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Geometrization of chiral magnetic interactions
Take-home message

• Old perspective (energy): chiral states arise from Dzyaloshinskii-Moriya (DM) 
interactions.


• Current perspective (geometry): chiral states reflect the curvature of spin 
parallel transport. 


• Analog in relativity: gravity = curvature of parallel transport in spacetime.


• Simple model: Heisenberg exchange in a background SO(3) gauge field. 


• Advantages: extension of spin conservation law, availability of field-theoretic 
tools.



Overview
1. Chiral ferromagnet: lattice and continuum descriptions.


2. Spin parallel transport and the SO(3) gauge field.


3. Gauged Heisenberg model as a minimal model of the chiral ferromagnet.


4. Application: extension of spin conservation law.


5. Application: DM term induced by spin current.


6. Application: skyrmion-crystal ground state in a d=2 chiral ferromagnet.


7. Discussion.

D. Hill, V. Slastikov, and O. Tchernyshyov, preprint arXiv:2008.08681. 



1. Chiral ferromagnet
A lattice description

Energy includes exchange and Dzyaloshinskii-Moriya (DM) interactions:

U = ∑
⟨ij⟩

[−J Si ⋅ Sj − Dij ⋅ (Si × Sj)] .
exchange DM

 is the Dzyaloshinskii-Moriya (DM) vector specific to bond . 

Induced by relativistic spin-orbit interaction. 

Much weaker than exchange, . Relativistic effect .


Drawback: lattice theory cannot be solved analytically.

Dij ⟨ij⟩

|D | ≪ J 𝒪(v/c)

T. Moriya, Phys. Rev. 120, 91 (1960).



1. Chiral ferromagnet
A continuum description

𝒰 =
1
2

∂im ⋅ ∂im − di ⋅ (m × ∂im) .
exchange DM

In a continuum theory, spins are represented by a smoothly varying magnetization field , .m(x) |m | = 1

Potential energy density:

 is the DM vector specific to spatial direction . 

Magnitude of  determines the wavenumber of helical (or more complex) magnetic order.

Weakness of the spin-orbit coupling means that , where  is the atomic lattice constant.


In a cubic crystal with broken inversion symmetry (e.g., MnSi), .

di i
d

|d | ≪ 1/a a

di = κei

I. E. Dzyaloshinskii, Sov. Phys. JETP 19, 960 (1964).



1. Chiral ferromagnet
A continuum description

𝒰 =
1
2

∂im ⋅ ∂im − di ⋅ (m × ∂im) − h ⋅ m .
exchange DM Zeeman

Add Zeeman coupling to an external magnetic field:

A. N. Bogdanov and D. A. Yablonskii, JETP 68, 101 (1989).

S. Mühlbauer et al., Science 323, 915 (2009).

X. Z. Yu et al., Nature 465, 901 (2010).

The enigmatic “A phase” of MnSi turned out to be a 
skyrmion crystal predicted theoretically in the 1980s.


The skyrmion crystal is very fragile in d=3 and exists in a 
small window of the  phase diagram.


Drawback: still no analytic treatment. 

(B, T)

MnSi

Fe0.5Co0.5Si

T/Tc

random position. For both samples and all crystal
orientations, the scattering pattern always
exhibited the sixfold symmetry. In case the
scattering plane contained a 〈110〉 direction, two
of the peaks of the sixfold pattern coincided with
this direction. As for Fig. 2C, the scattering plane
did not contain a 〈110〉 direction. For sample 2, the
intensities along the vertical direction, which
coincided with the 〈110〉 direction, were system-
atically weaker. This may be explained by the
demagnetizing fields caused by the large aspect
ratio, which implies that part of the scattering
intensity was not captured in the rocking scans
[see also (11)]. The main result of our study is
that, for all orientations of the magnetic field with
respect to the atomic lattice, six Bragg reflections
are observed on a regular hexagon that is strictly
perpendicular to the magnetic field.

We performed rocking scans to test whether
the A phase has long-range order. Typical data
are presented in (11). In the helical state, the
half-width of the rocking scans corresponded to
a magnetic mosaicity hm ≈ 3.5° consistent with
previous work and long-range order (12, 13).
Remarkably, in the A phase the half-width of the
rocking scans corresponded to a reduced mag-
netic mosaicity hm ≈ 1.75°, implying an even
longer correlation length of at least x ≈ 5500 Å,
when allowing for demagnetizing fields (11).

To test for consistency with previous work,
we also measured the emergence of the A phase
as a function of temperature for magnetic field
perpendicular to the neutron beam, where the
vertical axis was the same 〈110〉 axis as before
and the low-symmetry horizontal axis contain-
ing spots 6 and 8 in Fig. 2F was perpendicular
to the magnetic field and incident neutron beam.
Data were recorded after (i) zero-field-cooling
the sample to a temperature well below Tc, (ii)
increasing the magnetic field to 0.19 T, and (iii)
measuring the neutron scattering pattern for se-
lected increasing temperatures (Fig. 2F shows
data for T = 27.7 K). Well below Tc we first ob-

serve the two spots parallel to the field direc-
tion labeled 9 and 10, characteristic of the
conical state. When entering the A phase, the
intensity of the spots of the conical phase be-
comes very weak but does not vanish, whereas
strong scattering intensity appears in the per-
pendicular direction (spots 6 and 8). This is
consistent with previous work and may signal a
phase coexistence, as expected of a weak first-
order transition with possible extra effects of the
demagnetizing fields added.

The key results of our neutron scattering
data may be summarized as follows: (i) the
helical wave vector aligns perpendicular to the
applied magnetic field; (ii) the fundamental
symmetry of the intensity pattern is sixfold,
suggesting a multi-Q structure; and (iii) the A
phase stabilizes in a magnetic field strength of
order Bc2/2. Moreover, the pattern aligns very
weakly with respect to the 〈110〉 orientation. We
can readily account for these features in the
framework of standard Landau-Ginzburg the-
ory in the mean-field approximation by taking
fluctuations into account. Near Tc the Ginzburg-
Landau energy functional can be written as
(14, 15)

F½M" ¼ ∫d3r½r0M2 þ Jð∇MÞ2 þ 2DM ⋅

ð∇'MÞ þ UM4 − B ⋅ M" ð1Þ

The first and second terms represent the usual
quadratic contribution with the conventional gra-
dient term; the third term, the Dzyaloshinsky-
Moriya interaction; and the last term, the coupling
to an external magnetic field B. The quartic term
accounts in lowest order for the effects of mode-
mode interactions and stabilizes the magnetic order.
We neglect higher-order spin-orbit coupling terms
describing anisotropy effects (14, 15). The free
energy is given by exp(−G) = ∫DM exp(−F[M])
(throughout the paper, we use a dimensionless
free energy). Within mean-field approximation,

G(B) is equal to minF [M], and one minimizes
F with respect to the spin structure M(r).

