time-reversal symmetry θ. These rotations act like mirror sym-
metries, as they relate Bloch wave functions at (kx, ky, kz) to those at 
(−kx, ky, kz) and (kx, ky, −kz), respectively, leaving the planes kx = 0 and 
kz = 0 and the BZ boundaries kx = ±π and kz = ±π invariant. Squaring θC̃

x
2 

and θC̃
z
2 and letting them operate on the Bloch state |ψ(k)$, one finds 

that k kθC ψ ψ( ˜ ) | ( )$ = e | ( )$
x k
2

2 i x  and k kθC ψ ψ( ˜ ) | ( )$ = e | ( )$
z k
2

2 i z . Hence, by 
Kramers theorem28, all Bloch states on planes with kx = ±π or kz = ±π are 
two-fold degenerate. Moving away from these BZ boundaries, the sym-
metries are lowered such that the Bloch states become non-degenerate. 
Therefore, all bands in ferromagnetic MnSi are forced to cross at kx = ±π 
and kz = ±π, representing a duo of NPs.

The topological charge ν of this duo of NPs (Fig. 1b) may be deter-
mined with the fermion doubling theorem29, which states that ν 
summed over all band crossings must be zero. We note that besides 
the NPs, there is an odd number of symmetry-enforced band cross-
ings on the Y1–Γ–Y and R1–U–R lines forming Weyl points (ν = ±1) and 
four-fold points (ν = ±2), respectively (Fig. 1c, d, Extended Data Fig. 2, 
Supplementary Note 1). Moreover, due to the effective mirror sym-
metries, accidental Weyl points away from these high-symmetry lines 
must form pairs or quadruplets with the same ν. As the sum over ν of all 
of these Weyl and four-fold points is odd, the duo of NPs must carry a 
non-zero topological charge to satisfy the fermion doubling theorem. 
Hence, the duo of NPs at the BZ boundary is the topological partner of a 
single Weyl point on the Y1–Γ–Y line (Fig. 1b). This is a counter-example 
to Weyl semimetals, in which Weyl points occur always in pairs.

Shown in Fig. 1d is the band structure of a generic tight-binding 
model satisfying SG 19.27 (Supplementary Note 2), where pairs of 
bands form NPs on the BZ boundaries kx = ±π and kz = ±π, whereas 
on the Y1–Γ–Y and R1–U–R lines there are Weyl and four-fold points, 
respectively. Explicit calculation of the Chern numbers shows that all 
of these band crossings, including those at the NPs, exhibit non-zero 
topological charges as predicted above. In turn, all of the FSs carry 
substantial Berry curvatures. The numerical analysis shows that 
these Berry curvatures become extremal at the NPs and close to the 
four-fold and Weyl points (Extended Data Fig. 3). By the bulk–boundary 
correspondence3,4, the non-trivial topology of these band crossings 
generates large Fermi arcs on the surface, which extend over half of 
the BZ of the surface (Extended Data Fig. 4). These arguments may 
be extended to 254 of the 1,651 magnetic SGs, of which 33 have NPs 
whose topological charges are enforced to be non-zero by symmetry 
alone (Supplementary Note 3).

Calculated electronic structure
Figure 1e shows the density functional theory (DFT) band structure of 
MnSi, taking into account spin–orbit coupling, for the experimental 
moment of 0.41 Bohr magnetons (µB) per Mn atom along the [010] 
direction (Methods, Extended Data Fig. 5). Ten bands are found to 
cross the Fermi level (Fig. 1e). In agreement with our symmetry analysis 
and the tight-binding model (Fig. 1d), we find the same generic band 
crossings, namely: (1) NPs on the BZ boundaries kx = ±π and kz = ±π;  
(2) an odd number of Weyl points along Y1–Γ–Y; and (3) an odd number 
of four-fold points along R1–U–R.

The calculated FSs as matched to experiment are shown in Fig. 1f, 
highlighting the NPs at the BZ boundaries at kx = ±π and kz = ±π (see 
Extended Data Table 1 for key parameters and Extended Data Fig. 5). 
Eight FS sheets centred at Γ comprise two small isolated hole pockets 
(sheets 1 and 2), two intersecting hole pockets with avoided crossings 
and magnetic breakdown due to spin–orbit coupling (sheets 3 and 4) 
and two pairs of jungle-gym-type sheets (sheets 5 and 6, and sheets  
7 and 8). Sheets 9 and 10 are centred at R, comprising eight three- 
fingered electron pockets around the [111] axes and a tiny electron 
pocket, respectively. The sheet pairs (5, 6), (7, 8) and (9, 10) extend 
beyond the BZ boundaries with pairwise sticking at the NPs. They rep-
resent TPs (marked in red) with extremal Berry curvatures protected 
by the magnetic screw rotations θC̃

x
2  and θC̃

z
2. In contrast, sheets 5 to 

10 do not form TPs at the BZ boundary ky = ±π, because the moment 
pointing along [010] breaks θC̃

y
2 .

