Chiral magnetism A geometric perspective

Oleg Tchernyshyov

SPICE-SPIN+X Seminar. 3 February 2021.

/ 🔍 🍬 🖣 🔪 🐵 🗳 🕴 👘

Acknowledgments

Discussions:

Sayak Dasgupta (Johns Hopkins) Se Kwon Kim (KAIST) Vladimir Kravchuk (Karsruhe) Predrag Nikolic (George Mason) Zohar Nussinov (Washington University St Louis) Yuan Wan (IOP CAS) Shu Zhang (UCLA)

Hospitality:

Aspen Center for Physics Kavli Institute for Theoretical Physics

Funding:

US DOE Basic Energy Sciences, Materials Sciences and Engineering Award DE-SC0019331.

Daniel Hill Johns Hopkins

Valeriy Slastikov Bristol

Geometrization of chiral magnetic interactions Take-home message

- Old perspective (energy): chiral states arise from Dzyaloshinskii-Moriya (DM) interactions.
- Current perspective (geometry): chiral states reflect the curvature of spin parallel transport.
- Analog in relativity: gravity = curvature of parallel transport in spacetime.
- <u>Simple</u> model: Heisenberg exchange in a background SO(3) gauge field.
- Advantages: extension of spin conservation law, availability of field-theoretic tools.

Overview

- 1. Chiral ferromagnet: lattice and continuum descriptions.
- 2. Spin parallel transport and the SO(3) gauge field.
- 3. Gauged Heisenberg model as a minimal model of the chiral ferromagnet.
- 4. Application: extension of spin conservation law.
- 5. Application: DM term induced by spin current.
- 6. Application: skyrmion-crystal ground state in a d=2 chiral ferromagnet.
- 7. Discussion.

D. Hill, V. Slastikov, and O. Tchernyshyov, preprint arXiv:2008.08681.

1. Chiral ferromagnet A lattice description

Energy includes exchange and Dzyaloshinskii-Moriya (DM) interactions:

$$U = \sum_{\langle ij \rangle} \begin{bmatrix} -J \mathbf{S}_i \cdot \mathbf{S}_j - \mathbf{D}_{ij} \cdot (\mathbf{S}_i \times \mathbf{S}_j) \\ \text{exchange} & \text{DM} \end{bmatrix}.$$

 \mathbf{D}_{ij} is the Dzyaloshinskii-Moriya (DM) vector specific to bond $\langle ij \rangle$. Induced by relativistic spin-orbit interaction. Much weaker than exchange, $|\mathbf{D}| \ll J$. Relativistic effect $\mathcal{O}(v/c)$.

Drawback: lattice theory cannot be solved analytically.

T. Moriya, Phys. Rev. **120**, 91 (1960).

1. Chiral ferromagnet A continuum description

Potential energy density: $\mathcal{U} = \frac{1}{2} \partial_i \mathbf{m} \cdot \partial_i \mathbf{m} - \mathbf{d}_i \cdot (\mathbf{m} \times \partial_i \mathbf{m}).$ exchange DM

 \mathbf{d}_i is the DM vector specific to spatial direction *i*. Magnitude of **d** determines the wavenumber of helical (or more complex) magnetic order. Weakness of the spin-orbit coupling means that $|\mathbf{d}| \ll 1/a$, where a is the atomic lattice constant.

In a cubic crystal with broken inversion symmetry (e.g., MnSi), $\mathbf{d}_i = \kappa \mathbf{e}_i$.

I. E. Dzyaloshinskii, Sov. Phys. JETP **19**, 960 (1964).

In a continuum theory, spins are represented by a smoothly varying magnetization field $\mathbf{m}(x)$, $|\mathbf{m}| = 1$.

1. Chiral ferromagnet A continuum description

Add Zeeman coupling to an external magnetic field:

$$\mathscr{U} = \frac{1}{2} \partial_i \mathbf{m} \cdot \partial_i \mathbf{m} - \mathbf{d}_i \cdot (\mathbf{m} \times \partial_i \mathbf{m}) - \mathbf{h} \cdot \mathbf{m}$$

exchange DM Zee

The enigmatic "A phase" of MnSi turned out to be a skyrmion crystal predicted theoretically in the 1980s.