To explain the A phase, we evoke strong anal-
ogies with the crystal formation of ordinary solids
out of the liquid state. The latter is in most cases
driven by the cubic interactions of density waves
(16), which in momentum space can be written as

∑
q1,q2,q3

rq1rq2rq3d(q1 þ q2 þ q3)

The ordered state can gain energy from this
term only when three ordering vectors of the
crystal structure add up to zero. Accordingly, in
many cases (exceptions can arise only for strong
first-order transitions) the ordered phase, which
forms first out of a liquid state, is of body-centered
cubic symmetry (16), which is the crystal struc-
ture with the largest number of such triples of
reciprocal lattice vectors.

In the presence of a finite uniform component
of the magnetization, Mf, a similar mechanism
can also occur in MnSi. From the quartic term
in Eq. 1, we obtain terms that are effectively
cubic in the modulated moment amplitudes

∑
q1,q2,q3

(Mf ⋅ mq1 )(mq2 ⋅ mq3 )d(q1 þ q2 þ q3)

ð2Þ

where mq is the Fourier transform of M(r). As
in the case of an ordinary crystal, one can gain
energy from this term for a structure with three
Q vectors adding up to zero. These vectors have
a fixed modulus determined by the interplay of
the two gradient terms in Eq. 1. Therefore, these
three vectors have relative angles of 120° (Fig.
3A) and define a plane characterized by a
normal vector, n%. By symmetry, the energy
change is proportional to Mf ⋅ n%, and therefore
the three Q vectors must be perpendicular with
respect to the external magnetic field. Our quali-
tative arguments already explain the two main
experimental observations in the A phase: The

Fig. 1. (A) Magnetic phase diagram of MnSi. For B = 0, helimagnetic order
develops below Tc = 29.5 K. Under magnetic field, the helical order unpins
and aligns along the field above Bc1; above Bc2, the helical modulation
collapses. In the conical phase, the helix is aligned parallel to the magnetic

field. The transition fields shown here have been inferred from the AC sus-
ceptibility, where the DC and AC fields were parallel to 〈100〉 (10). (B)
Neutron scattering setup used in our study; the applied magnetic field B was
parallel to the incident neutron beam.
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Bragg spots are located in the plane perpendic-
ular to B and display a sixfold symmetry (be-
cause both Q and −Q give a Bragg reflection)
independent of the orientation of the underlying
lattice. We therefore suggest that the A phase is
a chiral spin crystal, the A crystal, approximate-
ly characterized by the magnetization

M(r) ≈ Mf þ∑
3

i¼1
Mh

Qi
(rþ Dri) ð3Þ

where Mh
Qi
(r) ¼ A½ni1 cos(Qir)þ ni2 sin(Qi)r&

is the magnetization of a single chiral helix with
amplitude A, wave vector Qi, and two unit vectors,
ni1 and ni2, orthogonal to each other and to Qi. All

three helices have the same chirality; that is, all
Qi·(ni1 × ni2) have the same sign. More precisely,
one has to add further higher-order Fourier com-
ponents to Eq. 3whenminimizingF[M]. However,
these terms remain small close to Tc. The relative
shifts, Dri, of the helices, which we calculate
theoretically, determine whether the A crystal can
be described as a lattice of skyrmions (see below).

One also has to take into account that an ex-
ternal magnetic field favors helices with Q vec-
tors parallel to B, because this way the spins
may easily tilt parallel to the field to form a
conical structure. Within mean-field theory, this
conical phase always has the lowest energy (11).
However, in the parameter range, where the A

phase occurs experimentally, that is, close to Tc,
at intermediate magnetic fields (Fig. 1A), the
energy difference between the two phases be-
comes very small as shown in the Fig. 3B
inset. The origin of the energy minimum of the A
crystal for moderate magnetic field can be traced
back to the size of the modulations of the mag-
netization amplitude, |M(r)|, which is minimal
close to B ≈ 0.4Bc2 (11). In our mean-field Landau-
Ginzburg theory, the A crystal thus appears as
a metastable phase, which becomes extremely
close in energy to the conical phase for inter-
mediate fields B ≈ 0.4Bc2.

It turns out that, when we consider thermal
fluctuations around the mean-field solution,
these stabilize the A crystal. To show this, we con-
sider the leading correction to mean-field theory
arising from Gaussian fluctuations

G ≈ F½M0& þ
1
2
log det

d2F
dMdM

! "
#

#

#

#

M0

ð4Þ

whereM0 is the mean-field spin configuration for
either the A phase or the conical phase. To make
Eq. 4 well defined, one has to specify a cutoff
scheme for short length scales. We use a cutoff in
momentum space, k < 2p/a, where a is the lattice
spacing of the MnSi crystal. Because of the long
pitch of the helix, it turns out that most
contributions arise from fluctuations on short
length scales with the exception of temperatures
extremely close to Tc [see (11) for a detailed
discussion], but both short-range and long-range
fluctuations favor the A crystal for intermediate
magnetic fields. As shown in the Fig. 3B inset, the
fluctuations indeed stabilize the A crystal. A typ-
ical phase diagram resulting from Eq. 4 is shown
in Fig. 3B. The theoretical phase diagram catches
the main characteristics of the experimental phase
diagram. The A crystal is stable at intermediate
fields not too far from Tc. When interpreting the
theoretical result, one has to take into account that
Eq. 4 is only valid for small fluctuations and
therefore cannot be applied too close to Tc. Indeed
it is expected (17, 18) that fluctuations ultimately
drive the transition first order and that such strong
fluctuations will substantially shift the transition
line to the paramagnet.We estimate the strength of
fluctuations by calculating the leading correction
to the order parameter for both the conical phase
and the A crystal (11). In the shaded area of Fig.
3B, these corrections are small (less than 20%),
which justifies the use of Eq. 4.