Rotating the direction of the magnetization away from [010]  
distorts the FS sheets, where TPs exist only on those BZ boundaries 
parallel to the magnetization (Supplementary Videos 1 and 2). For 
instance, rotating the moments within the x–y plane away from [010] 
breaks the magnetic screw rotation θC̃

x
2, but keeps θC̃

z
2 intact. In turn, 

the TPs gap out on the ky = ±π and kx = ±π planes, whereas they remain 
degenerate at the kz = ±π planes (Extended Data Fig. 1, Supplementary 
Note 1).
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Fig. 1 | Symmetries, band topology, Fermi surface protectorates and band 
structure of ferromagnetic MnSi. a, Action of the magnetic screw rotations 
and time-reversal symmetry (TRS) on the k-points in the BZ. b, Pairs of energy 
bands E(k) close to the Fermi energy EF forming a topological NP (red line) on the 
BZ boundary that is perpendicular to the screw-rotation axis. This NP is the 
topological partner of a single Weyl point (WP) in the bulk (blue dot) of opposite 
topological charge. c, High-symmetry paths in the cubic primitive BZ. Special 
k-points are denoted by the orthorhombic primitive notation with subscripts 
for easier identification. d, Generic tight-binding band structure illustrating the 
generic band degeneracies of ferromagnetic MnSi with its magnetic space 
group, SG 19.27, namely Weyl points, four-fold degenerate points (FPs), NPs and 
TPs. e, Band structure of ferromagnetic MnSi for magnetization along [010] as 
calculated using DFT. Ten bands cross the Fermi level, as distinguished by 
different colours corresponding to the FS sheets numbered in f. f, Calculated FS 
sheets adapted to match the experimental data under magnetic field along 
[010], as discussed in Methods. Note the presence of NPs on the BZ boundaries, 
kx = ±π and kz = ±π, as well as TPs marked in red. a.u., arbitrary units.

Extended Data Fig. 1 | Magnetic space groups and electronic band 
structures for different directions of the magnetization. a, Magnetic 
subgroups of space group 198 (P213) and their group–subgroup relations. The 
magnetic space groups describing the symmetries for magnetizations along 
[010] and within the x–y plane are highlighted in green and blue, respectively.  
b, Orthorhombic BZ for ferromagnetic MnSi (left) and magnetization 
directions used for the ab initio calculations in c–f (right). c–f, Ab initio 

electronic band structure of ferromagnetic MnSi along the four high-symmetry 
paths indicated in b: Y1–Γ–Y (c), X1–Γ–X (d), R1–U–R (e) and R2–S–R (f). In the first, 
second and third rows, the magnetization is oriented along [010], 10° rotated 
into the x–y plane and along [110], respectively. Some of the Weyl points and 
four-fold degenerate points at (or near) the high-symmetry lines are 
highlighted by violet and brown circles.
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with time-reversal symmetry θ. These rotations act like mirror sym-
metries, as they relate Bloch wave functions at (kx, ky, kz) to those at 
(−kx, ky, kz) and (kx, ky, −kz), respectively, leaving the planes kx = 0 and 
kz = 0 and the BZ boundaries kx = ±π and kz = ±π invariant. Squaring θC̃

x
2 

and θC̃
z
2 and letting them operate on the Bloch state |ψ(k)$, one finds 

that k kθC ψ ψ( ˜ ) | ( )$ = e | ( )$
x k
2

2 i x  and k kθC ψ ψ( ˜ ) | ( )$ = e | ( )$
z k
2

2 i z . Hence, by 
Kramers theorem28, all Bloch states on planes with kx = ±π or kz = ±π are 
two-fold degenerate. Moving away from these BZ boundaries, the sym-
metries are lowered such that the Bloch states become non-degenerate. 
Therefore, all bands in ferromagnetic MnSi are forced to cross at kx = ±π 
and kz = ±π, representing a duo of NPs.

The topological charge ν of this duo of NPs (Fig. 1b) may be deter-
mined with the fermion doubling theorem29, which states that ν 
summed over all band crossings must be zero. We note that besides 
the NPs, there is an odd number of symmetry-enforced band cross-
ings on the Y1–Γ–Y and R1–U–R lines forming Weyl points (ν = ±1) and 
four-fold points (ν = ±2), respectively (Fig. 1c, d, Extended Data Fig. 2, 
Supplementary Note 1). Moreover, due to the effective mirror sym-
metries, accidental Weyl points away from these high-symmetry lines 
must form pairs or quadruplets with the same ν. As the sum over ν of all 
of these Weyl and four-fold points is odd, the duo of NPs must carry a 
non-zero topological charge to satisfy the fermion doubling theorem. 
Hence, the duo of NPs at the BZ boundary is the topological partner of a 
single Weyl point on the Y1–Γ–Y line (Fig. 1b). This is a counter-example 
to Weyl semimetals, in which Weyl points occur always in pairs.

Shown in Fig. 1d is the band structure of a generic tight-binding 
model satisfying SG 19.27 (Supplementary Note 2), where pairs of 
bands form NPs on the BZ boundaries kx = ±π and kz = ±π, whereas 
on the Y1–Γ–Y and R1–U–R lines there are Weyl and four-fold points, 
respectively. Explicit calculation of the Chern numbers shows that all 
of these band crossings, including those at the NPs, exhibit non-zero 
topological charges as predicted above. In turn, all of the FSs carry 
substantial Berry curvatures. The numerical analysis shows that 
these Berry curvatures become extremal at the NPs and close to the 
four-fold and Weyl points (Extended Data Fig. 3). By the bulk–boundary 
correspondence3,4, the non-trivial topology of these band crossings 
generates large Fermi arcs on the surface, which extend over half of 
the BZ of the surface (Extended Data Fig. 4). These arguments may 
be extended to 254 of the 1,651 magnetic SGs, of which 33 have NPs 
whose topological charges are enforced to be non-zero by symmetry 
alone (Supplementary Note 3).

