Challenging energy-speed limits in antiferromagnets

Johan H. Mentink

Institute for Molecules and Materials

Thermodynamics of computation

$$
\begin{aligned}
\Delta E_{\mathrm{int}} & =Q+W=0 \\
W_{\min } & =-Q=-T \Delta S
\end{aligned}
$$

Landauer limit
 $W_{\min }=k_{\mathrm{B}} T \ln 2$
 $\sim \mathrm{zJ}=10^{-21}$ Joule

Landauer, IBM J Res Dev (1961)

Energy-time dilemma

$$
t=\frac{\pi}{\gamma B}
$$

Quantum speed limit

$t \geq h / 4 E$
$\gamma=2 \frac{\mu_{B}}{\hbar} \quad E=\mu_{B} B$
S. Rijmer, B.Sc. thesis (2019)

Physical laws

Physical laws

Physical laws

The smallest and fastest magnetic waves

-9188003300008900

Wavelength $\lambda \rightarrow R i_{j} \sim 5 \AA$
$\hbar \omega \rightarrow E_{\text {ex }}=J_{\text {ex }} \vec{S}_{1} \vec{S}_{2} \sim 25 \mathrm{meV}$
Coherent: almost no dissipation

Excitation of the smallest and fastest magnons

$$
\begin{aligned}
& \widehat{H}=J_{\mathrm{ex}} \sum_{i, \delta} \hat{\mathbf{S}}_{i} \cdot \widehat{\mathbf{S}}_{i+\delta} \\
& \Delta \widehat{H}(t)=\Delta J_{\mathrm{ex}} f(t) \sum_{i, \delta}(\hat{e} \cdot \vec{\delta})^{2} \widehat{\mathbf{S}}_{i} \cdot \widehat{\mathbf{S}}_{i+\delta} \\
& \begin{array}{l}
\text { Spontaneous RS: Fleury and Loudon, Phys Rev. 1968 } \\
\begin{array}{l}
\text { Magnon } \\
\text { Ultrafast: Mentink et al., Nat. Commun. 2015 }
\end{array} \\
\Delta V_{\boldsymbol{H}}(t)=f(t) \sum_{\boldsymbol{k}} V_{\boldsymbol{k}}\left(\hat{\alpha}_{\boldsymbol{k}}^{\dagger} \hat{\alpha}_{-\boldsymbol{k}}^{\dagger}+\hat{\alpha}_{\boldsymbol{k}} \hat{\alpha}_{-\boldsymbol{k}}\right)
\end{array} \\
& \begin{array}{l}
\text { D. Bossini, .. , o. Gomonay, ..., J.H. Mentink,.. et al., PRB 100, 024428 (2019) }
\end{array}
\end{aligned}
$$

Time-resolved dynamics of the smallest and fastest magnons

Magnon squeezing

Zhao, Merlin et al.,
PRL 2004, PRB 2006

Coherent longitudinal dynamics Magnon entanglement
D. Bossini et al.,

Nat. Commun. (2016), PRB (2019)

Outline

1. Magnon-pair physics
J. Zhao et al., PRL 93, 107203 (2004);
D. Bossini et al, Nat. Commun. 7, 10645 (2016);
D. Bossini, .. , O. Gomonay, .., J.H. Mentink et al., PRB 100, 024428 (2019)
2. Supermagnonic propagation of magnon pairs G. Fabiani, M.D. Bouman, J.H. Mentink

Phys. Rev. Lett. 127, 097202 (2021)
3. Semi-classical approach to nonlinear magnon-pair dynamics G. Fabiani and J.H. Mentink Appl. Phys. Lett. 120, 152402 (2022)

Challenges at the Edge of the Brillouin Zone

parent compounds
cuprates
(high-Tc, Nobelprize 1987) $\mathrm{La}_{2} \mathrm{CuO}_{4}$

metal-organic compound $\mathrm{Cu}(\mathrm{DCOO})_{2} \cdot 4 \mathrm{D}_{2} \mathrm{O}$ (CFTD)

