Spin-orbit torque switching between reversed antiferromagnetic state and its electrical detection

Joao Godinho^{((1), 2, 3)} Pradeep-Kumar Rout^(1,2)

Z. Soban⁽²⁾, V. Novak⁽²⁾, K. Olejnik⁽²⁾, T. Jungwirth⁽²⁾, P. Nemec⁽³⁾, ...,

R. Salikhof ^(4,5), O. Hellwig ^(4,5), J. Wunderlich ^(1,2)

⁽¹⁾ University of Regensburg, Germany

⁽²⁾ Institute of Physics ASCR, Prague, CR

⁽³⁾ Faculty of Mathematics and Physics, Charles University, Prague, CR

⁽⁴⁾ Technische Universität Chemnitz, Germany

⁽⁵⁾ Helmholtz-Zentrum Dresden-Rossendorf

erc

European Research Council

Established by the European Commission

ANTIFERROMAGNETS useful for applications?

Fast (THz) dynamics: switching, domain wall motion GHz in ferromagnets

Radiation-hard Spin not charge based (as ferromagnets)

MERITS?

Spin-polarized bandstructure coupled to magn. order (Altermagnets, non-col. AFs) Non-volatile Magnetic order (as ferromagnets)

Insensitive & invisible to magnetic fields

No stray field cross-talks No (small) net moment Insulators, topol. ins., semiconductors, semimetals, metals, ... Ferromagnets mostly metals

ANTIFERROMAGNETS

Anisotropic **Magnetoresistance**

and optical equivalents

Electrical DETECTION of

via Magneto-transport measurements

Insensitive & invisible to magnetic fields

No stray field cross-talks No net moment

ANTIFERROMAGNETS

→ Short electrical pulses

→ Electrical pulses

→ Polarized THz Laser Pulses

→ NON-VOLATILE ???

(K. Olejnik, et al., Sci. Adv. 2018;4:eaar356)

Collinear antiferromagnetic states

Anomalous Hall effect (AHE) in non-collinear AFs

that crystallize in ferromagn. symmetry groups, able to develop magnetic moment (Mn₃Ir, Mn₃Ge, Mn₃Sn, ...)

Chen et al., PRL 112, 017205 (2014) Nakatsuji, et al., Nature 527, 212 (2015) Nayak, et al., Sci. Adv. 2, e1501870 (2016)

...

Anomalous Hall effect (AHE) linear response: $\mathbf{E} = (\rho + \xi \mathbf{j} + ...) \mathbf{j}$

AHE (odd under time reversal): $E_i =
ho_{ij}^{odd}(\vec{O}) \, j_j$

$$E_i = -T \rho_{ij}^{odd}(\vec{O}) j_j = -\rho_{ij}^{odd}(-\vec{O}) j_j$$

Anomalous Hall effect (AHE) linear response: $\mathbf{E} = (\rho + \xi \mathbf{j} + ...) \mathbf{j}$

AHE (odd under time reversal): $E_i =
ho_{ij}^{odd}(ec{O}) \, j_j$

$$E_i = -T\rho_{ij}^{odd}(\vec{O}) j_j = -\rho_{ij}^{odd}(-\vec{O}) j_j$$

Broken space-inversion symmetry

Anomalous Hall effect (AHE) linear response: $\mathbf{E} = (\rho + \xi \mathbf{j} + ...) \mathbf{j}$

AHE (odd under time reversal): $E_i =
ho_{ij}^{odd}(\vec{O}) j_j$

$$E_i = -T\rho_{ij}^{odd}(\vec{O})\,j_j = -\rho_{ij}^{odd}(-\vec{O})\,j_j$$

Combined *PT* symmetry

PT symmetry of the CuMnAs crystal: $\rho_{ij}^{\text{odd}} = PT\rho_{ij}^{\text{odd}}$ Space inversion flips sign of both electric field E_i and current $j_j \qquad \rho_{ij}^{\text{odd}} = 0$ (no AHE) Time rev. symmetry flips sign only of current j_j : $\rho_{ij}^{\text{odd}} = -PT\rho_{ij}^{\text{odd}}$

Anomalous Hall effect (AHE) in non-collinear AFs

that crystallize in ferromagn. symmetry groups, able to develope a magnetic moment (**Mn₃Ir**, **Mn₃Ge**, **Mn₃Sn**, ...)