Calculated electronic structure
Figure 1e shows the density functional theory (DFT) band structure of 
MnSi, taking into account spin–orbit coupling, for the experimental 
moment of 0.41 Bohr magnetons (µB) per Mn atom along the [010] 
direction (Methods, Extended Data Fig. 5). Ten bands are found to 
cross the Fermi level (Fig. 1e). In agreement with our symmetry analysis 
and the tight-binding model (Fig. 1d), we find the same generic band 
crossings, namely: (1) NPs on the BZ boundaries kx = ±π and kz = ±π;  
(2) an odd number of Weyl points along Y1–Γ–Y; and (3) an odd number 
of four-fold points along R1–U–R.

The calculated FSs as matched to experiment are shown in Fig. 1f, 
highlighting the NPs at the BZ boundaries at kx = ±π and kz = ±π (see 
Extended Data Table 1 for key parameters and Extended Data Fig. 5). 
Eight FS sheets centred at Γ comprise two small isolated hole pockets 
(sheets 1 and 2), two intersecting hole pockets with avoided crossings 
and magnetic breakdown due to spin–orbit coupling (sheets 3 and 4) 
and two pairs of jungle-gym-type sheets (sheets 5 and 6, and sheets  
7 and 8). Sheets 9 and 10 are centred at R, comprising eight three- 
fingered electron pockets around the [111] axes and a tiny electron 
pocket, respectively. The sheet pairs (5, 6), (7, 8) and (9, 10) extend 
beyond the BZ boundaries with pairwise sticking at the NPs. They rep-
resent TPs (marked in red) with extremal Berry curvatures protected 
by the magnetic screw rotations θC̃

x
2  and θC̃

z
2. In contrast, sheets 5 to 

10 do not form TPs at the BZ boundary ky = ±π, because the moment 
pointing along [010] breaks θC̃

y
2 .

Rotating the direction of the magnetization away from [010]  
distorts the FS sheets, where TPs exist only on those BZ boundaries 
parallel to the magnetization (Supplementary Videos 1 and 2). For 
instance, rotating the moments within the x–y plane away from [010] 
breaks the magnetic screw rotation θC̃

x
2, but keeps θC̃

z
2 intact. In turn, 

the TPs gap out on the ky = ±π and kx = ±π planes, whereas they remain 
degenerate at the kz = ±π planes (Extended Data Fig. 1, Supplementary 
Note 1).
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Fig. 1 | Symmetries, band topology, Fermi surface protectorates and band 
structure of ferromagnetic MnSi. a, Action of the magnetic screw rotations 
and time-reversal symmetry (TRS) on the k-points in the BZ. b, Pairs of energy 
bands E(k) close to the Fermi energy EF forming a topological NP (red line) on the 
BZ boundary that is perpendicular to the screw-rotation axis. This NP is the 
topological partner of a single Weyl point (WP) in the bulk (blue dot) of opposite 
topological charge. c, High-symmetry paths in the cubic primitive BZ. Special 
k-points are denoted by the orthorhombic primitive notation with subscripts 
for easier identification. d, Generic tight-binding band structure illustrating the 
generic band degeneracies of ferromagnetic MnSi with its magnetic space 
group, SG 19.27, namely Weyl points, four-fold degenerate points (FPs), NPs and 
TPs. e, Band structure of ferromagnetic MnSi for magnetization along [010] as 
calculated using DFT. Ten bands cross the Fermi level, as distinguished by 
different colours corresponding to the FS sheets numbered in f. f, Calculated FS 
sheets adapted to match the experimental data under magnetic field along 
[010], as discussed in Methods. Note the presence of NPs on the BZ boundaries, 
kx = ±π and kz = ±π, as well as TPs marked in red. a.u., arbitrary units.
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with time-reversal symmetry θ. These rotations act like mirror sym-
metries, as they relate Bloch wave functions at (kx, ky, kz) to those at 
(−kx, ky, kz) and (kx, ky, −kz), respectively, leaving the planes kx = 0 and 
kz = 0 and the BZ boundaries kx = ±π and kz = ±π invariant. Squaring θC̃

x
2 

and θC̃
z
2 and letting them operate on the Bloch state |ψ(k)$, one finds 

that k kθC ψ ψ( ˜ ) | ( )$ = e | ( )$
x k
2

2 i x  and k kθC ψ ψ( ˜ ) | ( )$ = e | ( )$
z k
2

2 i z . Hence, by 
Kramers theorem28, all Bloch states on planes with kx = ±π or kz = ±π are 
two-fold degenerate. Moving away from these BZ boundaries, the sym-
metries are lowered such that the Bloch states become non-degenerate. 
Therefore, all bands in ferromagnetic MnSi are forced to cross at kx = ±π 
and kz = ±π, representing a duo of NPs.

The topological charge ν of this duo of NPs (Fig. 1b) may be deter-
mined with the fermion doubling theorem29, which states that ν 
summed over all band crossings must be zero. We note that besides 
the NPs, there is an odd number of symmetry-enforced band cross-
ings on the Y1–Γ–Y and R1–U–R lines forming Weyl points (ν = ±1) and 
four-fold points (ν = ±2), respectively (Fig. 1c, d, Extended Data Fig. 2, 
Supplementary Note 1). Moreover, due to the effective mirror sym-
metries, accidental Weyl points away from these high-symmetry lines 
must form pairs or quadruplets with the same ν. As the sum over ν of all 
of these Weyl and four-fold points is odd, the duo of NPs must carry a 
non-zero topological charge to satisfy the fermion doubling theorem. 
Hence, the duo of NPs at the BZ boundary is the topological partner of a 
single Weyl point on the Y1–Γ–Y line (Fig. 1b). This is a counter-example 
to Weyl semimetals, in which Weyl points occur always in pairs.

