

Quantum Magnonics: quantum optics with magnons

Silvia Viola Kusminskiy

MAX PLANCK INSTITUTE FOR THE SCIENCE OF LIGHT

Max Planck Research Group

Theory of hybrid quantum systems

Anna-Luisa Römling

Vanessa Wachter

Examples of Hybrid Quantum Systems

microwave optomechanics

use collective excitations

Nanotube

optomagnonics

Osada et. al PRL 116, 223601 (2016)

Applications: Quantum Technologies

Communicate

Fundamentals: How macroscopic can a quantum state be?

 $\left| \begin{array}{c} \\ \end{array} \\ \end{array} \right\rangle + \left| \begin{array}{c} \\ \end{array} \\ \end{array} \right\rangle \right\rangle$

Schrödinger's cat

Ultimate hybrid system!

Schrödinger, Gedanken experiment (1935)

" Man kann burleske Fälle konstruieren."

" One can construct absurd cases."

"Die Naturwissenschaften", 1935

Hybrid quantum systems based on magnetic elements

Zhang et. al Science Advances 2016

Osada et. al PRL 116 2016

YIG

$\begin{array}{c} \mbox{Yttrium Iron Garnet} \\ \mbox{Y}_3 \, Fe_5 \, O_{12} \end{array}$

- ferrimagnetic
- insulator
- transparent in the infrared

Picture form Tabuchi et al, PRL 113, 083603 (2014)

What is a magnon?

elementary magnetic excitation (quantum of spin wave)

Why do we like magnons?

Why do we like magnons?

Magnons are friendly: coupling to electrons, phonons, photons...

Optomagnonics

cavity-enhanced spin-photon interaction

cavity-enhanced spin-photon interaction

cavity QED + magnetism

Microwave regime

· · ·

Microwave regime

Microwave Regime

Microwaves

Strong coupling regime

Huebl et. al, PRL 111, 127003 (2013) Zhang et. al PRL 113, 156401 (2014) Tabuchi et. al PRL 113, 083603 (2014)

Magnons

 $\Omega \sim GHz$ for 30mT

Microwave Regime

Microwaves

Strong coupling regime

Huebl et. al, PRL 111, 127003 (2013) Zhang et. al PRL 113, 156401 (2014) Tabuchi et. al PRL 113, 083603 (2014)

Magnons

Soykal and M. E. Flatte PRL 104, 077202 (2010)

Microwave Regime

QUANTUM INFORMATION (Science 2015)

Coherent coupling between a ferromagnetic magnon and a superconducting qubit

Yutaka Tabuchi,¹* Seiichiro Ishino,¹ Atsushi Noguchi,¹ Toyofumi Ishikawa,¹ Rekishu Yamazaki,¹ Koji Usami,¹ Yasunobu Nakamura^{1,2}

Microwave Regime: Single Magnon Detector

QUANTUM SENSING(Science 2020)Entanglement-based single-shot detection of a singlemagnon with a superconducting qubit

Dany Lachance-Quirion¹, Samuel Piotr Wolski¹, Yutaka Tabuchi¹, Shingo Kono¹, Koji Usami¹, Yasunobu Nakamura^{1,2 \times}

Α С Cavity $\overline{n}_{\rm m}$ Kittel modé Magnetic-dipole ω_c Electric-dipole mode coupling coupling Qubit $\hat{X}_{\pi/2}$ $X_{\pi/2}$ Kittel Qubit mode $g_{\rm q-m}$ D p_e \mathbf{B}_{0} 0 0.75 0.00 0.25 0.50 1.00 В 0.0 0.5 1.0 Free evolution time τ (µs) Spectroscopy frequency (GHz) 0.0 0.2 E 7.94 1.0 Data Fit Qubit spectrum $n_{\rm m} = 0$ Qubit $2g_{\rm q-m/}$ 7.93 $n_{\rm m}$ = 1 0.5 $\frac{1}{2\pi}$ 7.92 Kittel Data mode 0.0 Fit -5.0 -4.5 8 10 -5.5 2 6 4 Coil current (mA) Detuning (MHz)