Chen et al., PRL 112, 017205 (2014) Nakatsuji, et al., Nature 527, 212 (2015) Nayak, et al., Sci. Adv. 2, e1501870 (2016)

Magnetoresistance

 $\mathbf{E} = (\rho + \boldsymbol{\xi} \mathbf{j} + ...) \mathbf{j} \quad (\text{second order response})$

- allows detection of spin-reversal in AF with broken T symmetry but actually requires that AF has also combined PT symmetry: $E_i = \xi_{ijk}^{\text{odd}} j_j j_k$.

Most of the antiferromagnetic point-groups with broken *T* symmetry have *PT* symmetry

(48 out of 59) H. Grimmer, Acta Crystallographica Section A 49, 763-771 (1993)

Synthetic Antiferromagnet model system

most simple AF model system with PT symmetry, and broken T symmetry

2 reversed AF states \rightarrow **equal AHE** and **GMR** responses

... hysteresis loop enables "setting up" the two opposite AF states by the polarity of a perp. Magn. field larger than the spin flip field

Synthetic Antiferromagnet model system

most simple AF model system with PT symmetry, if a magn. field is applied: also broken T symmetry

~ **Spin-Orbit torque** (due to staggered SO field)

Synthetic Antiferromagnet model system

most simple AF model system with PT symmetry, if a magn. field is applied: also broken T symmetry

~ Spin-Orbit torque (due to staggered SO field)

< () (depending on Néel vector orientation 🙌)

Synthetic Antiferromagnet model system

most simple AF model system with PT symmetry, if a magn. field is applied: also broken T symmetry

 \sim Spin-Orbit torque (due to staggered SO field)

> (depending on Néel vector orientation /)

Synthetic Antiferromagnet model system

most simple AF model system with PT symmetry, if a magn. field is applied: also broken T symmetry

~ **Spin-Orbit torque** (due to staggered SO field)

 $\times d\mathbf{MR}/d\theta = 0$ in case of perpendicular magnetic anisotropy $\stackrel{(s)}{=}$

Synthetic Antiferromagnet model system

most simple AF model system with PT symmetry, if a magn. field is applied: also broken T symmetry

~ **Spin-Orbit torque** (due to staggered SO field)

 $\times d\mathbf{MR}/d\theta \neq 0$ by applying a small perturbation, e.g., an inplane magnetic field

Synthetic Antiferromagnet model system

Synthetic Antiferromagnet model system with perpendicular magn. anisotropy

Nonlinear MR

generated by torque of the *staggered component* of the *damping like* SO field

SO effective fields (current *j* and inplane field *H* along *x*)

Synthetic Antiferromagnet model system

Electrical switching with SO Torque

facilitate switching by reducing anisotropy energy barrier

Current induced spin reversal by SOT

Synthetic Antiferromagnet model system

Electrical switching with SO Torque

Initializing the AF state with perp. field

Nonlinear (2nd order) MR

Multilevel switching

Nonvolatile Multilevel switching

Long retention times (nonvolatile)

reading and writing at reduced barrier height nonvolatile storage with full anisotropy barrier reading and writing at reduced benie heigight

SOT switching and detection of 180° spin reversal in CuMnAs

thin 20nm CuMnAs

T. Janda et al, Phys. Rev. Materials 4, 094413 (2020)

Antiferromagnet

'Locally' broken inversion symmetry

→ Electrical excitation of ultrafast dynamics of Antiferromagents

J. Železný, et al., Phys. Rev. Lett. 113, 157201 (2014). P. Wadley, et al., Science 351, 6273, 587 (2016).

Longitudinal Anisotropic Magneto-Seebeck Effect

180° Néel magnetic DWs

(~50 nV amplitude, 0.01 GW/m² power density)

(~50 nV amplitude, 0.01 GW/m² power density)

Summary

SPINTRONICS with ANTIFERROMAGNETS:

- electrical 180° spin reversal switching and its detection via spin-orbit fields in synthetic + real antiferromagnets with PT symmetry and uniaxial magn. anisotropy
- writing and reading of stable **nonvolatile multidomain states**
- (potentially ultrafast) 180° switching by SOT-driven **domain wall motion**
- scanning high resolution magneto-Seebeck microscopy using a scattering near field microscope

THANK YOU!