

Ultrafast Spin Current Generation, for AF switching ? (in Rare Earth Ferromagnets)

Youri van Hees, Tom Lichtenberg, Maarten Beens, Jesper Levels, Bert Koopmans, Reinoud Lavrijsen

Department of Applied Physics, Eindhoven University of Technology

r.lavrijsen@tue.nl

Physics of Nanostructures Group

Towards Integrated Magneto-Photonics

Towards Integrated Magneto-Photonics

*Steinbach *et al.* APL 120 (2022), Hees *et al.* arXiv:2204.01459 **Pingzhi Li and Thomas Kools, *et al.*, ArXiv:2204.11595

25 Years of Femtomagnetism

Acknowledgements

Peeters

Marielle Meijer

Cao

Anni

Kools

Thomas Jianing Li

Ece Demirer

Tom

Mark

Lichtenberg Lalieu

Michal Zilu Wang Grzybowski

5

Beens

Outline

Femto-magnetism – a tutorial introduction

- Laser-induced fs demagnetization and beyond
- Local and non-local transfer of angular momentum

Some new results

- Spin-current assisted All-Optical Switching in Co/Gd
- A Fourier view on mechanisms for fs spin currents
- Resolving spin currents from Co/Gd bi-layers
- (AOS and Current induced domain wall model in [Co/Gd]₂)

Femtosecond demagnetization

Nonlocal transfer of spin angular momentum

See also:

Rudolf *et al.*, Nat. Comms. 2011 Melnikov, Bovensiepen *et al.*, PRL 2011 Choi, Cahill *et al.*, Nat. Comms. 2014 Hofherr, Aeschlimann, *et al.*, PRL 2017

Spin currents confirmed

Spin accumulation

Melnikov, Bovensiepen *et al*., PRL 2011, Choi, Cahill *et al*., Nat. Comms. 2014 Hofherr, Aeschlimann, *et al*., PRL 2017

Malinoswki *et al*., Nat. Phys. 2008 Rudolf *et al*., Nat. Comms. 2011

Magnetization

to detector

🖥 Ru or NiO

to detector

Co/Pt

o/Pt

Toggle mechanism (linearly polarized!)

Ostler et al., Nature Comms. 2012

QOMI

Stanciu, Kimel, Rasing et al., Phys. Rev. Lett. 2007

Detailed insight in AOS from fs-XMCD

Radu, Dürr *et al*., Nature (2011)

Ferrimagnetic GdFe

Understanding its behavior (M3TM) Alloy, Co_xGd_{1-x} Bi-layer, Gd_{3 ML}/Co_{n ML} Maarten 65 65 thermal-demag switch 60 60 55 55 5% P₀ (10⁸ Jm⁻³) P₀ (10⁸ Jm⁻³) 50 50 45 45 switch 40 40 back-500% 35 35 switch 30 30 25 25 no-switch no-switch 20 20 20 0.7 0.75 0.8 5 10 15 # Co layers Х 3 Gd layers

Outline

Femto-magnetism – a tutorial introduction

- Laser-induced fs demagnetization and beyond
- Local and non-local transfer of angular momentum

Some new results

- A. Spin-current assisted All-Optical Switching in Co/Gd
- B. A Fourier view on mechanisms for fs spin currents
- C. Resolving spin currents from Co/Gd bi-layers
- D. (AOS and Current induced domain wall model in [Co/Gd]₂)

AOS: local vs. non-local spin transfer

Case A

Case B

Razdolski, Melnikov et al., Nat. Comms. (2017)

Lalieu *et al.*, PRB (2017, 2019) Lichtenberg *et al.*, PRB (2022) **TU/e**

A Fourier domain image on spin transfer

THz Experiment 2.0 0.0 2.0 A, ϕ IP 0 1 2 3 4 5 6 7 Delay (ps)

Fitted A, ϕ reflect $J_s(\omega)$ (FT)

THz $\,\omega\,$ tuned by thickness IP

GHz $\,\, \omega \,\,$ tuned by ext. field

Lichtenberg, et al., PRB (2022)

'Probing' fs spin current profiles

Conclusions


```
Simulations:
OOP experimental M(t) \rightarrow dM/dt
\rightarrow LLG simulation IP \rightarrow \phi
```

- Results indicate the generated spin current closely follows dM/dt
- Ballistic optically excited carriers do **not** match: $\phi \approx 0$

Non-local spin transport and AOS

Iihama et al. *Advanced Materials* 30.51 (2018): 1804004. Remy et al. *Advanced Science* (2020): 2001996.

Spin currents from Co/Gd bilayers: set-up

Youri van Hees, Tom Lichtenberg, Maarten Beens et al., in preparation

GHz result – spin current time-integrated

Youri van Hees, Tom Lichtenberg, Maarten Beens et al., in preparation

THz result – spin current during first ps

Youri van Hees, Tom Lichtenberg, Maarten Beens, et al., in preparation

Take home message

Femto-magnetism – a tutorial introducti

- Laser-induced fs demagnetization and
- Local and non-local transfer of angular

Some new results

- A. Spin-current assisted All-Optical Switching in Co/Gd
- B. A Fourier view on mechanisms for fs spin currents
- C. Resolving spin currents from Co/Gd bi-layers
- D. AOS and Current induced domain wall model in [Co/Gd]₂

It's all about local & non-local spin transfer Gd → slow, Co → fast (dM/dt) For AF's ?

Take home message

Femto-magnetism – a tutorial introduction

- Laser-induced fs demagnetization and beyond
- Local and non-local transfer of angular momentum

Some new results

- A. Spin-current assisted All-Optical Switching in Co/Gd
- B. A Fourier view on mechanisms for fs spin currents
- C. Resolving spin currents from Co/Gd bi-layers
- D. AOS and current induced domain wall model in [Co/Gd]₂

High current induced domain wall velocity

3x Co/Gd interface RT Compensation @ 0.9 nm

Towards Integrated Magneto-Photonics

*Steinbach *et al.* APL 120 (2022), Hees *et al.* arXiv:2204.01459