Spin cat states in ferromagnetic insulators

S. Sharma, V. Bittencourt, A. Karenowska, SVK; PRB 103, L100403 (2021)

Proposal: Heralding Magnetic Cat States

Heralding

Generation of entangled state

Measurement

C. K. Hong and L.Mandel, PRL 56 1 (1986)

Duan et al, Nature 414, 413 (2001)

Heralding Magnetic Cat States

Heralding Magnetic Cat States

The ground state of the coupled system is an entangled state of photons and flipped spins

Heralding Magnetic Cat States

The magnetization points simultaneously in two directions

Creating Magnetic Cat States

The magnetization points simultaneously in two directions

Experimental limitation

Low temperatures needed for a "large cat"

$T < 5 \,\mathrm{mK}$

S. Sharma, V. Bittencourt, A. Karenowska, SVK; Physical Review B 103, L100403 (2021)

Microwave regime

Magnon-phonon quantum thermometry

C. Potts, V. Bittencourt, SVK, John P. Davis; Phys. Rev. Applied 13, 064001 (2020)

MAX PLANCK INSTITUTE FOR THE SCIENCE OF LIGHT

Vorsitzender des Promotionsausschusses

Magnons can couple coherently to phonons

Cavity magnomechanics

Zhang et. al Science Advances 2016

Magnons can couple coherently to phonons

Cavity magnomechanics

$\begin{array}{c} \text{Magnetoelastic energy} \\ \text{magnetoelastic constants} \\ \text{Strain tensor} \\ \text{Magnetoelastic constants} \\ \text{Magnetoelastic constants} \\ \text{Strain tensor} \\ \text{Magnetoelastic constants} \\ \text{Magnetoelastic constan$

Quantizing in terms of magnon **m** and phonon **b** operators for an arbitrary magnetic texture

$$\hat{H}_{ME} = \sum_{\alpha\beta\gamma ij} \left[G^{ij}_{\alpha\gamma} \hat{m}_{\alpha} \left(\hat{b}_{\gamma} + \hat{b}_{\gamma}^{\dagger} \right) + T^{ij}_{\alpha\beta\gamma} \hat{m}_{\alpha} \hat{m}_{\beta} \left(\hat{b}_{\gamma} + \hat{b}_{\gamma}^{\dagger} \right) + P^{ij}_{\alpha\beta\gamma} \hat{m}_{\beta}^{\dagger} \hat{m}_{\alpha} \left(\hat{b}_{\gamma} + \hat{b}_{\gamma}^{\dagger} \right) + h.c. \right]$$

F. Engelhardt et al, in preparation

Magnons can couple to phonons

Cavity magnomechanics

Magnon - Phonon Quantum Correlation Thermometry

- Thermal vibrations imprinted on the magnetization
- Drive the MW at resonance and measure noise correlations

Magnon - Phonon Quantum Correlation Thermometry

Magnon - Phonon Quantum Correlation Thermometry

 Experimental imperfections sources: Finite detuning and deviations from the optimal driving condition

C. Potts, V. Bittencourt, SVK, John P. Davis; Phys. Rev. Applied 13, 064001 (2020)

0.2

 $\mathbf{0}$

0.4

Temperature (K)

0.8

0.6

1.0

Hz]

Coupling to Optics?

