Engineering magnetic states with light through nonlinear lattice excitation

Ankit Disa

Max Planck-NYC Center for Non-equilibrium Quantum Phenomena, Hamburg/New York & School of Applied & Engineering Physics, Cornell University, Ithaca, NY, USA

SPICE-Ultrafast Antiferromagnetic Writing Workshop, May 10, 2022

Antiferromagnetic writing

How can we manipulate order in an antiferromagnet?

Ferromagnetic

Antiferromagnetic

- Denser
- More robust
- Faster

A structural approach to magnetic control

Electrical control

J. Gordinho, et al. Nat. Comms. 9, 4686 (2018).

Optical control

A.V. Kimel, et al. Nature 435, 655 (2007).

• Crystal structure directly determines local magnetic states and their interactions

Engineering the crystal structure with light

Drive large amplitude structural distortions with laser pulses

→ Resonantly excite optical phonons (~2-200 meV, ~0.5-50 THz)

~MV/cm electric fields \rightarrow 5-10% atomic displacements

Leads to highly nonlinear response of lattice \rightarrow targeted structural distortions

Linear excitation of lattice modes

• Light couples to infrared-active modes:

$$U_{lattice} = \frac{1}{2}\omega_{IR}^2 Q_{IR}^2 - z^* Q_{IR} E_{laser}$$

No average change to the lattice

"Nonlinear phononics"

Large IR motions can couple to other modes: $U_{lattice} = \frac{1}{2}\omega_{IR}^2 Q_{IR}^2 + \frac{1}{2}\omega_{R}^2 Q_{R}^2 - gQ_{IR}^2 Q_{R} + \cdots$ Q_R

Net lattice displacement of coupled mode

٠

Engineering new crystal structures with light

Strain control: piezomagnetism

Strain control: piezomagnetism

Origin of piezomagnetism in CoF₂

Uniaxial strain control of magnetization

• Bi-directional strain control of magnetization with piezomagnetic effect

Disadvantages:

- Limited by achievable pressure
- Acoustic time scales

Symmetry of strain

Piezomagnetic effect

$$M_n = \Lambda_{nij}\sigma_{ij}$$

$$\Lambda_{nij} = \begin{bmatrix} 0 & 0 & 0 & \Lambda_{14} & 0 & 0 \\ 0 & 0 & 0 & 0 & \Lambda_{14} & 0 \\ 0 & 0 & 0 & 0 & 0 & \Lambda_{36} \end{bmatrix}$$
$$\sigma_{xy} \rightarrow B_{2g} \text{ symmetry}$$

Symmetry of strain

- B_{2q} Raman mode provides same lattice distortions as uniaxial strain
 - Must break underlying symmetry of the lattice

Nonlinear phonon coupling in CoF₂

• For single IR phonon excitation, Q_R preserves lattice symmetry \rightarrow Does not generate magnetization

Symmetry breaking from phonons

Three-phonon nonlinear interaction: $U_{lattice} \propto Q_{IR,1}Q_{IR,2}Q_R$

• Simultaneously excite degenerate IR phonons along *a* and *b* to generate magnetization

Symmetry breaking from phonons

Resonantly driving phonons

Experimental setup

• Simultaneously drive *a* and *b* phonons by pumping along [110]

• Measure time-resolved Faraday effect: $\theta(t) \propto M_z(t)$

Experimental setup

• Simultaneously drive *a* and *b* phonons by pumping along [110]

• Measure time-resolved Faraday effect: $\theta(t) \propto M_z(t)$

Pump-induced Faraday rotation

- Long-term Faraday signal: signature of pump-induced magnetization
 - Same behavior seen in circular dichroism signal

Temperature dependence

• Pump-induced effect follows static piezomagnetic response

Switchable magnetization

Three-phonon nonlinear interaction: $U_{lattice} \propto Q_{IR,1}Q_{IR,2}Q_R$

Switchable magnetization

Three-phonon nonlinear interaction: $U_{lattice} \propto Q_{IR,1}Q_{IR,2}Q_R$

• Can change direction of magnetization relative phase of phonon excitation (polarization of pump)

Controlling magnetization direction

Ø

Controlling magnetization direction

• Optical control over direction and magnitude of induced magnetization

Dependence on pump strength

Dependence on pump strength

• Induced magnetization $\propto E^2 \rightarrow Q_R \propto Q_{IR,1}Q_{IR,2}$

Phenomenological model of dynamics

Magnetization (M)

Fixed

 $M = \left(m_1^0 + \frac{\delta m}{2}\right) + \left(m_2^0 + \frac{\delta m}{2}\right) = \delta m,$

New order parameter

Phenomenological model of dynamics

Strength of induced magnetization

Induced magnetic properties by nonlinear phonon excitation ~100× statically achievable

Recap: Optical lattice control of magnetism

Open questions:

- Why are the dynamics so slow? How can we speed up the effect?
- What's happening to the angular momentum?
- How can we more accurately describe the longitudinal "switching"?

Enhancing non-equilibrium magnetism

Can we extend non-equilibrium behavior to higher temperatures?

• Demonstrated control of magnetic state through crystal lattice below equilibrium T_c

YTiO₃ – a fluctuating ferromagnet

Magnetism highly coupled to crystal lattice and orbital configuration

Engineering magnetism through the lattice

• Time-resolved MOKE experiment $\Delta \varphi(+H) - \Delta \varphi(-H) \propto \Delta M$

Effect of pumping different phonons

 Phonon-selective manipulation of ferromagnetism (below T_c)

Enhancement of magnetism **above** T_c

Enhancement of magnetism **above** T_c

- Pump-induced magnetization up to more than $3 \times T_c$
- Non-equilibrium ferromagnetic state follows short-range spin correlations

Picture of non-equilibrium ferromagnetism

• Phonon driving enhances or weakens ferromagnetism through orbital state

Take-home message

Driving the crystal lattice with light provides a powerful means to control magnetic order and induce nonequilibrium functionalities

Acknowledgments

Harvard John A. Paulson School of Engineering and Applied Sciences

Jon Curtis

Prineha Narang

D. Prabhakaran

Paolo Radaelli

MAX PLANCK INSTITUTE FOR SOLID STATE RESEARCH

Alexander Boris

Bernhard Keimer

Michael Fechner

Tobia Nova

Biaolong Liu

Michael Först

Andrea Cavalleri

Advertisement!

- Moving to Cornell Applied & Engineering Physics in July 2022
- Students or postdocs with experience/interest in:
 - Ultrafast lasers
 - THz spectroscopy
 - Oxide heterostructures

asd47@cornell.edu ankit.disa@mpsd.mpg.de

