Detection of antiferromagnetic states and spin-orbit torque switching in antiferromagnetic films

<u>Tomas Janda^(1,2)</u>

Joao Godinho^(1,2)

Z Soban⁽¹⁾, T. Ostatnicky⁽²⁾, B. Kästner⁽³⁾, S. Reimers⁽⁴⁾, P. Wadley⁽⁴⁾, V. Novak⁽¹⁾, T. Jungwirth⁽¹⁾, J. Wunderlich^(1,5)

⁽¹⁾ Institute of Physics ASCR, Prague, CR

⁽²⁾ Faculty of Mathematics and Physics, Charles University, Prague, CR

⁽³⁾ *Physikalisch-Technische Bundesanstalt, Berlin, Germany*

⁽⁴⁾ University of Nottinghgam, Germany

⁽⁵⁾ University of Regensburg, Germany

Fast (THz) dynamics: switching, domain wall motion GHz in ferromagnets

Radiation-hard Spin not charge based (as ferromagnets) Non-volatile Magnetic order (as ferromagnets)

MERITS

Insensitive & invisible to magnetic fields

No stray field cross-talks No net moment Insulators, semiconductors, semimetals, metals, ... Ferromagnets mostly metals

Fast (THz) dynamics: switching, domain wall motion GHz in ferromagnets

Radiation-hard Spin not charge based (as ferromagnets) Non-volatile Magnetic order (as ferromagnets)

MERITS?

Insensitive & invisible to magnetic fields

No stray field cross-talks No net moment Insulators, semiconductors, semimetals, metals, ... Ferromagnets mostly metals

No stray field cross-tarks No net moment

Antiferromagnet

'Locally' broken inversion symmetry

(intuitive picture for iSGE)

Antiferromagnet

'Locally' broken inversion symmetry

→ Electrical excitation of ultrafast dynamics of Antiferromagents

J. Železný, et al., Phys. Rev. Lett. 113, 157201 (2014). P. Wadley, et al., Science 351, 6273, 587 (2016).

"Global" charge current

Electrical PEENIXMOD: X-rayd/lagneticalgimetarr Dichtroisen(AMR)

Biaxial Switching in CuMnAs

Biaxial Switching in CuMnAs

(K. Olejnik, et al., Sci. Adv. 2018;4:eaar3566)

Collinear antiferromagnetic states

Electrical detection (180° spin reversal)

Anomalous Hall effect (AHE) in non-collinear AFs

that crystallize in ferromagn. symmetry groups, able to develop a magnetic moment (Mn_3Ir , Mn_3Ge , Mn_3Sn , ...)

Chen et al., PRL 112, 017205 (2014) Nakatsuji, et al., Nature 527, 212 (2015) Nayak, et al., Sci. Adv. 2, e1501870 (2016)

Anomalous Hall effect (AHE) linear response: $\mathbf{E} = (\rho + \xi \mathbf{j} + ...) \mathbf{j}$

AHE (odd under time reversal): $E_i =
ho_{ij}^{odd}(\vec{O}) \, j_j$

CuMnAs

$$E_i = -T\rho_{ij}^{odd}(\vec{O})\,j_j = -\rho_{ij}^{odd}(-\vec{O})\,j_j$$

Broken time reversal symmetry Broken space-inversion symmetry

PT symmetry of the CuMnAs crystal: $\rho_{ij}^{\text{odd}} = PT \rho_{ij}^{\text{odd}}$.

Space inversion flips sign of both electric field E_i and current j_j : $\rho_{ij}^{\text{odd}} = -PT\rho_{ij}^{\text{odd}}$ $\longrightarrow \rho_{ij}^{\text{odd}} = 0$ (no AHE)

Anomalous Hall effect (AHE) in non-collinear AFs

that crystallize in ferromagn. symmetry groups, able to develope a magnetic moment (**Mn**₃**Ir**, **Mn**₃**Ge**, **Mn**₃**Sn**, ...)