The skyrmion crystal is very fragile in d=3 and exists in a small window of the (B, T) phase diagram.

Drawback: still no analytic treatment. Fe0.5Co0.5Si

A. N. Bogdanov and D. A. Yablonskii, JETP 68, 101 (1989).
S. Mühlbauer *et al.*, Science 323, 915 (2009).
X. Z. Yu *et al.*, Nature 465, 901 (2010).

1. Chiral ferromagnet A continuum description

Add Zeeman coupling to an external magnetic field:

$$\mathcal{U} = \frac{1}{2} \partial_i \mathbf{m} \cdot \partial_i \mathbf{m} - \mathbf{d}_i \cdot (\mathbf{m} \times \partial_i \mathbf{m}) - \mathbf{h} \cdot \mathbf{m} \\ \text{exchange} \qquad \text{DM} \qquad \text{Zee}$$

The enigmatic "A phase" of MnSi turned out to be a skyrmion crystal predicted theoretically in the 1980s.

The skyrmion crystal is very fragile in d=3 and exists in a small window of the (B, T) phase diagram.

Drawback: still no analytic treatment.

A. N. Bogdanov and D. A. Yablonskii, JETP 68, 101 (1989). S. Mühlbauer et al., Science **323**, 915 (2009). X. Z. Yu et al., Nature **465**, 901 (2010).

m . eman

Condition of uniform magnetization, $\partial_i \mathbf{m} = 0$, can be seen as a rule for spin parallel transport.

Condition of uniform magnetization, $\partial_i \mathbf{m} = 0$, can be seen as a rule for spin parallel transport.

Condition of uniform magnetization, $\partial_i \mathbf{m} = 0$, can be seen as a rule for spin parallel transport.

This parallel transport is <u>trivial</u>. Transporting a spin along two different paths with the same endpoints results in the <u>same final orientation</u>.

A "twisted" generalization of parallel transport is $\partial_i \mathbf{m} = \mathbf{A}_i \times \mathbf{m}$. As a spin moves along x^i -axis, it twists at the angular "velocity" A_i .

Upon an infinitesimal displacement dx, the spin twists by $d\mathbf{m} = dx^i \mathbf{A}_i \times \mathbf{m}$.

Here the twisting rates are $\mathbf{A}_{x} = \kappa \mathbf{e}_{x}, \ \mathbf{A}_{y} = \kappa \mathbf{e}_{y}.$

This rule of parallel transport can be written as $D_i \mathbf{m} = 0$, the vanishing of the covariant derivative $D_i \mathbf{m} \equiv \partial_i \mathbf{m} - \mathbf{A}_i \times \mathbf{m}$.

Upon an infinitesimal displacement dx, the spin twists by $d\mathbf{m} = dx^i \mathbf{A}_i \times \mathbf{m}$.

Here the twisting rates are $\mathbf{A}_x = \kappa \mathbf{e}_x, \ \mathbf{A}_v = \kappa \mathbf{e}_v.$

 A_i is an SO(3) gauge field, or the spin connection.

A more general rule for parallel transport is $D_i \mathbf{m} = 0$, where $D_i \mathbf{m} \equiv \partial_i \mathbf{m} - \mathbf{A}_i \times \mathbf{m}$ is the covariant derivative.

As a spin moves along spatial direction i, it rotates at the rate \mathbf{A}_i , i.e., $d\mathbf{m} = dx^i \mathbf{A}_i \times \mathbf{m}$.