As can be seen from Fig. 3C, the magnetic
structure of the A crystal obtained by minimiz-
ing F[M] is characterized by a pattern of mag-
netic vortices. To elucidate their nature, we
compute the skyrmion density given by (19):

f ¼ 1
4p

n ⋅
∂n
∂x

' ∂n
∂y

ð5Þ

where x and y are the coordinates perpendicular
to B and n =M(r)/|M(r)| is the orientation of the
magnetization. f is a measure of the winding of
the magnetization profile. If f integrates to 1 or
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Fig. 2. Typical neutron small angle scattering intensities; note that the color scale is logarithmic to make
weak features visible. Data represent the sum over rocking scans with respect to the vertical axis through
the sample. (A) to (C) show data for sample 1 and (D) to (F) for sample 2. Backgrounds measured above
Tc and B = 0 were subtracted in all panels except for (A) (light blue square). Spots are labeled for
reference; for the intensity of these spots as a function of rocking angle, see (11). (A) Helical order in
sample 1 in the zero-field-cooled state at T = 27 K and B = 0. (B) Sixfold intensity pattern in the A phase
in sample 1; same orientation as in (A); T = 26.45 K, B = 0.164 T. (C) Sixfold intensity pattern in the A
phase for random orientation of sample 1 (see text for details); T = 26.77 K, B = 0.164 T. (D) Helical
order in sample 2 in the zero-field-cooled state at T = 16 K and B = 0. (E) A phase in sample 2, same
orientation as in (D); T = 27.7 K, B = 0.162 T. (F) A phase as measured in conventional setup [compare
Fig. 1A in (11)], where data in all other panels were measured in the configuration shown in Fig. 1B; T =
27.7 K, B = 0.190 T. A small residual intensity due to the conical phase is observed (spots 9 and 10),
whereas spots 6 and 8 correspond to those in (E).
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1. Chiral ferromagnet
A continuum description

𝒰 =
1
2

∂im ⋅ ∂im − di ⋅ (m × ∂im) − h ⋅ m .
exchange DM Zeeman

Add Zeeman coupling to an external magnetic field:

A. N. Bogdanov and D. A. Yablonskii, JETP 68, 101 (1989).

S. Mühlbauer et al., Science 323, 915 (2009).

X. Z. Yu et al., Nature 465, 901 (2010).

The enigmatic “A phase” of MnSi turned out to be a 
skyrmion crystal predicted theoretically in the 1980s.


The skyrmion crystal is very fragile in d=3 and exists in a 
small window of the  phase diagram.


Drawback: still no analytic treatment. 

(B, T)

MnSi

Similar skyrmion nucleation and SkX-forming processes were
observed as we varied the temperature change at a constant magnetic
field (50 mT) applied normal to the film, as shown in the colour-
wheel representation (Fig. 2i–l) obtained by our TIE analysis of the
Lorentz TEM images. As temperature is increased, the stripy spin
texture at 5 K changes to a hexagonal skyrmion crystal at 25 K,
through a mixed structure of stripes and skyrmions at 15 K, and
the magnetic contrast finally disappears at ,40 K.

The experimental phase diagram for the spin texture for a thin film
of Fe0.5Co0.5Si, based on the real-space observation, is summarized in
Fig. 3d and can be compared with that of the theoretical simulation
(Fig. 3h) of the 2D model; in these figures, the phase change of the
spin texture is represented as the contour mapping of skyrmion
density. The experimental and theoretical results show good agree-
ment not only in the behaviour of the phase change between the
helical state and the SkX state (Fig. 3b, f), but also in the transitional
coexistence regions of the helical (or ferromagnetic) state and the
SkX state; see Fig. 3a, c for the experimental observations and Fig. 3e,
g for the theoretical simulation. We see that such a SkX transition,
although driven by a weak magnetic field applied perpendicular to
the crystal plate plane, also depends on temperature. The SkX phase
occupies a larger region of the T–B plane in the experimental phase
diagram than in the simulated phase diagram. One possible reason
for this is that the pinning effect due to, for example, imperfections in
the crystal suppresses the fluctuation of the SkX; this is not taken into
account in the simulation. Another possibility, which might be more
fundamental, is that the real system has a finite thickness whereas the
simulation was carried out for a purely 2D model. The ferromagnetic
coupling between the layers effectively increases the spin stiffness in

the real case, leading to a ‘heavier-spin’ object and, consequently,
relatively weaker thermal fluctuations than in the 2D model23.

In a bulk (three-dimensional) crystal, the SkX phase appears in
a narrow window of the T–B plane, at around 10 mT and 35–40 K
(ref. 19). In comparison with the bulk case, the critical field in the
ferromagnetic region is enhanced (up to 100 mT at 5 K) owing to the
appreciable demagnetization effect in the 2D case. More significantly,
the SkX phase can be produced with a magnetic field normal to the
plane even at the lowest temperature. The suppression of the single
conical spin state with an applied magnetic field in the 2D system
should favour the emergence of the SkX phase, as indicated by the
theoretical simulation. We note that the dimension (2D) of the mag-
netic texture is defined by the thickness of the crystal film being
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Figure 3 | Phase diagrams of magnetic structure and spin textures in a thin
film of Fe0.5Co0.5Si. a–c, Spin textures observed using Lorentz TEM
obtained by Monte Carlo simulation. e–g, Spin textures after TEM. H, helical
structure; SkX, skyrmion crystal structure; FM, ferromagnetic structure.
d, h, Observed (d) and calculated (h) phase diagrams in the B–T plane. The
magnetic field was applied perpendicular to the image plane. In h, B and T are
normalized using the arbitrary constants BC and TC. The colour bars in the
phase diagrams indicate the skyrmion density per 10212 m2 (d) and per d2

(h), d being the helical spin wavelength. Dashed lines show the phase
boundaries between the SkX, H and FM phases. Stars in d and h indicate
(T, B) conditions for the images shown in a–c and e–g, respectively.
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Figure 2 | Variations of spin texture with magnetic field and temperature in
Fe0.5Co0.5Si. a–d, Magnetic-field dependence of the spin texture, in real-
space Lorentz TEM (overfocus) images. e–h, FFT patterns corresponding to
a–d. i–l, Temperature profiles of the distribution map of the lateral
magnetization for a magnetic field of 50 mT. Magnetic fields were applied
normal to the (001) thin film. The colour wheel represents the magnetization
direction at every point.
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(several tens of nanometres) can be regarded as a magnetically 2D
system, in which the direction of q is confined within the plane
because the sample thickness is less than the helical wavelength;
therefore, various features should appear that are missing in bulk
samples. In the context of the skyrmion, the thin film has the advant-
age that the conical state is not stabilized when the magnetic field is
perpendicular to the plane23. Therefore, it is expected that the SkX can
be stabilized much more easily, and even at T 5 0, in a thin film of
helical magnet.