Motivation: magnon as a transducer

Coupling to Optics?: Faraday Effect

permittivity $\varepsilon_{ij} (\mathbf{M}) = \varepsilon_0 (\varepsilon \delta_{ij} - i f \epsilon_{ijk} M_k)$ \uparrow broken time-reversal symmetry

 $\bar{U}_{\rm MO} = \theta_{\rm F} \sqrt{\frac{\varepsilon}{\varepsilon_0}} \int d\mathbf{r} \frac{\mathbf{M}(\mathbf{r})}{M_{\rm s}} \cdot \frac{\varepsilon_0}{2i\omega} \left[\mathbf{E}^*(\mathbf{r}) \times \mathbf{E}(\mathbf{r}) \right]$ magnetization density

Coupling to Optics?: Faraday Effect

permittivity

$$\varepsilon_{ij} (\mathbf{M}) = \varepsilon_0 (\varepsilon \delta_{ij} - i f \epsilon_{ijk} M_k)$$

 \uparrow
broken time-reversal symmetry

$$\bar{U}_{\rm MO} = \theta_{\rm F} \sqrt{\frac{\varepsilon}{\varepsilon_0}} \int d\mathbf{r} \frac{\mathbf{M}(\mathbf{r})}{M_{\rm s}} \cdot \frac{\varepsilon_0}{2i\omega} \left[\mathbf{E}^*(\mathbf{r}) \times \mathbf{E}(\mathbf{r}) \right]$$

D

Coupling demonstrated in 2016

- Osada et. al PRL 116, 223601 (Nakamura's group, Tokyo)
- Haigh et. al PRL 117, 133602 (Cambridge Univ / Hitachi)
- Zhang et. al PRL 117, 123605 (Hong Tang's group, Yale)

Cavity Enhanced Coupling

But...

Problem

the state of the art optomagnonic coupling is small

We have shown that the theoretical limit is much larger SVK, H. X. Tang, and F. Marquardt PRA 94, 033821 (2016)

What we need:

better overlap of modes

smaller systems

Optomagnonics with Magnetic textures

Vorsitzender des Promotionsausschusses

extures: Vortex in Micro

T.Shinjo et al, Science 28

Cobalt Gadolinium pillars

> C. Donally et al, Nature 547 328 (2017)

Losby et al, Science 350, 798 (2015)

$$H_{\rm MO} = -i \frac{\theta_{\rm F} \lambda_n}{2\pi} \frac{\varepsilon_0 \varepsilon}{2} \int d\mathbf{r} \ \mathbf{m}(\mathbf{r}, t) \cdot \left[\mathbf{E}^* \left(\mathbf{r}, t \right) \times \mathbf{E} \left(\mathbf{r}, t \right) \right]$$

$$H_{\rm MO} = -i \frac{\theta_{\rm F} \lambda_n}{2\pi} \frac{\varepsilon_0 \varepsilon}{2} \int d\mathbf{r} \, \mathbf{m}(\mathbf{r}, t) \cdot \left[\mathbf{E}^* \left(\mathbf{r}, t \right) \times \mathbf{E} \left(\mathbf{r}, t \right) \right]$$

$$\mathbf{m}(\mathbf{r},t) = \mathbf{m}_0(\mathbf{r}) + \delta \mathbf{m}(\mathbf{r},t)$$

$$H_{\rm MO} = -i \frac{\theta_{\rm F} \lambda_n}{2\pi} \frac{\varepsilon_0 \varepsilon}{2} \int d\mathbf{r} \, \mathbf{m}(\mathbf{r}, t) \cdot \left[\mathbf{E}^* \left(\mathbf{r}, t \right) \times \mathbf{E} \left(\mathbf{r}, t \right) \right]$$

$$\mathbf{m}(\mathbf{r},t) = \mathbf{m}_0(\mathbf{r}) + \delta \mathbf{m}(\mathbf{r},t)$$