Here the SO(3) gauge fields are

 $\mathbf{A}_x = \kappa \mathbf{e}_x, \ \mathbf{A}_v = \kappa \mathbf{e}_v.$

Now taking a spin along two different paths with the same endpoints yields different final orientations. The mismatch is given by the rotation angle $\mathbf{F}_{ii} dS^{ij}$.

 dS^{ij} is the area of the loop. $\mathbf{F}_{ij} = \partial_i \mathbf{A}_j - \partial_j \mathbf{A}_i - \mathbf{A}_i \times \mathbf{A}_j$ is the SO(3) gauge curvature, or magnetic field. Here $\mathbf{F}_{xv} = -\kappa^2 \mathbf{e}_z$.

2. Geometric perspective **Analogy with general relativty**

General relativity

4-velocity u^i

4-acceleration $du^i/d\tau$

Levi-Civita connection Γ^{i}_{ik}

Riemann curvature R^{i}_{ikl}

i, j, k label spatial indices; α, β, γ label spin indices.

2. Geometric perspective **Covariance under local spin-frame rotations**

- Transformation of a spin vector ${f m}$ under an infinitesimal spin-frame rotation: $\delta \mathbf{m} = -\omega \times \mathbf{m}.$
- Examples of spin vectors: spin S, magnetization M, spin current \mathbf{j}_i (along spatial direction x_i).
- Heisenberg exchange energy $\mathcal{U} = \partial_i \mathbf{m} \cdot \partial_i \mathbf{m}$ is invariant under <u>global</u> spin-frame rotations ω . It is not invariant under local spin-frame rotations $\omega(x)$ because $\partial_i \mathbf{m}(x)$ is not a spin vector.
- Generalization of $\partial_i \mathbf{m}(x)$ that does transform like a spin vector is $D_i \mathbf{m} \equiv \partial_i \mathbf{m} \mathbf{A}_i \times \mathbf{m}$: $\delta D_i \mathbf{m}(x) = -\omega(x) \times D_i \mathbf{m}(x),$
- provided that the gauge potential transforms as $\delta A_i(x) = -D_i \omega(x)$. (A_i is <u>not</u> a spin vector!)
- Hence the covariant form of the Heisenberg exchange model, invariant under local rotations:

$$\mathscr{U} = \frac{1}{2} D_i \mathbf{m} \cdot$$

$D_i\mathbf{m}$.

3. Gauged Heisenberg model A minimal model of the chiral ferromagnet $D_i \mathbf{m} \equiv \partial_i \mathbf{m} - \mathbf{A}_i \times \mathbf{m}$

<u>Gauged</u> Heisenberg model imposes an energy penalty for failing the rules of parallel transport, $D_i \mathbf{m} \neq 0$.

$$\mathscr{U} = \frac{1}{2} D_i \mathbf{m} \cdot D_i \mathbf{m}$$

$$= \frac{1}{2} \partial_i \mathbf{m} \cdot \partial_i \mathbf{m} - \mathbf{A}_i \cdot (\mathbf{m} \times \partial_i \mathbf{m}) + \frac{1}{2} (\mathbf{A}_i \times \mathbf{m}) \cdot (\mathbf{A}_i \times \mathbf{m}).$$

exchange DM anisotropy

First two terms = chiral model of a ferromagnet (exchange + DM). DM vectors = SO(3) gauge field, $A_i = d_i$. Third term = spin anisotropy. (Reduces to a trivial constant for cubic symmetry.)

I. E. Dzyaloshinskii and G. E. Volovik, J. Phys. (Paris) **39**, 693 (1978). P. Chandra, P. Coleman, and A. I. Larkin, J. Phys.: Condens. Matter 2, 7933 (1990). L. Shekhtman, O. Entin-Wohlman, and A. Aharony, Phys. Rev. Lett. 69, 836 (1992). J. Fröhlich and U. Studer, Rev. Mod. Phys. 65, 733 (1993). I. V. Tokatly, Phys. Rev. Lett. **101**, 106601 (2008).

