Ab initio theory for coherent magnetic switching

Peter Oppeneer

Department of Physics and Astronomy Uppsala University, S-751 20 Uppsala, Sweden

UPPSALA UNIVERSITET

SPICE – Ultrafast Antiferromagnetic Writing, May 9-10, 2022

In collaboration with

Marco Berritta

Ashis Nandy

Ritwik Mondal

Leandro Salemi

Tobias Dannegger, Severin Selzer, Ulrike Ritzmann, Ulrich Nowak

Eszter Simon, András Deák, László Szunyogh

Karel Carva

General ways to switch AFMs or ferrimagnets

Heating, "destroy & rebuild"

Stanciu et al, PRL **99**, 047601 (2007) Ostler et al, Nat. Comm. **3**, 666 (2012) Coherent processes

E.g. (Rashba -) Edelstein effect "staggered torque in AFMs"

Zelezny et al, PRL **113**, 157201 (2014) Wadley et al, Science **351**, 587 (2016) Zelezny et al, PRB **95**, 014403 (2017)

Switching in ferrimagnets

• Inverse Faraday effect $\vec{M}^{ind}(\mathbf{0}) = \kappa^{IFE}(\omega)\vec{E}^* \times \vec{E} = K^{IFE}(\omega)E^2(\omega)$ fs-laser field

Kimel et al, Nature **435**, 655 (2005) Berritta, Mondal, Carva, PMO, PRL **117**, 137203 (2016) John et al, Sci.Rep. **7**, 4114 (2017)

symmetry breaking not required

Disadvantage: not much known about it

Nonmagnetic metals / ferromagnets

> Antisymmetric in helicity for nonmagnetic materials

- Opposite effect of spin and orbital IFE contributions possible
- > Asymmetric for ferromagnets

UPPSALA UNIVERSITET

> Berritta, Mondal, Carva, PMO, PRL **117**, 137203 (2016) Freimuth, Blügel, Mokrousov, PRB **94**, 144432 (2016)

John et al, Sci.Rep. 7, 4114 (2017)

Gives staggered induced moments

Antiferromagnetic CrPt

Staggered induced moments, not equal size

a= 3.822 Å

 $T_N \sim 760 \text{ K}$

Cr

Dannegger, Berritta, Carva, Selzer, Ritzmann, PMO, Nowak, PRB 104, L060413 (2021)

 $M^{ind} (\sigma^+) = 0.03 \mu_B$

 Pt_2

c= 3.811 Å

Cr2

С

Talk of Uli Nowak, poster Tobias Dannegger

Switches in ~200 fs, completed at 500 fs

- Nonthermal switching, much heat works against switching probability
- 90° coherent switching possible
- AFM exchange enhanced switching

1.0 AFM $\mu_{s,B} \times$ 4 0.8 Ŧ 2 switching probability 70 90 1 .95 .9 Ŧ .85 Ŧ .75 Ferrimagnet Ŧ .5 Ī 0.2 .25 0.0 2 10 12 6 8 absorbed laser intensity I (GW cm⁻²)

Ferrimagnetic order – unequal sublat. moments

Current induced switching in Mn₂Au

Bodnar et al, Nat. Commun. 9, 348 (2018)

800

No. of current pulse trains

1000

1200

1400

UPPSALA UNIVERSITET

0 200

400

600

- Orbital REE dominant (not due to SOC)
- Large non-Néel elements present (spin)
- Orbital polarization is staggered

Atomistic spin dynamics simulations

$$\mathcal{H} = -\frac{1}{2} \sum_{i \neq j} J_{ij} (S_i + s_i) \cdot (S_j + s_j)$$
$$- \sum_i J^{\mathrm{sd}} S_i \cdot s_i + \sum_i \xi S_i \cdot l_i$$
$$- \sum_i d_z S_{i,z}^2 - \sum_i d_{xy} S_{i,x}^2 S_{i,y}^2 ,$$

With ab initio input

Switching path AFM exchange enhanced

$$T \sim (E_{ani}E_{xch})^{-1/2}$$

Roy, Otxoa, Wunderlich, PRB **94**, 014439 (2016)

90° switching simulation for 20 ps pulse (T=0 K, high E field) => Fast switching ~4 ps

Selzer, Salemi, Deak, Simon, Szunyogh, PMO, Nowak, PRB in press 12

Other possible coherent torques?

$$\frac{\partial \boldsymbol{M}}{\partial t} = -\gamma \, \boldsymbol{M} \times \boldsymbol{H}_{\text{eff}} + \alpha \, \boldsymbol{M} \times \frac{\partial \boldsymbol{M}}{\partial t} + \boldsymbol{T}$$

Inertial torque

$$^{inert} = M \times \left[I \cdot \frac{\partial^2 M}{\partial t^2} \right]$$

Short time scale (fs-ps), but intrinsic *I* – *how to steer it?*

Mondal, Berritta, Nandy, PMO, PRB **96**, 024425 (2017) Cherkasskii et al, PRB **102**, 184432 (2020) Neeraj et al, Nat. Phys. **17**, 245 (2021) Mondal, Großenbach, Rozsa, Nowak, PRB **103**, 104404 (2021)

 $I \propto -\bar{\tau} \alpha \qquad \bar{\tau} \approx 700 \, fs$

T

Optical spin-orbit torque

$$T^{OSOT} = -\frac{e^2}{2m^2c^2\varepsilon_0}M \times j_s$$

$$\mathbf{j}_s = -2\mathbf{E} \times \mathbf{A} \ (\epsilon_0 = 1)$$

Photon spin angular moment

Mondal, Berritta, Paillard et al, PRB **92**, 100402R (2015) Mondal, Berritta, Oppeneer, JPCM **29**, 194002 (2017) Mondal, Donges, Nowak, PRRes **3**, 023116 (20121)

Some possible observations (?)

Other possible torques?

Field-derivative torque

 $T^{FDT} \propto M \times \frac{\partial H}{\partial t}$

(non-relativistic)

- phase difference between Zeeman torque and FDT
- No experimental observation so far

Conclusions

- Inverse Faraday effect can give staggered induced moments in AFMs (no symmetry-breaking needed)
- Can initiate fast AFM switching process (~200fs) in CrPt *w/o incoherent heating*
- Electric-field induced switching in Mn_2Au possible in ~ 4 ps
- Heating by current pulses strongly assists the AFM switching in Mn₂Au
- Other possible torques for ultrafast switching: Inertial torque, FDT, and OSOT – not enough known and possibly too small

