Ultrafast dynamics of antiferromagnets: switching vs rotation

Johannes Gutenberg Universität Mainz

SP/CE SPIN PHENOMENA INTERDISCIPLINARY CENTER

SPICE-Workshop Ultrafast Antiferromagnetic Writing

European Research Council

Motivation

ł

Motivation

• Antidamping SOT induces fast AFM dynamics

(autooscillations)

- Tailoring pulse shape => switching
- Time-dependent field-like SOT => switching control
- Magnetoelasticity => additional functionality

- SOT-induced dynamics of three-sublateral antiferromagnet
- Time-dependent SOT: field-like vs antidamping torque
- Switching with the fast pulses
- Optically-induced dynamics of T-domain walls

References

- 1. O.G. and V. Loktev (2015) Low Temp.Phys. <u>http://dx.doi.org/10.1063/1.4931648</u>
- 2. Th. Chirac, OG, et al, 2020, <u>10.1103/PhysRevB.102.134415</u>
- 3. D. Bossini, O.G. et al (2021), <u>10.1103/PhysRevLett.127.077202</u>
- 4. O.G. and D. Bossini, et al (2021), <u>J. Phys. D 10.1088/1361-6463/ac055c</u>

Collinear AFM, SOT

$$\mathbf{n} \times (\ddot{\mathbf{n}} + \gamma^2 H_{ex} H_{an}) = \gamma^2 H_{ex} \mathbf{n} \times (\Lambda_{dl} \mathbf{s} \times \mathbf{n} - \alpha_G \dot{\mathbf{n}})$$

$$J_{crit} \propto H_{an} t_{AF}$$

 $\Omega_{prec} \propto j/\alpha_G$

 $\Omega_{prec} \propto \omega_{AFMR} \propto \sqrt{H_{ex}H_{an}}$

SPICE Workshop-2022 - Olena Gomonay ogomonay@uni-mainz.de

Three-sublattice AFM

O.G., Loktev,(2015) Low Temp.Phys. http://dx.doi.org/10.1063/1.4931648

Yu. Takeuchi, et al, (2021) Nature Materials https://doi.org/10.1038/s41563-021-01005-3

$$\ddot{\theta} + 2\gamma_{AF}\dot{\theta} + \omega_{AF}^{2}\sin\theta\cos\theta + \gamma\omega_{D}H\sin\theta = \gamma^{2}H_{ex}\left(\Lambda_{fl}\dot{s} + \Lambda_{dl}s\right)$$

Yu. Takeuchi, et al, (2021) Nature Materials https://doi.org/10.1038/s41563-021-01005-3

SPICE Workshop-2022 - Olena Gomonay ogomonay@uni-mainz.de

8

Phase diagram, field-current

Switching with the short pulses

 $\ddot{\theta} + 2\gamma_{AF}\dot{\theta} + \omega_{AF}^2\sin\theta\cos\theta + \gamma\omega_D H\sin\theta = \gamma^2 H_{ex} \left(\Lambda_{fl} \dot{s} + \Lambda_{dl} s\right)$

SPICE Workshop-2022 - Olena Gomonay ogomonay@uni-mainz.de

Field-like-vs damping-like torque

Pulse width

Switching in a collinear AFM

Switching with the short pulses

Switching with the short pulses

Switching via magnetic DW motion

SP

Free magnetic domain wall motion

 $\mathbf{n} \times \left(\frac{\mathbf{n}}{\mathbf{n}} - c^2 \Delta \mathbf{n} + \gamma^2 H_{\text{ex}} \mathbf{H}_{\text{an}} \right) = 0$

Switching in NiO, T domains

D. Bossini, O.G. et al (2021), <u>10.1103/PhysRevLett.127.077202</u> Q.G. and D. Bossini, et al (2021), <u>J. Phys. D 10.1088/1361-6463/ac055c</u>

Magnetoelastic domain wall

Pinned domain wall

Bossini, OG, J. Phys. D 54, 374004, (2021)

Localised domain wall

Parametric downconversion, NiO

Summary

 $\xi \parallel [01\overline{1}] \text{ or } [2\overline{1}\overline{1}]$

Switching with the short pulses

Field-like torque

Collaborators

David Bossini

UNIVERSITE PARIS-SACLAY

Vadim Loktev

Michel Viret

Théophile Chirac Pascal Thibaudeau Jean-Yves Chauleau

THANK YOU!

NiO and domain structure

T4[111]

[010]

(011)T-wall 5 μm

K. Arai et al, PRB, 85, 104418 (2012)

Distortion

T1[111]

Exchange striction

SPICE Workshop-2022 - Olena Gomonay ogomonay@uni-mainz.de

 \hat{u}_1

T2

Pinned domain wall

0.06

0.04

0.02

-0.02

-0.04

-0.06

Reflection of magnons

Localised mode

T domain wall

Polarization of eigen modes

Polarization of eigen modes

T1

T2

Magnon birefringence

Experiment

Problem

MMM-Olena Gomonay- Live Q&A Session 2020-11-04, 6:00 AM to 6:30 AM ET

Switching with the short pulses

Pinned domain wall

SF

 $\mathbf{n} \times (\mathbf{n} - c^2 \Delta \mathbf{n} + \gamma^2 H_{\text{ex}} \mathbf{H}_{\text{an}}(\xi)) = 0$

Deterministic oscillations

Precession

Transition to chaotic regime

Switching in non collinear AFM

O.G., Loktev,(2015) Low Temp.Phys. http://dx.doi.org/10.1063/1.4931648

Yu. Takeuchi, et al, (2021) Nature Materials https://doi.org/10.1038/s41563-021-01005-3

Switchingand dynamics of NiO

Field-like-vs damping-like torque