3. Gauged Heisenberg model A minimal model of the chiral ferromagnet $D_i \mathbf{m} \equiv \partial_i \mathbf{m} - \mathbf{A}_i \times \mathbf{m}$

<u>Gauged</u> Heisenberg model imposes an energy penalty for failing the rules of parallel transport, $D_i \mathbf{m} \neq 0$.

$$\mathscr{U} = \frac{1}{2} D_i \mathbf{m} \cdot D_i \mathbf{m}$$

$$= \frac{1}{2} \partial_i \mathbf{m} \cdot \partial_i \mathbf{m} - \mathbf{A}_i \cdot (\mathbf{m} \times \partial_i \mathbf{m}) - \frac{1}{2} (\mathbf{A}_i \cdot \mathbf{m}) (\mathbf{A}_i \cdot \mathbf{m}) + \text{const.}$$

exchange DM anisotropy

First two terms = chiral model of a ferromagnet (exchange + DM). DM vectors = SO(3) gauge field, $A_i = d_i$. Third term = spin anisotropy. (Reduces to a trivial constant for cubic symmetry.)

I. E. Dzyaloshinskii and G. E. Volovik, J. Phys. (Paris) **39**, 693 (1978). P. Chandra, P. Coleman, and A. I. Larkin, J. Phys.: Condens. Matter 2, 7933 (1990). L. Shekhtman, O. Entin-Wohlman, and A. Aharony, Phys. Rev. Lett. 69, 836 (1992). J. Fröhlich and U. Studer, Rev. Mod. Phys. 65, 733 (1993). I. V. Tokatly, Phys. Rev. Lett. **101**, 106601 (2008).

3. Gauged Heisenberg model A minimal model of the chiral ferromagnet

Gauge fields and gauge curvature for some symmetry classes in d = 2. Here n = 3, 4, 6.

 $\mathbf{A}_i = \mathbf{d}_i$ (DM vectors).

$$\mathbf{F}_{ij} = \partial_i \mathbf{A}_j - \partial_j \mathbf{A}_i - \mathbf{A}_i \times \mathbf{A}_j$$

A. N. Bogdanov and D. A. Yablonskii, JETP 68, 101 (1989). D. Hill, V. Slastikov, and O. Tchernyshyov, arXiv:2008.08681.

lass	\mathbf{A}_{x}	\mathbf{A}_y	F _{xy}
	ке _y	$-\kappa \mathbf{e}_{x}$	$-\kappa^2 \mathbf{e}_z$
	$\kappa \mathbf{e}_{x}$	ке _y	$-\kappa^2 \mathbf{e}_z$
	$-\kappa \mathbf{e}_{x}$	ке _y	$\kappa^2 \mathbf{e}_z$

4. Extension of the spin conservation law Pure Heisenberg model

Symmetry of global spin rotations implies conservation of spin.

 $\mathbf{m} \mapsto R\mathbf{m}, \quad \mathcal{U}$

Landau-Lifshitz equation can be recast as conservation of spin current: $\partial_t \mathbf{m} = \mathbf{m} \times \partial_i \partial_i \mathbf{m}$ 4

Here $\mathbf{s} = \mathbf{m}$ is spin density and $\mathbf{j}_i = -\mathbf{m} \times \partial_i \mathbf{m}$ is spin current.

Adding DM interaction violates this spin conservation to 1st order in relativistic expansion, v/c.

$$\partial_t \mathbf{s} + \partial_i \mathbf{j}_i = \mathsf{DM} \mathsf{tc}$$

$$= \frac{1}{2} \partial_i \mathbf{m} \cdot \partial_i \mathbf{m} \mapsto \mathscr{U}.$$

$$\Leftrightarrow \quad \partial_t \mathbf{s} + \partial_i \mathbf{j}_i = 0.$$

orque $\mathcal{O}(v/c) \neq 0$.

4. Extension of the spin conservation law **Gauged Heisenberg model**

Gauged version is invariant under local spin rotations as well.

 $\mathbf{m} \mapsto R(x)\mathbf{m},$

 $\partial_t \mathbf{m} = \mathbf{m} \times D_i D_i \mathbf{m} \quad \boldsymbol{\leftarrow}$

Here s = m is spin density and $j_i = -m \times D_i m$ is the redefined spin current.