Shown in Fig. 1d is the band structure of a generic tight-binding 
model satisfying SG 19.27 (Supplementary Note 2), where pairs of 
bands form NPs on the BZ boundaries kx = ±π and kz = ±π, whereas 
on the Y1–Γ–Y and R1–U–R lines there are Weyl and four-fold points, 
respectively. Explicit calculation of the Chern numbers shows that all 
of these band crossings, including those at the NPs, exhibit non-zero 
topological charges as predicted above. In turn, all of the FSs carry 
substantial Berry curvatures. The numerical analysis shows that 
these Berry curvatures become extremal at the NPs and close to the 
four-fold and Weyl points (Extended Data Fig. 3). By the bulk–boundary 
correspondence3,4, the non-trivial topology of these band crossings 
generates large Fermi arcs on the surface, which extend over half of 
the BZ of the surface (Extended Data Fig. 4). These arguments may 
be extended to 254 of the 1,651 magnetic SGs, of which 33 have NPs 
whose topological charges are enforced to be non-zero by symmetry 
alone (Supplementary Note 3).

Calculated electronic structure
Figure 1e shows the density functional theory (DFT) band structure of 
MnSi, taking into account spin–orbit coupling, for the experimental 
moment of 0.41 Bohr magnetons (µB) per Mn atom along the [010] 
direction (Methods, Extended Data Fig. 5). Ten bands are found to 
cross the Fermi level (Fig. 1e). In agreement with our symmetry analysis 
and the tight-binding model (Fig. 1d), we find the same generic band 
crossings, namely: (1) NPs on the BZ boundaries kx = ±π and kz = ±π;  
(2) an odd number of Weyl points along Y1–Γ–Y; and (3) an odd number 
of four-fold points along R1–U–R.

The calculated FSs as matched to experiment are shown in Fig. 1f, 
highlighting the NPs at the BZ boundaries at kx = ±π and kz = ±π (see 
Extended Data Table 1 for key parameters and Extended Data Fig. 5). 
Eight FS sheets centred at Γ comprise two small isolated hole pockets 
(sheets 1 and 2), two intersecting hole pockets with avoided crossings 
and magnetic breakdown due to spin–orbit coupling (sheets 3 and 4) 
and two pairs of jungle-gym-type sheets (sheets 5 and 6, and sheets  
7 and 8). Sheets 9 and 10 are centred at R, comprising eight three- 
fingered electron pockets around the [111] axes and a tiny electron 
pocket, respectively. The sheet pairs (5, 6), (7, 8) and (9, 10) extend 
beyond the BZ boundaries with pairwise sticking at the NPs. They rep-
resent TPs (marked in red) with extremal Berry curvatures protected 
by the magnetic screw rotations θC̃

x
2  and θC̃

z
2. In contrast, sheets 5 to 

10 do not form TPs at the BZ boundary ky = ±π, because the moment 
pointing along [010] breaks θC̃

y
2 .

Rotating the direction of the magnetization away from [010]  
distorts the FS sheets, where TPs exist only on those BZ boundaries 
parallel to the magnetization (Supplementary Videos 1 and 2). For 
instance, rotating the moments within the x–y plane away from [010] 
breaks the magnetic screw rotation θC̃

x
2, but keeps θC̃

z
2 intact. In turn, 

the TPs gap out on the ky = ±π and kx = ±π planes, whereas they remain 
degenerate at the kz = ±π planes (Extended Data Fig. 1, Supplementary 
Note 1).
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with time-reversal symmetry θ. These rotations act like mirror sym-
metries, as they relate Bloch wave functions at (kx, ky, kz) to those at 
(−kx, ky, kz) and (kx, ky, −kz), respectively, leaving the planes kx = 0 and 
kz = 0 and the BZ boundaries kx = ±π and kz = ±π invariant. Squaring θC̃

x
2 

and θC̃
z
2 and letting them operate on the Bloch state |ψ(k)$, one finds 

that k kθC ψ ψ( ˜ ) | ( )$ = e | ( )$
x k
2

2 i x  and k kθC ψ ψ( ˜ ) | ( )$ = e | ( )$
z k
2

2 i z . Hence, by 
Kramers theorem28, all Bloch states on planes with kx = ±π or kz = ±π are 
two-fold degenerate. Moving away from these BZ boundaries, the sym-
metries are lowered such that the Bloch states become non-degenerate. 
Therefore, all bands in ferromagnetic MnSi are forced to cross at kx = ±π 
and kz = ±π, representing a duo of NPs.

The topological charge ν of this duo of NPs (Fig. 1b) may be deter-
mined with the fermion doubling theorem29, which states that ν 
summed over all band crossings must be zero. We note that besides 
the NPs, there is an odd number of symmetry-enforced band cross-
ings on the Y1–Γ–Y and R1–U–R lines forming Weyl points (ν = ±1) and 
four-fold points (ν = ±2), respectively (Fig. 1c, d, Extended Data Fig. 2, 
Supplementary Note 1). Moreover, due to the effective mirror sym-
metries, accidental Weyl points away from these high-symmetry lines 
must form pairs or quadruplets with the same ν. As the sum over ν of all 
of these Weyl and four-fold points is odd, the duo of NPs must carry a 
non-zero topological charge to satisfy the fermion doubling theorem. 
Hence, the duo of NPs at the BZ boundary is the topological partner of a 
single Weyl point on the Y1–Γ–Y line (Fig. 1b). This is a counter-example 
to Weyl semimetals, in which Weyl points occur always in pairs.