$S=1 / 2$ Heisenberg antiferromagnet in 2D

$$
\widehat{H}=J_{\mathrm{ex}} \sum_{i, \delta} \widehat{\mathbf{S}}_{i} \cdot \widehat{\mathbf{S}}_{i+\delta}
$$

Lyons et al., PRB 37, 2353 (1988)
B. Dalla Piazza et al., Nature Physics 11, 62 (2015)
H. Shao, et al., PRX 7041072 (2017)

The many-body wavefunction

Wave function as artificial neural network

- Universal function approximation theorem
- Reduction from 2^{N} to αN parameters
- Much reduced limits on simulation time / system size
G. Carleo, M. Troyer Science 355, 602 (2017)

Wave function as artificial neural network

Neural-network quantum states (NQS)

$$
\psi_{\mathcal{W}}(S)=\sum_{\left\{h_{i}\right\}} e^{\sum_{j} a_{j} s_{j}^{Z}+\sum_{i} b_{i} h_{i}+\sum_{i j} w_{i j} s_{i}^{Z} h_{j}}
$$

Optimization

Ground state: minimize $\left\|(\widehat{\mathcal{H}}-E) \psi_{\mathcal{W}}\right\|$
Dynamics: minimize $\left\|\mathrm{i} \partial_{\mathrm{t}} \psi_{\mathcal{W}}(t)-\widehat{\mathcal{H}}(t) \psi_{\mathcal{W}}(t)\right\|$
G. Carleo, M. Troyer Science 355, 602 (2017)

Ground state NQS vs Exact Diagonalization (ED)

Network with $M=\alpha N=64$ parameters already gives accurate results

Propagation of fastest magnetic waves

$$
C(\boldsymbol{R}, t)=\left\langle\boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}\right\rangle-\left\langle\boldsymbol{S}_{i}\right\rangle\left\langle\boldsymbol{S}_{j}\right\rangle, \quad \boldsymbol{R}=\boldsymbol{r}_{i}-\boldsymbol{r}_{j}
$$

Anisotropy of propagation determined by symmetry of light-matter interaction

Supermagnonic propagation

For small R_{x} faster

$$
\begin{aligned}
v(\mathrm{NQS}) & \approx 4.71 a J_{\mathrm{ex}} \quad 40 \% \text { higher than } v(\mathrm{LSWT}) \approx 3.28 a J_{\mathrm{ex}} \\
& \approx 20 \mathrm{~km} / \mathrm{s} \quad \text { for } J_{\mathrm{ex}} \approx 6 \mathrm{meV}, a \approx 5 \AA
\end{aligned}
$$

Consequence of exceptionally strong magnon-magnon interactions

Outline

1. Magnon-pair physics
J. Zhao et al., PRL 93, 107203 (2004);
D. Bossini et al, Nat. Commun. 7, 10645 (2016);
D. Bossini, .. , O. Gomonay, .., J.H. Mentink et al., PRB 100, 024428 (2019)
2. Supermagnonic propagation of magnon pairs
G. Fabiani, M.D. Bouman, J.H. Mentink

Phys. Rev. Lett. 127, 097202 (2021)
3. Semi-classical approach to nonlinear magnon-pair dynamics G. Fabiani and J.H. Mentink Appl. Phys. Lett. 120, 152402 (2022)