In this Letter, we report the real-space observation of the forma-
tion of the SkX in a thin film of B20-type Fe0.5Co0.5Si, the thickness of
which is less than the helical wavelength, using Lorentz TEM28 with a
high spatial resolution. The quantitative evaluation of the magnetic
components is achieved by combining the Lorentz TEM observation
with a magnetic transport-of-intensity equation (TIE) calculation
(Supplementary Information).

We first discuss the two prototypical topological spin textures
observed for the (001) thin film of Fe0.5Co0.5Si. The Monte Carlo
simulation (Supplementary Information) for the discretized version
of the Hamiltonian in equation (1) predicts that the proper screw
(Fig. 1a) changes to the 2D skyrmion lattice (Fig. 1b) when a perpen-
dicular external magnetic field is applied at low temperature and when
the thickness of the thin film is reduced to close to or less than the
helical wavelength. The Lorentz TEM observation of the zero-field
state below the magnetic transition temperature (,40 K) clearly
reveals the stripy pattern (Fig. 1d) of the lateral component of the
magnetization, with a period of 90 nm, as previously reported18; this
indicates the proper-screw spin propagating in the [100] or [010]
direction. When a magnetic field (50 mT) was applied normal to the
plate, a 2D skyrmion lattice like that predicted by the simulation
(Fig. 1b) was observed as a real-space image (Fig. 1e) by means of
Lorentz TEM. The hexagonal lattice is a periodic array of swirling spin
textures (a magnified view is shown in Fig. 1f) and the lattice spacing is
of the same order as the stripe period, ,90 nm. Each skyrmion has the
Dzyaloshinskii–Moriya interaction energy gain, and the regions
between them have the magnetic field energy gain. Therefore, the
closest-packed hexagonal lattice of the skyrmion has both energy
gains, and forms at a magnetic field strength intermediate between
two critical values, each of which is of order a2/J in units of energy. We

note that the anticlockwise rotating spins in each spin structure reflect
the sign of the Dzyaloshinskii–Moriya interaction of this helical mag-
net. Although Lorentz TEM cannot specify the direction of the mag-
netization normal to the plate, the spins in the background (where the
black colouring indicates zero lateral component) should point
upwards and the spins in the black cores of the ‘particles’ should point
downwards; this is inferred from comparison with the simulation of
the skyrmion and is also in accord with there being a larger upward
component along the direction of the magnetic field. The situation is
similar to the magnetic flux in a superconductor29, in which the spins
are parallel to the magnetic field in the core of each vortex.

Keeping this transformation between the two distinct spin textures
(helical and skyrmion) in mind, let us go into detail about their field
and temperature dependences. First, we consider the isothermal vari-
ation of the spin texture as the magnetic field applied normal to the
(001) film is increased in intensity. The magnetic domain configura-
tion at zero field is shown in Fig. 2a. In analogy to Bragg reflections
observed in neutron scattering22, two peaks were found in the cor-
responding fast Fourier transform (FFT) pattern (Fig. 2e), confirm-
ing that the helical axis is along the [100] direction. In the real-space
image, however, knife-edge dislocations (such as that marked by an
arrowhead in Fig. 2a) are often seen in the helical spin state, as
pointed out in ref. 18. When a weak external magnetic field, of
20 mT, was applied normal to the thin film, the hexagonally arranged
skyrmions (marked by a hexagon in Fig. 2b) started to appear as the
spin stripes began to fragment. The coexistence of the stripe domain
and skyrmions is also seen in the corresponding FFT pattern (Fig. 2f);
the two main peaks rotate slightly away from the [100] axis, and two
other broad peaks and a weak halo appear. With further increase of
the magnetic field to 50 mT (Fig. 2c), stripe domains were completely
replaced by hexagonally ordered skyrmions. Such a 2D skyrmion
lattice structure develops over the whole region of the (001) sample,
except for the areas containing magnetic defects (Supplementary
Information). A lattice dislocation was also observed in the SkX, as
indicated by a white arrowhead in Fig. 2c. The corresponding FFT
(Fig. 2g) shows the six peaks associated with the hexagonal SkX
structure. The SkX structure changes to a ferromagnetic structure
at a higher magnetic field, for example 80 mT (Fig. 2d, h), rendering
no magnetic contrast in the lateral component.

d e f

90 nm 90 nm 30 nm

[010] [100]

a b c

Figure 1 | Topological spin textures in the helical magnet Fe0.5Co0.5Si.
a, b, Helical (a) and skyrmion (b) structures predicted by Monte Carlo
simulation. c, Schematic of the spin configuration in a skyrmion. d–f, The
experimentally observed real-space images of the spin texture, represented
by the lateral magnetization distribution as obtained by TIE analysis of the

Lorentz TEM data: helical structure at zero magnetic field (d), the skyrmion
crystal (SkX) structure for a weak magnetic field (50 mT) applied normal to
the thin plate (e) and a magnified view of e (f). The colour map and white
arrows represent the magnetization direction at each point.

LETTERS NATURE | Vol 465 | 17 June 2010

902
Macmillan Publishers Limited. All rights reserved©2010

Fe0.5Co0.5Si



2. Geometric perspective
Spin parallel transport

Condition of uniform magnetization, , 
can be seen as a rule for spin parallel transport.

∂im = 0

∂xm = 0
x

y
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2. Geometric perspective
Spin parallel transport

Condition of uniform magnetization, , 
can be seen as a rule for spin parallel transport.

∂im = 0

This parallel transport is trivial. Transporting a 
spin along two different paths with the same 
endpoints results in the same final orientation.

∂ym = 0

∂xm = 0 ∂ym = 0

∂xm = 0



2. Geometric perspective
Spin parallel transport

Dym = 0

Dxm = 0
x

y

A “twisted” generalization of parallel transport is . 

As a spin moves along -axis, it twists at the angular “velocity” .


Upon an infinitesimal displacement , 

the spin twists by .


Here the twisting rates are  
.

∂im = Ai × m
xi Ai

dx
dm = dxiAi × m

Ax = κex, Ay = κey



2. Geometric perspective
Spin parallel transport

Dym = 0

Dxm = 0
 is an SO(3) gauge field, or the spin connection.Ai x

y

This rule of parallel transport can be written as , 

the vanishing of the covariant derivative . 


Upon an infinitesimal displacement , 

the spin twists by .