Shown in Fig. 1d is the band structure of a generic tight-binding 
model satisfying SG 19.27 (Supplementary Note 2), where pairs of 
bands form NPs on the BZ boundaries kx = ±π and kz = ±π, whereas 
on the Y1–Γ–Y and R1–U–R lines there are Weyl and four-fold points, 
respectively. Explicit calculation of the Chern numbers shows that all 
of these band crossings, including those at the NPs, exhibit non-zero 
topological charges as predicted above. In turn, all of the FSs carry 
substantial Berry curvatures. The numerical analysis shows that 
these Berry curvatures become extremal at the NPs and close to the 
four-fold and Weyl points (Extended Data Fig. 3). By the bulk–boundary 
correspondence3,4, the non-trivial topology of these band crossings 
generates large Fermi arcs on the surface, which extend over half of 
the BZ of the surface (Extended Data Fig. 4). These arguments may 
be extended to 254 of the 1,651 magnetic SGs, of which 33 have NPs 
whose topological charges are enforced to be non-zero by symmetry 
alone (Supplementary Note 3).

Calculated electronic structure
Figure 1e shows the density functional theory (DFT) band structure of 
MnSi, taking into account spin–orbit coupling, for the experimental 
moment of 0.41 Bohr magnetons (µB) per Mn atom along the [010] 
direction (Methods, Extended Data Fig. 5). Ten bands are found to 
cross the Fermi level (Fig. 1e). In agreement with our symmetry analysis 
and the tight-binding model (Fig. 1d), we find the same generic band 
crossings, namely: (1) NPs on the BZ boundaries kx = ±π and kz = ±π;  
(2) an odd number of Weyl points along Y1–Γ–Y; and (3) an odd number 
of four-fold points along R1–U–R.

The calculated FSs as matched to experiment are shown in Fig. 1f, 
highlighting the NPs at the BZ boundaries at kx = ±π and kz = ±π (see 
Extended Data Table 1 for key parameters and Extended Data Fig. 5). 
Eight FS sheets centred at Γ comprise two small isolated hole pockets 
(sheets 1 and 2), two intersecting hole pockets with avoided crossings 
and magnetic breakdown due to spin–orbit coupling (sheets 3 and 4) 
and two pairs of jungle-gym-type sheets (sheets 5 and 6, and sheets  
7 and 8). Sheets 9 and 10 are centred at R, comprising eight three- 
fingered electron pockets around the [111] axes and a tiny electron 
pocket, respectively. The sheet pairs (5, 6), (7, 8) and (9, 10) extend 
beyond the BZ boundaries with pairwise sticking at the NPs. They rep-
resent TPs (marked in red) with extremal Berry curvatures protected 
by the magnetic screw rotations θC̃

x
2  and θC̃

z
2. In contrast, sheets 5 to 

10 do not form TPs at the BZ boundary ky = ±π, because the moment 
pointing along [010] breaks θC̃

y
2 .

Rotating the direction of the magnetization away from [010]  
distorts the FS sheets, where TPs exist only on those BZ boundaries 
parallel to the magnetization (Supplementary Videos 1 and 2). For 
instance, rotating the moments within the x–y plane away from [010] 
breaks the magnetic screw rotation θC̃

x
2, but keeps θC̃

z
2 intact. In turn, 

the TPs gap out on the ky = ±π and kx = ±π planes, whereas they remain 
degenerate at the kz = ±π planes (Extended Data Fig. 1, Supplementary 
Note 1).
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topological partner of a single Weyl point (WP) in the bulk (blue dot) of opposite 
topological charge. c, High-symmetry paths in the cubic primitive BZ. Special 
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for easier identification. d, Generic tight-binding band structure illustrating the 
generic band degeneracies of ferromagnetic MnSi with its magnetic space 
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de Haas - van Alphen spectra in MnSi
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Assignment of dHvA branches & orbits to calculated Fermi surface
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with time-reversal symmetry θ. These rotations act like mirror sym-
metries, as they relate Bloch wave functions at (kx, ky, kz) to those at 
(−kx, ky, kz) and (kx, ky, −kz), respectively, leaving the planes kx = 0 and 
kz = 0 and the BZ boundaries kx = ±π and kz = ±π invariant. Squaring θC̃

x
2 

and θC̃
z
2 and letting them operate on the Bloch state |ψ(k)$, one finds 

that k kθC ψ ψ( ˜ ) | ( )$ = e | ( )$
x k
2

2 i x  and k kθC ψ ψ( ˜ ) | ( )$ = e | ( )$
z k
2

2 i z . Hence, by 
Kramers theorem28, all Bloch states on planes with kx = ±π or kz = ±π are 
two-fold degenerate. Moving away from these BZ boundaries, the sym-
metries are lowered such that the Bloch states become non-degenerate. 
Therefore, all bands in ferromagnetic MnSi are forced to cross at kx = ±π 
and kz = ±π, representing a duo of NPs.

The topological charge ν of this duo of NPs (Fig. 1b) may be deter-
mined with the fermion doubling theorem29, which states that ν 
summed over all band crossings must be zero. We note that besides 
the NPs, there is an odd number of symmetry-enforced band cross-
ings on the Y1–Γ–Y and R1–U–R lines forming Weyl points (ν = ±1) and 
four-fold points (ν = ±2), respectively (Fig. 1c, d, Extended Data Fig. 2, 
Supplementary Note 1). Moreover, due to the effective mirror sym-
metries, accidental Weyl points away from these high-symmetry lines 
must form pairs or quadruplets with the same ν. As the sum over ν of all 
of these Weyl and four-fold points is odd, the duo of NPs must carry a 
non-zero topological charge to satisfy the fermion doubling theorem. 
Hence, the duo of NPs at the BZ boundary is the topological partner of a 
single Weyl point on the Y1–Γ–Y line (Fig. 1b). This is a counter-example 
to Weyl semimetals, in which Weyl points occur always in pairs.