Magnon-pair operator algebra

$$
\begin{gathered}
\widehat{\mathcal{H}}=\sum_{\boldsymbol{k}} \omega_{\boldsymbol{k}}(\underbrace{\left(\hat{\alpha}_{\boldsymbol{k}}^{\dagger} \hat{\alpha}_{\boldsymbol{k}}+\hat{\beta}_{-\boldsymbol{k}}^{\dagger} \hat{\beta}_{-\boldsymbol{k}}+1\right)}_{2 \widehat{K}_{\boldsymbol{k}}^{Z}}+f(t) \sum_{k} V_{\boldsymbol{k}}(\underbrace{\hat{\alpha}_{\boldsymbol{k}}^{\dagger} \hat{\beta}_{-\boldsymbol{k}}^{\dagger}}_{\widehat{K}_{\boldsymbol{k}}^{+}}+\underbrace{\hat{\alpha}_{\boldsymbol{k}} \hat{\beta}_{-\boldsymbol{k}}}_{\widehat{K}_{\boldsymbol{k}}^{-}}) \\
\mathbf{S U (\mathbf { 2 } \mathbf { 1 , 1 }})
\end{gathered}
$$

$$
\begin{array}{cc}
{\left[\hat{S}_{i}^{Z}, \hat{S}_{j}^{ \pm}\right]= \pm \hat{S}_{i}^{ \pm} \delta_{i, j}} & {\left[\widehat{K}_{\boldsymbol{k}}^{z}, \widehat{K}_{\boldsymbol{k}^{\prime}}^{ \pm}\right]= \pm \widehat{K}_{\boldsymbol{k}}^{ \pm} \delta_{\boldsymbol{k}, \boldsymbol{k} \boldsymbol{\prime}}} \\
{\left[\hat{S}_{i}^{-}, \hat{S}_{j}^{+}\right]=-2 \hat{S}_{i}^{Z} \delta_{i, j}} & {\left[\widehat{K}_{\boldsymbol{k}}^{-}, \widehat{K}_{\boldsymbol{k}^{\prime}}^{+}\right]=2 \widehat{K}_{\boldsymbol{k}}^{z} \delta_{\boldsymbol{k}, \boldsymbol{k} \boldsymbol{\prime}}} \\
\hat{S}_{i}^{2}=\left(\hat{S}_{i}^{Z}\right)^{2}+\frac{1}{2}\left(\hat{S}_{i}^{-} \hat{S}_{i}^{+}+\hat{S}_{i}^{+} \hat{S}_{i}^{-}\right)=\mathrm{const} & \widehat{K}_{\boldsymbol{k}}^{2}=-\left(\widehat{K}_{\boldsymbol{k}}^{z}\right)^{2}+\frac{1}{2}\left(\widehat{K}_{\boldsymbol{k}}^{-} \widehat{K}_{\boldsymbol{k}}^{+}+\widehat{K}_{\boldsymbol{k}}^{+} \widehat{K}_{\boldsymbol{k}}^{-}\right)=\mathrm{const} \\
\left(\hat{S}_{i}^{z}\right)^{2}+\left(\hat{S}_{i}^{x}\right)^{2}+\left(\hat{S}_{i}^{y}\right)^{2} & -\left(\widehat{K}_{\boldsymbol{k}}^{Z}\right)^{2}+\left(\widehat{K}_{\boldsymbol{k}}^{x}\right)^{2}+\left(\widehat{K}_{\boldsymbol{k}}^{y}\right)^{2}
\end{array}
$$

Magnon-pair operator algebra

$$
\widehat{\mathcal{H}}=\sum_{\boldsymbol{k}} \omega_{\boldsymbol{k}}(\underbrace{\left(\hat{\alpha}_{\boldsymbol{k}}^{\dagger} \hat{\alpha}_{\boldsymbol{k}}+\hat{\beta}_{-\boldsymbol{k}}^{\dagger} \hat{\beta}_{-\boldsymbol{k}}+1\right)}_{2 \widehat{K}_{\boldsymbol{k}}^{Z}}+f(t) \sum_{k} V_{\boldsymbol{k}}(\underbrace{\hat{\alpha}_{\boldsymbol{k}}^{\dagger} \hat{\beta}_{-\boldsymbol{k}}^{\dagger}}_{\widehat{K}_{\boldsymbol{k}}^{+}}+\underbrace{\hat{\alpha}_{\boldsymbol{k}} \hat{\beta}_{-\boldsymbol{k}}}_{\widehat{K}_{\boldsymbol{k}}^{-}})
$$