Here the twisting rates are

.

Dim = 0
Dim ≡ ∂im − Ai × m

dx
dm = dxiAi × m

Ax = κex, Ay = κey



2. Geometric perspective
Spin parallel transport

Now taking a spin along two different paths 
with the same endpoints yields different final 
orientations. The mismatch is given by the 
rotation angle .FijdSij

 is the area of the loop.

 is the SO(3) gauge curvature, or magnetic field. Here .

dSij

Fij = ∂iAj − ∂jAi − Ai × Aj Fxy = − κ2ez

Dym = 0

Dxm = 0 Dym = 0

Dxm = 0

A more general rule for parallel transport is , 

where  is the covariant derivative. 


As a spin moves along spatial direction , 

it rotates at the rate , i.e., .


Here the SO(3) gauge fields are

.

Dim = 0
Dim ≡ ∂im − Ai × m

i
Ai dm = dxiAi × m

Ax = κex, Ay = κey



2. Geometric perspective
Analogy with general relativty

       General relativity          Chiral magnetism

         4-velocity             magnetization 

         4-acceleration            magnetization twist 

         Levi-Civita connection            spin connection 

         Riemann curvature            spin curvature 

mα

∂imα

Aiαβ = ϵαβγAiγ

ui

dui/dτ

Γi
jk

Ri
jkl Fiαβ = ϵαβγFiγ

 label spatial indices;  label spin indices.i, j, k α, β, γ



2. Geometric perspective
Covariance under local spin-frame rotations
Transformation of a spin vector  under an infinitesimal spin-frame rotation: 


                            .

Examples of spin vectors: spin , magnetization , spin current  (along spatial direction ).


Heisenberg exchange energy  is invariant under global spin-frame rotations .

It is not invariant under local spin-frame rotations  because  is not a spin vector.


Generalization of  that does transform like a spin vector is : 

                          , 


provided that the gauge potential transforms as . (  is not a spin vector!)


Hence the covariant form of the Heisenberg exchange model, invariant under local rotations:

m
δm = − ω × m

S M ji xi

𝒰 = ∂im ⋅ ∂im ω
ω(x) ∂im(x)

∂im(x) Dim ≡ ∂im − Ai × m
δDim(x) = − ω(x) × Dim(x)

δAi(x) = − Diω(x) Ai

𝒰 =
1
2

Dim ⋅ Dim .



3. Gauged Heisenberg model
A minimal model of the chiral ferromagnet
Gauged Heisenberg model imposes an energy penalty for failing the rules of parallel transport, .Dim ≠ 0

𝒰 =
1
2

Dim ⋅ Dim

=
1
2

∂im ⋅ ∂im − Ai ⋅ (m × ∂im) +
1
2

(Ai × m) ⋅ (Ai × m) .
exchange DM anisotropy

First two terms = chiral model of a ferromagnet (exchange + DM). 

DM vectors = SO(3) gauge field, . 

Third term = spin anisotropy. (Reduces to a trivial constant for cubic symmetry.)

Ai = di

Dim ≡ ∂im − Ai × m

I. E. Dzyaloshinskii and G. E. Volovik, J. Phys. (Paris) 39, 693 (1978).

P. Chandra, P. Coleman, and A. I. Larkin, J. Phys.: Condens. Matter 2, 7933 (1990).

L. Shekhtman, O. Entin-Wohlman, and A. Aharony, Phys. Rev. Lett. 69, 836 (1992).

J. Fröhlich and U. Studer, Rev. Mod. Phys. 65, 733 (1993).

I. V. Tokatly, Phys. Rev. Lett. 101, 106601 (2008).



3. Gauged Heisenberg model
A minimal model of the chiral ferromagnet
Gauged Heisenberg model imposes an energy penalty for failing the rules of parallel transport, .Dim ≠ 0

𝒰 =
1
2

Dim ⋅ Dim

=
1
2

∂im ⋅ ∂im − Ai ⋅ (m × ∂im) −
1
2

(Ai ⋅ m)(Ai ⋅ m) + const .
exchange DM anisotropy

First two terms = chiral model of a ferromagnet (exchange + DM). 

DM vectors = SO(3) gauge field, . 

Third term = spin anisotropy. (Reduces to a trivial constant for cubic symmetry.)

Ai = di

I. E. Dzyaloshinskii and G. E. Volovik, J. Phys. (Paris) 39, 693 (1978).

P. Chandra, P. Coleman, and A. I. Larkin, J. Phys.: Condens. Matter 2, 7933 (1990).

L. Shekhtman, O. Entin-Wohlman, and A. Aharony, Phys. Rev. Lett. 69, 836 (1992).

J. Fröhlich and U. Studer, Rev. Mod. Phys. 65, 733 (1993).

I. V. Tokatly, Phys. Rev. Lett. 101, 106601 (2008).

Dim ≡ ∂im − Ai × m



3. Gauged Heisenberg model
A minimal model of the chiral ferromagnet

Symmetry class Ax Ay Fxy

Cnv

Dn

D2d

κey

κex

−κex

κey

−κex κey

−κ2ez

−κ2ez

κ2ez

Fij = ∂iAj − ∂jAi − Ai × Aj .

Gauge fields and gauge curvature for some symmetry classes in . Here .d = 2 n = 3,4,6

A. N. Bogdanov and D. A. Yablonskii, JETP 68, 101 (1989).

D. Hill, V. Slastikov, and O. Tchernyshyov, arXiv:2008.08681.

 (DM vectors).Ai = di



4. Extension of the spin conservation law
Pure Heisenberg model

Symmetry of global spin rotations implies conservation of spin. 

m ↦ Rm, 𝒰 =
1
2

∂im ⋅ ∂im ↦ 𝒰 .

Landau-Lifshitz equation can be recast as conservation of spin current:

∂tm = m × ∂i∂im ⇔ ∂ts + ∂iji = 0.

Here  is spin density and  is spin current.s = m ji = − m × ∂im

Adding DM interaction violates this spin conservation to 1st order in relativistic expansion, . v/c

∂ts + ∂iji = DM torque 𝒪(v/c) ≠ 0.



4. Extension of the spin conservation law
Gauged Heisenberg model

Gauged version is invariant under local spin rotations as well. 

m ↦ R(x)m, 𝒰 =
1
2

Dim ⋅ Dim ↦ 𝒰 .

Spin conservation law is preserved if gradients are replaced by covariant derivatives .Dim ≡ ∂im − Ai × m
∂tm = m × DiDim ⇔ ∂ts + Diji = 0.