Shown in Fig. 1d is the band structure of a generic tight-binding 
model satisfying SG 19.27 (Supplementary Note 2), where pairs of 
bands form NPs on the BZ boundaries kx = ±π and kz = ±π, whereas 
on the Y1–Γ–Y and R1–U–R lines there are Weyl and four-fold points, 
respectively. Explicit calculation of the Chern numbers shows that all 
of these band crossings, including those at the NPs, exhibit non-zero 
topological charges as predicted above. In turn, all of the FSs carry 
substantial Berry curvatures. The numerical analysis shows that 
these Berry curvatures become extremal at the NPs and close to the 
four-fold and Weyl points (Extended Data Fig. 3). By the bulk–boundary 
correspondence3,4, the non-trivial topology of these band crossings 
generates large Fermi arcs on the surface, which extend over half of 
the BZ of the surface (Extended Data Fig. 4). These arguments may 
be extended to 254 of the 1,651 magnetic SGs, of which 33 have NPs 
whose topological charges are enforced to be non-zero by symmetry 
alone (Supplementary Note 3).

Calculated electronic structure
Figure 1e shows the density functional theory (DFT) band structure of 
MnSi, taking into account spin–orbit coupling, for the experimental 
moment of 0.41 Bohr magnetons (µB) per Mn atom along the [010] 
direction (Methods, Extended Data Fig. 5). Ten bands are found to 
cross the Fermi level (Fig. 1e). In agreement with our symmetry analysis 
and the tight-binding model (Fig. 1d), we find the same generic band 
crossings, namely: (1) NPs on the BZ boundaries kx = ±π and kz = ±π;  
(2) an odd number of Weyl points along Y1–Γ–Y; and (3) an odd number 
of four-fold points along R1–U–R.

The calculated FSs as matched to experiment are shown in Fig. 1f, 
highlighting the NPs at the BZ boundaries at kx = ±π and kz = ±π (see 
Extended Data Table 1 for key parameters and Extended Data Fig. 5). 
Eight FS sheets centred at Γ comprise two small isolated hole pockets 
(sheets 1 and 2), two intersecting hole pockets with avoided crossings 
and magnetic breakdown due to spin–orbit coupling (sheets 3 and 4) 
and two pairs of jungle-gym-type sheets (sheets 5 and 6, and sheets  
7 and 8). Sheets 9 and 10 are centred at R, comprising eight three- 
fingered electron pockets around the [111] axes and a tiny electron 
pocket, respectively. The sheet pairs (5, 6), (7, 8) and (9, 10) extend 
beyond the BZ boundaries with pairwise sticking at the NPs. They rep-
resent TPs (marked in red) with extremal Berry curvatures protected 
by the magnetic screw rotations θC̃

x
2  and θC̃

z
2. In contrast, sheets 5 to 

10 do not form TPs at the BZ boundary ky = ±π, because the moment 
pointing along [010] breaks θC̃

y
2 .

Rotating the direction of the magnetization away from [010]  
distorts the FS sheets, where TPs exist only on those BZ boundaries 
parallel to the magnetization (Supplementary Videos 1 and 2). For 
instance, rotating the moments within the x–y plane away from [010] 
breaks the magnetic screw rotation θC̃

x
2, but keeps θC̃

z
2 intact. In turn, 

the TPs gap out on the ky = ±π and kx = ±π planes, whereas they remain 
degenerate at the kz = ±π planes (Extended Data Fig. 1, Supplementary 
Note 1).
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Fig. 1 | Symmetries, band topology, Fermi surface protectorates and band 
structure of ferromagnetic MnSi. a, Action of the magnetic screw rotations 
and time-reversal symmetry (TRS) on the k-points in the BZ. b, Pairs of energy 
bands E(k) close to the Fermi energy EF forming a topological NP (red line) on the 
BZ boundary that is perpendicular to the screw-rotation axis. This NP is the 
topological partner of a single Weyl point (WP) in the bulk (blue dot) of opposite 
topological charge. c, High-symmetry paths in the cubic primitive BZ. Special 
k-points are denoted by the orthorhombic primitive notation with subscripts 
for easier identification. d, Generic tight-binding band structure illustrating the 
generic band degeneracies of ferromagnetic MnSi with its magnetic space 
group, SG 19.27, namely Weyl points, four-fold degenerate points (FPs), NPs and 
TPs. e, Band structure of ferromagnetic MnSi for magnetization along [010] as 
calculated using DFT. Ten bands cross the Fermi level, as distinguished by 
different colours corresponding to the FS sheets numbered in f. f, Calculated FS 
sheets adapted to match the experimental data under magnetic field along 
[010], as discussed in Methods. Note the presence of NPs on the BZ boundaries, 
kx = ±π and kz = ±π, as well as TPs marked in red. a.u., arbitrary units.