Quantize: Holstein Primakoff to first order

$$\delta \mathbf{m}(\mathbf{r},t) \rightarrow \frac{1}{2} \sum_{\substack{\gamma \\ \checkmark}} \left(\delta \mathbf{m}_{\gamma}(\mathbf{r}) \hat{b}_{\gamma} e^{-i\omega_{\gamma}t} + \delta \mathbf{m}_{\gamma}^{*}(\mathbf{r}) \hat{b}_{\gamma}^{\dagger} e^{i\omega_{\gamma}t} \right)$$
magnon mode index bosonic operator mode functions

$$H_{\rm MO} = -i \frac{\theta_{\rm F} \lambda_n}{2\pi} \frac{\varepsilon_0 \varepsilon}{2} \int d\mathbf{r} \ \mathbf{m}(\mathbf{r}, t) \cdot \left[\mathbf{E}^* \left(\mathbf{r}, t \right) \times \mathbf{E} \left(\mathbf{r}, t \right) \right]$$

$$\mathbf{m}(\mathbf{r},t) = \mathbf{m}_0(\mathbf{r}) + \delta \mathbf{m}(\mathbf{r},t)$$

$$\delta \mathbf{m}(\mathbf{r},t) \to \frac{1}{2} \sum_{\gamma} \left(\delta \mathbf{m}_{\gamma}(\mathbf{r}) \hat{b}_{\gamma} e^{-i\omega_{\gamma}t} + \delta \mathbf{m}_{\gamma}^{*}(\mathbf{r}) \hat{b}_{\gamma}^{\dagger} e^{i\omega_{\gamma}t} \right)$$

$$\mathbf{E}^{(*)}(\mathbf{r},t) \to \sum_{\beta} \mathbf{E}^{(*)}_{\beta}(\mathbf{r}) \hat{a}^{(\dagger)}_{\beta} e^{-(+)i\omega_{\beta}t}$$

Optomagnonic Hamiltonian in the spin-wave limit

J. Graf, H. Pfeifer, F. Marquardt, S. Viola Kusminskiy, Phys. Rev. B 98, 241406(R), (2018)

Nanostrutures: magnetic textures + light

Magnetic vortex

Optomagnonic Coupling

Nanostrutures: magnetic textures + light

Nanostrutures: magnetic textures + light

- Coupling for each mode tunable by a magnetic field
- Predicted cooperativity $\mathcal{C}=4n_{\rm ph}\frac{g_0^2}{\Gamma\kappa}\approx\!10^{-2}$

J. Graf, H. Pfeifer, F. Marquardt, SVK; Phys. Rev. B 98, 241406(R), (2018)

Application: Magnon heralding

All-optical protocol for generating magnon Fock states

V. Bittencourt, V. Feulner, SVK; PRA **100**, 013810 (2019)

Optomagnonic crystals

J. Graf, S. Sharma, H. Huebl, SVK; Physical Review Research 3, 013277 (2021)

MAX PLANCK INSTITUTE FOR THE SCIENCE OF LIGHT

Vorsitzender des Promotionsausschusses

Optomagnonic Coupling

$$G_{\alpha\beta\gamma} = -i\frac{\theta_{\rm F}\lambda_n}{4\pi}\frac{\varepsilon_0\varepsilon}{2}\int d\mathbf{r}\,\delta\mathbf{m}_{\gamma}(\mathbf{r})\cdot\left[\mathbf{E}^*_{\alpha}\left(\mathbf{r}\right)\times\mathbf{E}_{\beta}\left(\mathbf{r}\right)\right]$$

Design: towards optimal mode matching

Optics

Match symmetries of magnon mode and optical spin density

Design: towards optimal mode matching

What about Antiferromagnets?

Antiferromagnetic cavity optomagnonics

- Model for cavity optomagnonics with antiferromagnetic insulators
 (one-magnon scattering processes)
- Strong coupling requires large magneto-optical asymmetry (compared with known values for simple AFMs)
- Tunable coupling with a magnetic field

(for finite hard-axis anisotropy)

• Dark-to-bright transition for magnon modes possible

- State of the art in the MW regime ripe for generation of macroscopic non-classical states of the manetization: e.g. cat states
 - Coupling to vibrations at the single quanta can be harnessed for applications: e.g. quantum thermometer
 - Design of optomagnonic systems in the optical regime shows promise

for improved coupling values

Developed a method for calculating the optomagnonic coupling in the presence of magnetic textures: more to follow