Redefined spin current is conserved in the presence of DM interactions. Spin conservation is spoiled by anisotropy, a higher-order relativistic effect.

 $\partial_t \mathbf{s} + D_i \mathbf{j}_i = \text{anisotropy torque } \mathcal{O}(v^2/c^2) \neq 0.$

$$\mathscr{U} = \frac{1}{2} D_i \mathbf{m} \cdot D_i \mathbf{m} \mapsto \mathscr{U}.$$

Spin conservation law is preserved if gradients are replaced by covariant derivatives $D_i \mathbf{m} \equiv \partial_i \mathbf{m} - \mathbf{A}_i \times \mathbf{m}$.

$$\Rightarrow \qquad \partial_t \mathbf{s} + D_i \mathbf{j}_i = 0.$$

5. DM interaction from spin current?

Several theorists suggested that injection of spin current \mathbf{j}_i can add DM interaction: $\mathbf{d}_i \propto \mathbf{j}_i$.

Potential problem with this: \mathbf{j}_i is a spin vector, but \mathbf{d}_i is not: it is a gauge potential $\mathbf{A}_i(x) = \mathbf{d}_i(x)$. Under an infinitesimal spin-frame rotation $\omega(x)$: $\delta \mathbf{j}_i(x) = -\omega(x) \times \mathbf{j}_i(x),$ $\delta \mathbf{A}_i(x) = -D_i \omega(x) \equiv -\partial_i \omega(x) - \omega(x) \times \mathbf{A}_i(x)$

Therefore, a linear relation $\mathbf{d}_i \propto \mathbf{j}_i$ is <u>not</u> a gauge-invariant statement.

Note a similarity to the Londons equation: $j_i = -\frac{ne^2}{mc^2}A_i$, which is also not gauge-invariant.

A gauge-invariant statement is worth thinking through.

T. Kikuchi, T. Koretsune, R. Arita, and G. Tatara, Phys. Rev. Lett. **116**, 247201 (2016). F. Freimuth, S. Blügel, and Y. Mokrousov, Phys. Rev. B 96, 054403 (2017).

6. Chiral ferromagnet Skyrmion crystal is hard to get in theory (especially analytically)

$$\mathscr{U} = \frac{\alpha (T - T_c)}{2} \mathbf{m} \cdot \mathbf{m} + \frac{1}{2} \partial_i \mathbf{m} \cdot \partial_i \mathbf{m}$$

In our mean-field Landau-Ginzburg theory, the A crystal thus appears as a <u>metastable phase</u>, which becomes extremely close in energy to the conical phase for intermediate fields...

It turns out that, when we consider <u>thermal fluctuations</u> around the mean-field solution, these stabilize the A crystal.

S. Mühlbauer et al., Science 323, 915 (2009).

Energy density of the Heisenberg model: $\mathcal{U} = -$

Energy minima satisfy the (hard-to-solve) 2nd-order Laplace equation:

- States satisfying the (much easier) 1st-order Bogomolny equation, $\partial_x \mathbf{m} \pm \mathbf{m} \times \partial_v \mathbf{m} = 0,$
- are energy minima with the energy given by a topological charge, the skyrmion number Q: $U = \pm 4\pi Q = 4\pi |Q|$.
- A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 (1975).

$$\frac{1}{2}\partial_i \mathbf{m} \cdot \partial_i \mathbf{m}.$$

- $\partial_i \partial_i \mathbf{m} = 0, \quad |\mathbf{m}| = 1.$

Convenient parametrization via complex coordinates and complex fields:

$$z = x + iy, \quad \bar{z} = x - iy. \quad \text{(complex coordinates)}$$

$$\psi = \frac{m_x + im_y}{1 + m_z}, \quad \bar{\psi} = \frac{m_x - im_y}{1 + m_z}. \quad \text{(stereographic projection)}$$

Bogomolny equation simplifies:

$$\partial_x \mathbf{m} \pm \mathbf{m} \times \partial_y \mathbf{m} = 0$$

Here w is an arbitrary meromorphic function (analytic except at isolated poles).