Here  is spin density and  is the redefined spin current.s = m ji = − m × Dim

Redefined spin current is conserved in the presence of DM interactions.

Spin conservation is spoiled by anisotropy, a higher-order relativistic effect. 

∂ts + Diji = anisotropy torque 𝒪(v2/c2) ≠ 0.



5. DM interaction from spin current?
Several theorists suggested that injection of spin current  can add DM interaction: .


Potential problem with this:  is a spin vector, but  is not: it is a gauge potential .

Under an infinitesimal spin-frame rotation :


, 




Therefore, a linear relation  is not a gauge-invariant statement. 


Note a similarity to the Londons equation: , which is also not gauge-invariant.


A gauge-invariant statement is worth thinking through.

ji di ∝ ji

ji di Ai(x) = di(x)
ω(x)

δji(x) = − ω(x) × ji(x)
δAi(x) = − Diω(x) ≡ − ∂iω(x) − ω(x) × Ai(x)

di ∝ ji

ji = −
ne2

mc2
Ai

T. Kikuchi, T. Koretsune, R. Arita, and G. Tatara, Phys. Rev. Lett. 116, 247201 (2016).

F. Freimuth, S. Blügel, and Y. Mokrousov, Phys. Rev. B 96, 054403 (2017).



6. Chiral ferromagnet

random position. For both samples and all crystal
orientations, the scattering pattern always
exhibited the sixfold symmetry. In case the
scattering plane contained a 〈110〉 direction, two
of the peaks of the sixfold pattern coincided with
this direction. As for Fig. 2C, the scattering plane
did not contain a 〈110〉 direction. For sample 2, the
intensities along the vertical direction, which
coincided with the 〈110〉 direction, were system-
atically weaker. This may be explained by the
demagnetizing fields caused by the large aspect
ratio, which implies that part of the scattering
intensity was not captured in the rocking scans
[see also (11)]. The main result of our study is
that, for all orientations of the magnetic field with
respect to the atomic lattice, six Bragg reflections
are observed on a regular hexagon that is strictly
perpendicular to the magnetic field.

We performed rocking scans to test whether
the A phase has long-range order. Typical data
are presented in (11). In the helical state, the
half-width of the rocking scans corresponded to
a magnetic mosaicity hm ≈ 3.5° consistent with
previous work and long-range order (12, 13).
Remarkably, in the A phase the half-width of the
rocking scans corresponded to a reduced mag-
netic mosaicity hm ≈ 1.75°, implying an even
longer correlation length of at least x ≈ 5500 Å,
when allowing for demagnetizing fields (11).

To test for consistency with previous work,
we also measured the emergence of the A phase
as a function of temperature for magnetic field
perpendicular to the neutron beam, where the
vertical axis was the same 〈110〉 axis as before
and the low-symmetry horizontal axis contain-
ing spots 6 and 8 in Fig. 2F was perpendicular
to the magnetic field and incident neutron beam.
Data were recorded after (i) zero-field-cooling
the sample to a temperature well below Tc, (ii)
increasing the magnetic field to 0.19 T, and (iii)
measuring the neutron scattering pattern for se-
lected increasing temperatures (Fig. 2F shows
data for T = 27.7 K). Well below Tc we first ob-

serve the two spots parallel to the field direc-
tion labeled 9 and 10, characteristic of the
conical state. When entering the A phase, the
intensity of the spots of the conical phase be-
comes very weak but does not vanish, whereas
strong scattering intensity appears in the per-
pendicular direction (spots 6 and 8). This is
consistent with previous work and may signal a
phase coexistence, as expected of a weak first-
order transition with possible extra effects of the
demagnetizing fields added.

The key results of our neutron scattering
data may be summarized as follows: (i) the
helical wave vector aligns perpendicular to the
applied magnetic field; (ii) the fundamental
symmetry of the intensity pattern is sixfold,
suggesting a multi-Q structure; and (iii) the A
phase stabilizes in a magnetic field strength of
order Bc2/2. Moreover, the pattern aligns very
weakly with respect to the 〈110〉 orientation. We
can readily account for these features in the
framework of standard Landau-Ginzburg the-
ory in the mean-field approximation by taking
fluctuations into account. Near Tc the Ginzburg-
Landau energy functional can be written as
(14, 15)

F½M" ¼ ∫d3r½r0M2 þ Jð∇MÞ2 þ 2DM ⋅

ð∇'MÞ þ UM4 − B ⋅ M" ð1Þ

The first and second terms represent the usual
quadratic contribution with the conventional gra-
dient term; the third term, the Dzyaloshinsky-
Moriya interaction; and the last term, the coupling
to an external magnetic field B. The quartic term
accounts in lowest order for the effects of mode-
mode interactions and stabilizes the magnetic order.
We neglect higher-order spin-orbit coupling terms
describing anisotropy effects (14, 15). The free
energy is given by exp(−G) = ∫DM exp(−F[M])
(throughout the paper, we use a dimensionless
free energy). Within mean-field approximation,

G(B) is equal to minF [M], and one minimizes
F with respect to the spin structure M(r).

To explain the A phase, we evoke strong anal-
ogies with the crystal formation of ordinary solids
out of the liquid state. The latter is in most cases
driven by the cubic interactions of density waves
(16), which in momentum space can be written as

∑
q1,q2,q3

rq1rq2rq3d(q1 þ q2 þ q3)

The ordered state can gain energy from this
term only when three ordering vectors of the
crystal structure add up to zero. Accordingly, in
many cases (exceptions can arise only for strong
first-order transitions) the ordered phase, which
forms first out of a liquid state, is of body-centered
cubic symmetry (16), which is the crystal struc-
ture with the largest number of such triples of
reciprocal lattice vectors.