Key properties of Fermi surface sheets
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Extended Data Table 1 | Key properties of the FS sheets

Information as calculated and matched to experiment. Top: sheet number, topology and location, carrier type and spin refer to the dominant properties of carriers on the corresponding dHvA 
orbits. There are sheets with both strongly mixed electron/hole and mixed spin character. The column labelled f(B)-shift states the direction of the expected frequency shift with increasing 
magnetic field. Bottom: D(EF) states the density of states as calculated. EF-shift states the shift of the Fermi level used to achieve an optimal match to experiment. D(EF + EF-shift) states the  
density of states following the shift of EF. γ corresponds to the contribution of the shifted band to the Sommerfeld coefficient. m*/mb is the mass enhancement factor, where m* is determined 
from the Lifshitz–Kosevich behaviour of the dHvA amplitude and mb is the bare band mass obtained in DFT. γ* is the Sommerfeld coefficient scaled with the mass enhancement. The  
Sommerfeld coefficient of 28.15 mJ (mol K2)−1 inferred from the dHvA data matches the value of the experimentally determined specific heat at B = 12 T within a few per cent, confirming that all 
thermodynamically important parts of the FS were observed.
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Extended Data Table 1 | Key properties of the FS sheets

Information as calculated and matched to experiment. Top: sheet number, topology and location, carrier type and spin refer to the dominant properties of carriers on the corresponding dHvA 
orbits. There are sheets with both strongly mixed electron/hole and mixed spin character. The column labelled f(B)-shift states the direction of the expected frequency shift with increasing 
magnetic field. Bottom: D(EF) states the density of states as calculated. EF-shift states the shift of the Fermi level used to achieve an optimal match to experiment. D(EF + EF-shift) states the  
density of states following the shift of EF. γ corresponds to the contribution of the shifted band to the Sommerfeld coefficient. m*/mb is the mass enhancement factor, where m* is determined 
from the Lifshitz–Kosevich behaviour of the dHvA amplitude and mb is the bare band mass obtained in DFT. γ* is the Sommerfeld coefficient scaled with the mass enhancement. The  
Sommerfeld coefficient of 28.15 mJ (mol K2)−1 inferred from the dHvA data matches the value of the experimentally determined specific heat at B = 12 T within a few per cent, confirming that all 
thermodynamically important parts of the FS were observed.



Extremal orbits and spectroscopic signatures of NPs and TPs
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Momentum dependence of screw-rotation eigenvalues



Berry curvature on a FS in a tight-binding model

SG 19.27

Extended Data Fig. 3 | Berry curvature on the Fermi surface. a, Berry 
curvature Ωµ(k) on one of the Fermi surfaces of a tight-binding model in SG 
19.27, corresponding to ferromagnetic MnSi with the magnetization pointing 
along [010]. a1 shows the three components of Ωµ as a function of k x, along the 

direction indicated by the green arrow in a2. The absolute value of the Berry 
curvature |Ω(k)| is indicated in a2 by a logarithmic colour code. b, Same as a but 
for a tight-binding model in SG 4.9, corresponding to ferromagnetic MnSi with 
the magnetization rotated into the x–y plane.

Extended Data Fig. 3 | Berry curvature on the Fermi surface. a, Berry 
curvature Ωµ(k) on one of the Fermi surfaces of a tight-binding model in SG 
19.27, corresponding to ferromagnetic MnSi with the magnetization pointing 
along [010]. a1 shows the three components of Ωµ as a function of k x, along the 

direction indicated by the green arrow in a2. The absolute value of the Berry 
curvature |Ω(k)| is indicated in a2 by a logarithmic colour code. b, Same as a but 
for a tight-binding model in SG 4.9, corresponding to ferromagnetic MnSi with 
the magnetization rotated into the x–y plane.
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Topological surface states on a (010) surface in SG 19.27



Magnetic space groups with symmetry enforced nodal planes
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Extended Data Table 3 | Catalogue of space groups with symmetry-enforced NPs

Table listing all magnetic SGs with symmetry-enforced NPs. The list is grouped into three blocks: 32 SGs with time-reversal symmetry (describing non-magnetic materials), 94 SGs without 
time-reversal symmetry (describing ferro- or ferrimagnets), and 129 SGs with a symmetry that combines time-reversal symmetry with a translation (describing antiferromagnets). For the NPs 
to have non-zero topological charge, the SG must be chiral (labelled by ‘[t]’ or ‘[T]’). The 33 SGs labelled by ‘[T]’ have NPs whose topological charge is enforced to be non-zero by symmetry, as 
discussed in Supplementary Note 3.
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with time-reversal symmetry θ. These rotations act like mirror sym-
metries, as they relate Bloch wave functions at (kx, ky, kz) to those at 
(−kx, ky, kz) and (kx, ky, −kz), respectively, leaving the planes kx = 0 and 
kz = 0 and the BZ boundaries kx = ±π and kz = ±π invariant. Squaring θC̃

x
2 

and θC̃
z
2 and letting them operate on the Bloch state |ψ(k)$, one finds 

that k kθC ψ ψ( ˜ ) | ( )$ = e | ( )$
x k
2

2 i x  and k kθC ψ ψ( ˜ ) | ( )$ = e | ( )$
z k
2

2 i z . Hence, by 
Kramers theorem28, all Bloch states on planes with kx = ±π or kz = ±π are 
two-fold degenerate. Moving away from these BZ boundaries, the sym-
metries are lowered such that the Bloch states become non-degenerate. 
Therefore, all bands in ferromagnetic MnSi are forced to cross at kx = ±π 
and kz = ±π, representing a duo of NPs.