A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 (1975).

$$\partial_{\overline{z}} \psi = 0, \quad \psi = w(z) \quad \text{for } + \text{sign.}$$

 $\partial_z \psi = 0, \quad \psi = w(\bar{z}) \quad \text{for - sign.}$

Examples of Bogomolny solutions for the + sign:

$$\psi = \prod_{n=1}^{N} (z - z_n), \quad \psi = \sum_{n=1}^{N} \frac{1}{z - z_n}$$

Both describe states with N skyrmions at complex positions $z = z_n$. The skyrmion number Q = N = 0, 1, 2, ... is the degree of mapping $z \mapsto \psi$. The energy $U = 4\pi Q = 4\pi N \ge 0$.

Skyrmions act as ideal particles with energy 4π each.

A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 (1975).

Examples of Bogomolny solutions for the – sign:

$$\psi = \prod_{n=1}^{N} (\bar{z} - \bar{z}_n), \quad \psi = \sum_{n=1}^{N} \frac{1}{\bar{z} - \bar{z}_n}$$

Both describe states with N antiskyrmions at complex positions $z = z_n$. The skyrmion number $Q = -N = 0, -1, -2, \dots$ The energy $U = -4\pi Q = 4\pi N \ge 0$. Antiskyrmions act as ideal particles with energy 4π each.

A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 (1975).

Energy density of the gauged Heisenberg model:

In stronger fields, the uniform (vacuum) state with ${\bf m}$ parallel to ${\bf h}$ is locally stable. In weaker fields, the vacuum is unstable.

B. J. Schroers, SciPost Phys. 7, 030 (2019).

$$\mathscr{U} = \frac{1}{2} D_i \mathbf{m} \cdot D_i \mathbf{m} - \mathbf{h} \cdot \mathbf{m}, \quad \mathbf{h} = \mp \mathbf{F}_{xy}.$$

Energy density of the gauged Heisenberg model: $\mathcal{U} = -$ Energy minima satisfy the (hard-to-solve) 2nd-orde

$D_i D_i \mathbf{m}$

States satisfying the (much easier) 1st-order Bogomolny equation, $D_{\mathbf{x}}\mathbf{m} \neq$

have the energy given by the topological charge (up to a boundary term) $U = \pm$

B. Barton-Singer, C. Ross, and B. J. Schroers, Commun. Math. Phys. 375, 2259 (2020).

$$\frac{1}{2} - D_i \mathbf{m} \cdot D_i \mathbf{m} - \mathbf{h} \cdot \mathbf{m}, \quad \mathbf{h} = \mp \mathbf{F}_{xy}.$$

For Laplace equation:

$$\mathbf{n} - \mathbf{h} = 0, \quad |\mathbf{m}| = 1.$$

$$\pm \mathbf{m} \times D_y \mathbf{m} = 0,$$

$$= 4\pi Q \mp \oint dx^i \mathbf{A}_i \cdot \mathbf{m} \,.$$

Energy density
$$\mathscr{U} = \frac{1}{2} D_i \mathbf{m} \cdot D_i \mathbf{m} - \mathbf{h} \cdot \mathbf{m},$$

Bogomolny equation $D_x \mathbf{m} + \mathbf{m} \times D_y \mathbf{m} = 0.$

Symmetry class	\mathbf{A}_{x}	A _y	\mathbf{F}_{xy}	Bogomolny equation	Bogomolny solutions
C_{nv}	ке _у	$-\kappa \mathbf{e}_{x}$	$-\kappa^2 \mathbf{e}_z$	$\partial_{\bar{z}}\psi^{-1} = -\kappa/2$	$\psi^{-1} = -\kappa \bar{z}/2 + w(z)$
D_n	ĸe _x	ке _y	$-\kappa^2 \mathbf{e}_z$	$\partial_{\bar{z}}\psi^{-1} = -i\kappa/2$	$\psi^{-1} = -i\kappa\bar{z}/2 + w(z)$
D_{2d}	$-\kappa \mathbf{e}_{x}$	ке _y	$\kappa^2 \mathbf{e}_z$	$\partial_{\bar{z}}\psi = i\kappa/2$	$\psi = i\kappa\bar{z}/2 + w(z)$