Quantum to semi-classical

$$
\widehat{\mathcal{H}}=\sum_{\boldsymbol{k}} 2 \omega_{\boldsymbol{k}} \widehat{K}_{\boldsymbol{k}}^{z}+f(t) \sum_{k} V_{\boldsymbol{k}}\left(\widehat{K}_{\boldsymbol{k}}^{+}+\widehat{K}_{\boldsymbol{k}}^{-}\right) \quad H_{\mathrm{cl}}=\langle\widehat{\mathcal{H}}\rangle=2 \sum_{\boldsymbol{k}}\left[\omega_{\boldsymbol{k}} \mathcal{J}_{\boldsymbol{k}}^{Z}+f(t) V_{\boldsymbol{k}} \mathcal{J}_{\boldsymbol{k}}^{x}\right]
$$

Heisenberg equations

$$
\begin{aligned}
& \frac{d\left\langle\widehat{K}_{\boldsymbol{k}}^{z}\right\rangle}{d t}=i f(t) V_{\boldsymbol{k}}\left(\left\langle\widehat{K}_{\boldsymbol{k}}^{-}\right\rangle-\left\langle\widehat{K}_{\boldsymbol{k}}^{+}\right\rangle\right) \\
& \frac{d\left\langle\widehat{K}_{\boldsymbol{k}}^{ \pm}\right\rangle}{d t}=2 i \omega_{\boldsymbol{k}}\left\langle\widehat{K}_{\boldsymbol{k}}^{ \pm}\right\rangle \pm 2 i f(t) V_{\boldsymbol{k}}\left\langle\widehat{K}_{\boldsymbol{k}}^{Z}\right\rangle
\end{aligned}
$$

Pseudo-spin vector

$$
\boldsymbol{J}_{\boldsymbol{k}}=\left(\left\langle\widehat{K}_{\boldsymbol{k}}^{x}\right\rangle,\left\langle\widehat{K}_{\boldsymbol{k}}^{y}\right\rangle,\left\langle\widehat{K}_{\boldsymbol{k}}^{z}\right\rangle\right)
$$

Dynamics on pseudo-sphere

$$
\begin{aligned}
& \frac{d \mathcal{J}_{\boldsymbol{k}}}{d t}=-\mathcal{J}_{\boldsymbol{k}} \times \boldsymbol{B}_{\boldsymbol{k}} \\
& \boldsymbol{B}_{\boldsymbol{k}}=-\frac{d H_{\mathrm{cl}}}{d \mathcal{J}_{\boldsymbol{k}}}=-2\left(f(t) V_{\boldsymbol{k}}, 0,-\omega_{\boldsymbol{k}}\right) \\
& (\boldsymbol{a} \times \boldsymbol{b})^{x}=a^{y} b^{z}-a^{z} b^{y} \\
& (\boldsymbol{a} \times \boldsymbol{b})^{y}=a^{z} b^{x}-a^{x} b^{z} \\
& (\boldsymbol{a} \times \boldsymbol{b})^{z}=-\left(a^{x} b^{y}-a^{y} b^{x}\right)
\end{aligned}
$$

Semi-classical magnon pair dynamics

LLG equation on sphere

$$
\frac{d \boldsymbol{S}}{d t}=-\gamma \boldsymbol{S} \times \boldsymbol{B}+\frac{\eta}{S} \boldsymbol{S} \times \frac{d \boldsymbol{S}}{d t}
$$