In the presence of a finite uniform component
of the magnetization, Mf, a similar mechanism
can also occur in MnSi. From the quartic term
in Eq. 1, we obtain terms that are effectively
cubic in the modulated moment amplitudes

∑
q1,q2,q3

(Mf ⋅ mq1 )(mq2 ⋅ mq3 )d(q1 þ q2 þ q3)

ð2Þ

where mq is the Fourier transform of M(r). As
in the case of an ordinary crystal, one can gain
energy from this term for a structure with three
Q vectors adding up to zero. These vectors have
a fixed modulus determined by the interplay of
the two gradient terms in Eq. 1. Therefore, these
three vectors have relative angles of 120° (Fig.
3A) and define a plane characterized by a
normal vector, n%. By symmetry, the energy
change is proportional to Mf ⋅ n%, and therefore
the three Q vectors must be perpendicular with
respect to the external magnetic field. Our quali-
tative arguments already explain the two main
experimental observations in the A phase: The

Fig. 1. (A) Magnetic phase diagram of MnSi. For B = 0, helimagnetic order
develops below Tc = 29.5 K. Under magnetic field, the helical order unpins
and aligns along the field above Bc1; above Bc2, the helical modulation
collapses. In the conical phase, the helix is aligned parallel to the magnetic

field. The transition fields shown here have been inferred from the AC sus-
ceptibility, where the DC and AC fields were parallel to 〈100〉 (10). (B)
Neutron scattering setup used in our study; the applied magnetic field B was
parallel to the incident neutron beam.
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In our mean-field Landau-Ginzburg theory, the A crystal 
thus appears as a metastable phase, which becomes 
extremely close in energy to the conical phase for inter- 
mediate fields… 


It turns out that, when we consider thermal fluctuations 
around the mean-field solution, these stabilize the A 
crystal.

𝒰 =
α(T − Tc)

2
m ⋅ m +

1
2

∂im ⋅ ∂im + κm ⋅ (∇ × m) +
c
4

(m ⋅ m)2 − h ⋅ m .

S. Mühlbauer et al., Science 323, 915 (2009).

Skyrmion crystal is hard to get in theory (especially analytically)



6. Chiral ferromagnet in d=2 dimensions
Insights from Belavin and Polyakov

𝒰 =
1
2

∂im ⋅ ∂im .
Energy density of the Heisenberg model:

Energy minima satisfy the (hard-to-solve) 2nd-order Laplace equation: 

∂i∂im = 0, |m | = 1.

States satisfying the (much easier) 1st-order Bogomolny equation,

∂xm ± m × ∂ym = 0,

are energy minima with the energy given by a topological charge, the skyrmion number :Q

U = ± 4πQ = 4π |Q | .

A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 (1975).



Insights from Belavin and Polyakov

z = x + iy, z̄ = x − iy .
Convenient parametrization via complex coordinates and complex fields:

A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 (1975).

ψ =
mx + imy

1 + mz
, ψ̄ =

mx − imy

1 + mz
.

Bogomolny equation simplifies:

∂xm ± m × ∂ym = 0
∂z̄ψ = 0, ψ = w(z)

∂zψ = 0, ψ = w(z̄)

for + sign.

for – sign.

Here  is an arbitrary meromorphic function (analytic except at isolated poles).w

6. Chiral ferromagnet in d=2 dimensions

(complex coordinates)

(stereographic projection)



Insights from Belavin and Polyakov

ψ =
N

∏
n=1

(z − zn), ψ =
N

∑
n=1

1
z − zn

Examples of Bogomolny solutions for the + sign:

A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 (1975).

Both describe states with  skyrmions at complex positions .

The skyrmion number  is the degree of mapping .

The energy .

Skyrmions act as ideal particles with energy  each.

N z = zn
Q = N = 0,1,2,… z ↦ ψ

U = 4πQ = 4πN ≥ 0
4π

6. Chiral ferromagnet in d=2 dimensions



Insights from Belavin and Polyakov

ψ =
N

∏
n=1

(z̄ − z̄n), ψ =
N

∑
n=1

1
z̄ − z̄n

Examples of Bogomolny solutions for the – sign:

A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 (1975).

Both describe states with  antiskyrmions at complex positions .

The skyrmion number 

The energy .

Antiskyrmions act as ideal particles with energy  each.

N z = zn
Q = − N = 0, − 1, − 2,…

U = − 4πQ = 4πN ≥ 0
4π
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Gauged Heisenberg model at a critical external field:
Energy density of the gauged Heisenberg model:

In stronger fields, the uniform (vacuum) state with  parallel to  is locally stable.

In weaker fields, the vacuum is unstable. 

m h

B. J. Schroers, SciPost Phys. 7, 030 (2019).

𝒰 =
1
2

Dim ⋅ Dim − h ⋅ m, h = ∓ Fxy .

6. Chiral ferromagnet in d=2 dimensions



𝒰 =
1
2

Dim ⋅ Dim − h ⋅ m, h = ∓ Fxy .

Energy density of the gauged Heisenberg model:

Energy minima satisfy the (hard-to-solve) 2nd-order Laplace equation: 

DiDim − h = 0, |m | = 1.

States satisfying the (much easier) 1st-order Bogomolny equation,

Dxm ± m × Dym = 0,

have the energy given by the topological charge (up to a boundary term)

U = ± 4πQ ∓ ∮ dxiAi ⋅ m .

B. Barton-Singer, C. Ross, and B. J. Schroers, Commun. Math. Phys. 375, 2259 (2020).

6. Chiral ferromagnet in d=2 dimensions
Gauged Heisenberg model at a critical external field:



𝒰 =
1
2

Dim ⋅ Dim − h ⋅ m, h = − Fxy .Energy density

Symmetry class Bogomolny equation Bogomolny solutionsAx Ay Fxy

Cnv

Dn

D2d

κey

κex

−κex

κey

−κex κey

−κ2ez

−κ2ez

κ2ez

∂z̄ψ−1 = − κ/2

∂z̄ψ−1 = − iκ/2

∂z̄ψ = iκ/2

ψ−1 = − κz̄ /2 + w(z)

ψ−1 = − iκz̄ /2 + w(z)

ψ = iκz̄ /2 + w(z)

Here  is an arbitrary meromorphic function of .w(z) z

Bogomolny equation Dxm + m × Dym = 0.

D. Hill, V. Slastikov, and O.T., arXiv:2008.08681.

6. Chiral ferromagnet in d=2 dimensions
Gauged Heisenberg model at a critical external field:



Bogomolny equation  or Dxm + m × Dym = 0, ∂z̄ψ−1 = − iκ/2.

Symmetry class .Dn

Possible skyrmion numbers Q = −1, 0, 1, 2,…

Possible energy U = 4πQ = −4π, 0, 4π, 8π, …

NB: a Bogomolny solution with one antiskyrmion ( ) has a negative energy!Q = − 1

6. Chiral ferromagnet in d=2 dimensions
Gauged Heisenberg model at a critical external field:

Bogomolny solutions , 

where  is an arbitrary meromorphic function.