Here w(z) is an arbitrary meromorphic function of z. D. Hill, V. Slastikov, and O.T., arXiv:2008.08681.

 $\mathbf{h} = -\mathbf{F}_{xv}$.

Symmetry class D_n .

Bogomolny equation $D_x \mathbf{m} + \mathbf{m} \times D_v \mathbf{m} = 0$, or $\partial_{\overline{z}} \psi^{-1} = -i\kappa/2$.

Bogomolny solutions $\psi^{-1} = -i\kappa \bar{z}/2 + w(z)$, where *w* is an arbitrary meromorphic function.

Possible skyrmion numbers Q = -1, 0, 1, 2, ...

Possible energy $U = 4\pi Q = -4\pi, 0, 4\pi, 8\pi, \dots$

NB: a Bogomolny solution with one antiskyrmion (Q = -1) has a negative energy!

Symmetry class D_n .

Bogomolny equation $\partial_{\bar{z}} \psi^{-1} = -i\kappa/2$.

Bogomolny solutions $\psi^{-1} = -i\kappa \bar{z}/2 + w(z)$, where *w* is an arbitrary meromorphic function.

 $\psi^{-1} = -i\kappa \bar{z}/2$ has the lowest Q = -1 among Bogomolny states.

Energy $U = 4\pi Q = -4\pi$?

It is unfortunate that this is the lowest Q for a Bogomolny state.

An isolated antiskyrmion

** * * * * * * * * * **

Q = 0, U = 0.

 $Q = -1, U = -4\pi.$

 $Q = -2, U \approx -8\pi.$

 $Q = -4, U \approx -16\pi.$

$Q = -8, U \approx -32\pi.$

$$\bar{\psi}(z) \approx -\frac{2i}{\kappa} \sum_{n} \frac{1}{z - z_n}$$

So that $\psi^{-1} \sim -i\kappa(\overline{z} - \overline{z}_n)/2$ when $z \to z_n$, Bogomolny state with Q = -1.

8 antiskyrmions

6. Chiral ferromagnet in *d*=2 dimensions High-energy skyrmion crystal

Bogomolny solution in the form of a skyrmion lattice can be constructed with the aid of the Weierstrass ζ function,

$$\begin{split} \zeta(z) &= \frac{1}{z} + \sum_{mn} \left(\frac{1}{z - \Omega_{mn}} + \frac{1}{\Omega_{mn}} + \frac{z}{\Omega_{mn}^2} \right), \\ \Omega_{mn} &= 2m\omega_1 + 2n\omega_2 \,. \end{split}$$

Here $2\omega_1$ and $2\omega_2$ are (complex) periods.

This function has periodically arranged single poles (centers of skyrmions) but is not itself periodic. It is quasiperiodic:

$$\zeta(z+2\omega_i)=\zeta(z)+2\eta_i\,.$$

6. Chiral ferromagnet in *d*=2 dimensions High-energy skyrmion crystal

Bogomolny solution in the form of a skyrmion lattice can be constructed with the aid of the Weierstrass ζ function,

$$\begin{split} \zeta(z) &= \frac{1}{z} + \sum_{mn} \left(\frac{1}{z - \Omega_{mn}} + \frac{1}{\Omega_{mn}} + \frac{z}{\Omega_{mn}^2} \right), \\ \Omega_{mn} &= 2m\omega_1 + 2n\omega_2 \,. \end{split}$$

A unique superposition of $\zeta(z)$ and \overline{z} is strictly periodic:

$$\psi^{-1} = -\frac{i\kappa}{2} \left[\bar{z} - \frac{S}{\pi} \zeta(z) \right]$$

The energy is 4π per unit cell, a highly excited state. Skyrmions act as ideal particles with energy 4π each.