Chen et al., PRL 112, 017205 (2014) Nakatsuji, et al., Nature 527, 212 (2015) Nayak, et al., Sci. Adv. 2, e1501870 (2016)

Anisotropic Magnetoresistance

- $\mathbf{E} = (\rho + \boldsymbol{\xi} \mathbf{j} + ...) \mathbf{j}$ (second order response)
 - allows detection of spin-reversal in AF with broken *T* symmetry but requires that AF has also broken *P* symmetry: $E_i = \xi_{ijk}^{\text{odd}} j_j j_k$,

Most of the antiferromagnetic point-groups with broken **T** symmetry have also broken **P** symmetry

(**48** out of **59**) H. Grimmer, Acta Crystallographica Section A **49**, 763-771 (1993)

Electrical detection of collinear states (180° spin reversal)

Electrical detection of collinear states (180° spin reversal)

ALTERNATIVE magneto-thermal DETECTION METHOD

Generate <u>locally</u> temperature gradient and measure <u>globally</u> electric response.

ALTERNATIVE magneto-thermal DETECTION METHOD

Generate <u>locally</u> temperature gradient and measure <u>globally</u> electric response.

ALTERNATIVE magneto-thermal DETECTION METHOD

Generate <u>locally</u> temperature gradient and measure <u>globally</u> electric response.

Thermal gradient detetction

Anomalous Nernst effect in non-collinear Mn₃Sn

H. Reichlova, et al., 10, 5459 (2019)

ALTERNATIVE table-top DETECTION METHOD

Generate <u>locally</u> temperature gradient and measure <u>globally</u> electric response.

ANISOTROPIC MAGNETOTHERMAL POWER

ANISOTROPIC MAGNETO SEEBECK Effect

Anisotropic-Magnetothermopower: $E_y = -(S_+ - S_- \cos 2\varphi) |\nabla T| \sin \varphi_T$ (response to the longitudinal temp. gradient)

"Planar Nernst" effect: $E_y = -S_{-}\sin 2\varphi |\nabla T| \cos \varphi_{T}$ (response to the transverse temp. gradient)

CuMnAs layer with bi-axial magnetic anisotropy

Effect of bar orientation on magnetic domain structure

T. Janda et al., Phys. Rev. Materials 4, 094413 (2020)

CuMnAs layer with bi-axial magnetic anisotropy

Effect of bar orientation on magnetic domain structure

T. Janda *et al.,* Phys. Rev. Materials **4**, 094413 (2020)

XMLD-PEEM

P. Wadley, et al., Nature Nano. (2018)

LARGE Amplitude CURRENT PULSES

XMLD-PEEM

Focused Laser-spot AMS

virgin

thin 20nm CuMnAs

(~20 nV amplitude, 0.01 GW/m² power density)

Longitudinal Anisotropic Magneto-Seebeck Effect

Longitudinal Anisotropic Magneto-Seebeck Effect

(~50 nV amplitude, 0.01 GW/m² power density)

(~50 nV amplitude, 0.01 GW/m^2 power density)

Anisotropic Magneto-Seebeck Effect

 $J_Q \sim 3 \times 10^{10} \text{ A/m}^2$

(~50 nV amplitude, 0.01 GW/m^2 power density)

Summary

SPINTRONICS with ANTIFERROMAGNETS:

- Electrical **detection** and electrical **manipulation** of **AF states**

SCANNING MICROSCOPY for AF domains based on MAGNETOTHERMAL EFFECTS:

- Low resolution (wavelength restricted) "far-field" and high-resolution "near-field"

OBSERVATION of:

- current induced domain switching

(Correlation between pulse induced AF domain structure and device resistance)

- AF domain shattering and relaxation
- Current pulse induced DW motion of 180 deg DWs

Collaborators

Institute of Physics, Praguereie Universitat, Berlin University of Nottingham

Jooa Godhino Zbyněk Šobáň Vit Novák Kamil Olejník Tomaš Jungwirth **Emanuel Pfitzner**

PTB, Berlin Georg Ulrich Bernd Kaestner

Charles University, PragueTU Dresden

Tomaš Janda Tomaš Ostatnicky Helena Reichlova

Sonka Reimers Richard Campion Kevin Edmonds Pete Wadley

Diamond Light Source

Sarnjeet Dhesi Francesco Maccherozzi

Hitachi Laboratory, Cambridge

Ruben Otxoa Pierre Roy