"LLG" equation on pseudo-sphere

$$
\frac{d \mathcal{J}_{k}}{d t}=-\mathcal{J}_{k} \times \boldsymbol{B}_{\boldsymbol{k}}+\frac{\eta}{\mathcal{J}_{k}} \mathcal{J}_{k} \times \frac{d \mathcal{J}_{k}}{d t}
$$

$$
\begin{aligned}
& (\mathbf{a} \times \mathbf{b})^{x}=a^{y} b^{z}-a^{z} b^{y} \\
& (\mathbf{a} \times \mathbf{b})^{y}=a^{z} b^{x}-a^{x} b^{z} \\
& (\mathbf{a} \times \mathbf{b})^{z}=a^{x} b^{y}-a^{y} b^{x}
\end{aligned}
$$

$$
\text { G. Fabiani and JHM, Appl. Phys. Lett. 120, } 152402 \text { (2022) }
$$

$$
\begin{aligned}
& (\boldsymbol{a} \times \boldsymbol{b})^{x}=a^{y} b^{z}-a^{z} b^{y} \\
& (\boldsymbol{a} \times \boldsymbol{b})^{y}=a^{z} b^{x}-a^{x} b^{z} \\
& (\boldsymbol{a} \times \boldsymbol{b})^{z}=-\left(a^{x} b^{y}-a^{y} b^{x}\right)
\end{aligned}
$$

Parametric oscillations

Parametric resonance

$$
\left[\frac{d^{2}}{d t^{2}}+\eta \omega_{0} \frac{d}{d t}+\omega_{0}^{2}\left(1+\alpha+\beta x^{2}-2 \Gamma \sin 2 \omega_{0} t\right)\right] x(t)=0
$$

Ansatz: $\quad(\alpha=\beta=0)$

$$
\begin{gathered}
x(t)=x_{c}(t) \cos \omega_{0} t+x_{s}(t) \sin \omega_{0} t \\
x_{s}=x_{s}(0) e^{\omega_{0}(\Gamma-\eta) t} \\
x_{c}=x_{c}(0) e^{-\omega_{0}(\Gamma+\eta) t}
\end{gathered}
$$

Parametric excitation of magnon pairs

Excitation of parametric resonance by periodic modulation $f(t)=\cos \left(2 \omega_{M} t\right)$

$$
\frac{d \mathcal{J}_{\boldsymbol{k}}}{d t}=-\mathcal{J}_{\boldsymbol{k}} \times \boldsymbol{B}_{\boldsymbol{k}}+\frac{\eta}{\mathcal{J}_{k}} \boldsymbol{J}_{\boldsymbol{k}} \times \frac{d \mathcal{J}_{\boldsymbol{k}}}{d t} \quad C(t)=\left\langle\hat{\boldsymbol{S}}_{i} \cdot \widehat{\boldsymbol{S}}_{i+\delta x}\right\rangle=\sum_{\boldsymbol{k}} \boldsymbol{\Theta}_{\boldsymbol{k}} \cdot \boldsymbol{J}_{\boldsymbol{k}}
$$

$$
\boldsymbol{B}_{\boldsymbol{k}}=-2\left(V_{\boldsymbol{k}} \cos \left(2 \omega_{\boldsymbol{M}} t\right), 0,-\omega_{\boldsymbol{k}}\right)
$$

Bits as phases of magnon pair oscillations

G. Fabiani and JHM, Appl. Phys. Lett. 120, 152402 (2022)

$$
J_{e x}=10^{-2} \mathrm{eV} \Rightarrow t=100 / J_{e x} \sim 6 \mathrm{ps}
$$

Approaching the fundamental limits

- Strong damping $\eta \sim 1$ approaches "ultimate" physical limits
- Up to 5 orders of magnitude better than best magnets so far

Acknowledgements

Radboud University, NL
Alexey V. Kimel
Theo Rasing
Giammarco Fabiani
Martijn D. Bouman
Anatolii Fedianin
Stijn Rijmer

University of Tokyo, Japan (now Konstanz, Germany) D. Bossini

SPICE/ Uni Mainz, Germany E.V. Gomonay

SURF

娄

Openings for PhD/PD, to be announced online soon! j.mentink@science.ru.nl

Summary

- Supermagnonic propagation

 magnons at the edge can propagate up to 40% faster extraordinary strong magnon-magnon interactions in 2D- Parametric excitation of magnon-pairs

Semi-classical dynamics reveals switching near fundamental limits