Antiskyrmions have negative energy -4π (when far apart). Construct an antiskyrmion crystal.

$$\bar{\psi} = \frac{2i}{\kappa} \left[\frac{\pi}{S} \bar{z} - \zeta(z) \right].$$

The energy is -4π per unit cell in the limit of large separation.

Antiskyrmions act as particles with energy -4π each and repulsive interactions.

For 2 antiskyrmions distance *a* apart, $U(a) \sim U(\infty) + \frac{512\pi}{(\kappa a)^2} \ln(C\kappa a).$

Antiskyrmions have negative energy -4π (when far apart). Construct an antiskyrmion crystal.

$$\bar{\psi} = \frac{2i}{\kappa} \left[\frac{\pi}{S} \bar{z} - \zeta(z) \right].$$

The energy is -4π per unit cell in the limit of large separation.

Antiskyrmions act as particles with energy -4π each and repulsive interactions.

For 2 antiskyrmions distance *a* apart, $U(a) \sim U(\infty) + \frac{512\pi}{(\kappa a)^2} \ln(C\kappa a).$

By analogy, the energy per unit cell in an antiskyrmion crystal with lattice constant a is expected to be

$$U(a) \sim -4\pi + \frac{\kappa}{(\kappa a)^2} \ln(C\kappa a) \,.$$

Energy density as a function of skyrmion density:

$$\mathcal{U}(\rho) \sim 4\pi\rho + \frac{k\rho^2}{\kappa^2} \ln(C\kappa^2\rho).$$

Antiskyrmions have negative energy -4π (when far apart). Construct an antiskyrmion crystal.

$$\bar{\psi} = \frac{2i}{\kappa} \left[\frac{\pi}{S} \bar{z} - \zeta(z) \right].$$

The energy is -4π per unit cell in the limit of large separation.

Energy density as a function of skyrmion density:

$$\mathcal{U}(\rho) \sim 4\pi\rho + \frac{k\rho^2}{\kappa^2} \ln(C\kappa^2\rho).$$

Optimal skyrmion density $\rho_0 \approx -0.0172\kappa^2$, optimal lattice constant $a_0 \approx 8.19\kappa^{-1}$.

Antiskyrmions have negative energy -4π (when far apart). Construct an antiskyrmion crystal.

$$\bar{\psi} = \frac{2i}{\kappa} \left[\frac{\pi}{S} \bar{z} - \zeta(z) \right].$$

The energy is -4π per unit cell in the limit of large separation.

Energy density as a function of skyrmion density:

$$\mathcal{U}(\rho) \sim 4\pi\rho + \frac{k\rho^2}{\kappa^2} \ln(C\kappa^2\rho).$$

Optimal skyrmion density $\rho_0 \approx -0.0172\kappa^2$, optimal lattice constant $a_0 \approx 8.19 \kappa^{-1}$.

6 Ø 🔍 🌂

6. Summary

- nontrivial spin transport.
- DM vectors \mathbf{d}_i play the role of the spin connection, or the SO(3) gauge field
- analytical methods introduced by Belavin and Polyakov (1975).
- crystals coexist at zero field.
- D. Hill, V. Slastikov, and O. Tchernyshyov, preprint arXiv:2008.08681.

• The chiral ferromagnet has been modeled as a Heisenberg ferromagnet with

 $A_i = d_i$. Gauge curvature $F_{ij} = \partial_i A_j - \partial_j A_i - A_i \times A_j$ determines critical fields.

Conserved spin current can be redefined to automatically include DM interactions.

• This gauged Heisenberg model in d=2 dimensions in a critical field is amenable to

 The ground state between the upper critical field and zero is an antiskyrmion crystal; between zero and the lower critical field, a skyrmion crystal. The two