The topological charge ν of this duo of NPs (Fig. 1b) may be deter-
mined with the fermion doubling theorem29, which states that ν 
summed over all band crossings must be zero. We note that besides 
the NPs, there is an odd number of symmetry-enforced band cross-
ings on the Y1–Γ–Y and R1–U–R lines forming Weyl points (ν = ±1) and 
four-fold points (ν = ±2), respectively (Fig. 1c, d, Extended Data Fig. 2, 
Supplementary Note 1). Moreover, due to the effective mirror sym-
metries, accidental Weyl points away from these high-symmetry lines 
must form pairs or quadruplets with the same ν. As the sum over ν of all 
of these Weyl and four-fold points is odd, the duo of NPs must carry a 
non-zero topological charge to satisfy the fermion doubling theorem. 
Hence, the duo of NPs at the BZ boundary is the topological partner of a 
single Weyl point on the Y1–Γ–Y line (Fig. 1b). This is a counter-example 
to Weyl semimetals, in which Weyl points occur always in pairs.

Shown in Fig. 1d is the band structure of a generic tight-binding 
model satisfying SG 19.27 (Supplementary Note 2), where pairs of 
bands form NPs on the BZ boundaries kx = ±π and kz = ±π, whereas 
on the Y1–Γ–Y and R1–U–R lines there are Weyl and four-fold points, 
respectively. Explicit calculation of the Chern numbers shows that all 
of these band crossings, including those at the NPs, exhibit non-zero 
topological charges as predicted above. In turn, all of the FSs carry 
substantial Berry curvatures. The numerical analysis shows that 
these Berry curvatures become extremal at the NPs and close to the 
four-fold and Weyl points (Extended Data Fig. 3). By the bulk–boundary 
correspondence3,4, the non-trivial topology of these band crossings 
generates large Fermi arcs on the surface, which extend over half of 
the BZ of the surface (Extended Data Fig. 4). These arguments may 
be extended to 254 of the 1,651 magnetic SGs, of which 33 have NPs 
whose topological charges are enforced to be non-zero by symmetry 
alone (Supplementary Note 3).

Calculated electronic structure
Figure 1e shows the density functional theory (DFT) band structure of 
MnSi, taking into account spin–orbit coupling, for the experimental 
moment of 0.41 Bohr magnetons (µB) per Mn atom along the [010] 
direction (Methods, Extended Data Fig. 5). Ten bands are found to 
cross the Fermi level (Fig. 1e). In agreement with our symmetry analysis 
and the tight-binding model (Fig. 1d), we find the same generic band 
crossings, namely: (1) NPs on the BZ boundaries kx = ±π and kz = ±π;  
(2) an odd number of Weyl points along Y1–Γ–Y; and (3) an odd number 
of four-fold points along R1–U–R.

The calculated FSs as matched to experiment are shown in Fig. 1f, 
highlighting the NPs at the BZ boundaries at kx = ±π and kz = ±π (see 
Extended Data Table 1 for key parameters and Extended Data Fig. 5). 
Eight FS sheets centred at Γ comprise two small isolated hole pockets 
(sheets 1 and 2), two intersecting hole pockets with avoided crossings 
and magnetic breakdown due to spin–orbit coupling (sheets 3 and 4) 
and two pairs of jungle-gym-type sheets (sheets 5 and 6, and sheets  
7 and 8). Sheets 9 and 10 are centred at R, comprising eight three- 
fingered electron pockets around the [111] axes and a tiny electron 
pocket, respectively. The sheet pairs (5, 6), (7, 8) and (9, 10) extend 
beyond the BZ boundaries with pairwise sticking at the NPs. They rep-
resent TPs (marked in red) with extremal Berry curvatures protected 
by the magnetic screw rotations θC̃

x
2  and θC̃

z
2. In contrast, sheets 5 to 

10 do not form TPs at the BZ boundary ky = ±π, because the moment 
pointing along [010] breaks θC̃

y
2 .

Rotating the direction of the magnetization away from [010]  
distorts the FS sheets, where TPs exist only on those BZ boundaries 
parallel to the magnetization (Supplementary Videos 1 and 2). For 
instance, rotating the moments within the x–y plane away from [010] 
breaks the magnetic screw rotation θC̃

x
2, but keeps θC̃

z
2 intact. In turn, 

the TPs gap out on the ky = ±π and kx = ±π planes, whereas they remain 
degenerate at the kz = ±π planes (Extended Data Fig. 1, Supplementary 
Note 1).
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Fig. 1 | Symmetries, band topology, Fermi surface protectorates and band 
structure of ferromagnetic MnSi. a, Action of the magnetic screw rotations 
and time-reversal symmetry (TRS) on the k-points in the BZ. b, Pairs of energy 
bands E(k) close to the Fermi energy EF forming a topological NP (red line) on the 
BZ boundary that is perpendicular to the screw-rotation axis. This NP is the 
topological partner of a single Weyl point (WP) in the bulk (blue dot) of opposite 
topological charge. c, High-symmetry paths in the cubic primitive BZ. Special 
k-points are denoted by the orthorhombic primitive notation with subscripts 
for easier identification. d, Generic tight-binding band structure illustrating the 
generic band degeneracies of ferromagnetic MnSi with its magnetic space 
group, SG 19.27, namely Weyl points, four-fold degenerate points (FPs), NPs and 
TPs. e, Band structure of ferromagnetic MnSi for magnetization along [010] as 
calculated using DFT. Ten bands cross the Fermi level, as distinguished by 
different colours corresponding to the FS sheets numbered in f. f, Calculated FS 
sheets adapted to match the experimental data under magnetic field along 
[010], as discussed in Methods. Note the presence of NPs on the BZ boundaries, 
kx = ±π and kz = ±π, as well as TPs marked in red. a.u., arbitrary units.
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