ψ−1 = − iκz̄ /2 + w(z)
w



Bogomolny equation ∂z̄ψ−1 = − iκ/2.

 has the lowest  

among Bogomolny states.
ψ−1 = − iκz̄ /2 Q = − 1

Symmetry class .Dn

Energy ?U = 4πQ = −4π

6. Chiral ferromagnet in d=2 dimensions
Gauged Heisenberg model at a critical external field:

An isolated antiskyrmion

Bogomolny solutions , 

where  is an arbitrary meromorphic function.

ψ−1 = − iκz̄ /2 + w(z)
w

It is unfortunate that this is the lowest  for a Bogomolny state.Q



6. Chiral ferromagnet in d=2 dimensions
Idea for constructing the ground state

, .Q = 0 U = 0

Vacuum



6. Chiral ferromagnet in d=2 dimensions
Idea for constructing the ground state

, .Q = − 1 U = − 4π

1 antiskyrmion



6. Chiral ferromagnet in d=2 dimensions
Idea for constructing the ground state

, .Q = − 2 U ≈ − 8π

2 antiskyrmions



6. Chiral ferromagnet in d=2 dimensions
Idea for constructing the ground state

, .Q = − 4 U ≈ − 16π

4 antiskyrmions



6. Chiral ferromagnet in d=2 dimensions
Idea for constructing the ground state

, .Q = − 8 U ≈ − 32π

ψ̄(z) ≈ −
2i
κ ∑

n

1
z − zn

So that  when ,

Bogomolny state with .

ψ−1 ∼ − iκ(z̄ − z̄n)/2 z → zn
Q = − 1 8 antiskyrmions



High-energy skyrmion crystal

Bogomolny solution in the form of a skyrmion lattice can 
be constructed with the aid of the Weierstrass  function,ζ

ζ(z) =
1
z

+ ∑
mn

′￼( 1
z − Ωmn

+
1

Ωmn
+

z
Ω2

mn ),

Ωmn = 2mω1 + 2nω2 .

This function has periodically arranged single poles 
(centers of skyrmions) but is not itself periodic. It is 
quasiperiodic:

-π

-π /2

0

π /2

π

0

14

∞

Poles are white, zeroes are black.

6. Chiral ferromagnet in d=2 dimensions

Here  and  are (complex) periods.2ω1 2ω2

ζ(z + 2ωi) = ζ(z) + 2ηi .



High-energy skyrmion crystal

Bogomolny solution in the form of a skyrmion lattice can 
be constructed with the aid of the Weierstrass  function,ζ

ζ(z) =
1
z

+ ∑
mn

′￼( 1
z − Ωmn

+
1

Ωmn
+

z
Ω2

mn ),

Ωmn = 2mω1 + 2nω2 .

A unique superposition of  and  is strictly periodic:ζ(z) z̄

Poles are white, zeroes are black.

ψ−1 = −
iκ
2 [z̄ −

S
π

ζ(z)] .
-π

-π /2

0

π /2

π

0

6.7

∞

The energy is  per unit cell, a highly excited state.4π

Skyrmions act as ideal particles with energy  each.4π

6. Chiral ferromagnet in d=2 dimensions



Low-energy skyrmion crystal (ground state?)

Antiskyrmions have negative energy  (when far apart).

Construct an antiskyrmion crystal.

−4π

ψ̄ =
2i
κ [ π

S
z̄ − ζ(z)] .

The energy is  per unit cell in the limit of large 
separation.

−4π

Antiskyrmions act as particles with energy 
 each and repulsive interactions. 


For 2 antiskyrmions distance  apart,

−4π

a

U(a) ∼ U(∞) +
512π
(κa)2

ln(Cκa) .
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Low-energy skyrmion crystal (ground state?)

Antiskyrmions have negative energy  (when far apart).

Construct an antiskyrmion crystal.

−4π

ψ̄ =
2i
κ [ π

S
z̄ − ζ(z)] .

The energy is  per unit cell in the limit of large 
separation.

−4π

Antiskyrmions act as particles with energy 
 each and repulsive interactions. 


For 2 antiskyrmions distance  apart,

−4π

a

U(a) ∼ U(∞) +
512π
(κa)2

ln(Cκa) .

U(a) ∼ − 4π +
k

(κa)2
ln(Cκa) .

By analogy, the energy per unit cell in an 
antiskyrmion crystal with lattice constant  is 
expected to be

a

Energy density as a function of skyrmion density: 

𝒰(ρ) ∼ 4πρ +
kρ2

κ2
ln(Cκ2ρ) .
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Low-energy skyrmion crystal (ground state?)

Antiskyrmions have negative energy  (when far apart).

Construct an antiskyrmion crystal.

−4π
Energy density of a hexagonal skyrmion crystal

as a function of skyrmion density

ψ̄ =
2i
κ [ π

S
z̄ − ζ(z)] .

The energy is  per unit cell in the limit of large 
separation.

−4π
-0.04 -0.03 -0.02 -0.01 0.01

κ-2ρ

-0.10

-0.05

0.05

κ-2U

Energy density as a function of skyrmion density: 

𝒰(ρ) ∼ 4πρ +
kρ2

κ2
ln(Cκ2ρ) .
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Curves: asymptotic expansion.

Filled circles: theory.

Open circles: Monte Carlo simulations.
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Low-energy skyrmion crystal (ground state?)

Antiskyrmions have negative energy  (when far apart).

Construct an antiskyrmion crystal.
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Energy density as a function of skyrmion density: 

𝒰(ρ) ∼ 4πρ +
kρ2
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optimal lattice constant .

ρ0 ≈ − 0.0172κ2

a0 ≈ 8.19κ−1

The energy is  per unit cell in the limit of large 
separation.
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Low-energy skyrmion crystal (ground state?)
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Both anyiskyrmion crystals were obtained 
in Monte Carlo simulations by quenching a 
random state to a low temperature.
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6. Summary
• The chiral ferromagnet has been modeled as a Heisenberg ferromagnet with 

nontrivial spin transport. 


• DM vectors  play the role of the spin connection, or the SO(3) gauge field 
. Gauge curvature  determines critical fields. 


• Conserved spin current can be redefined to automatically include DM interactions.


• This gauged Heisenberg model in d=2 dimensions in a critical field is amenable to 
analytical methods introduced by Belavin and Polyakov (1975). 


• The ground state between the upper critical field and zero is an antiskyrmion 
crystal; between zero and the lower critical field, a skyrmion crystal. The two 
crystals coexist at zero field.

di
Ai = di Fij = ∂iAj − ∂jAi − Ai × Aj
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