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Self-Induced Transparency in Room-Temperature Dense Rydberg 
Gases 
 
Aggressively large Doppler effects is of the challenge to create static optical 
nonlinearities in atomic gases beyond ultracold temperatures. We show the creation of 
strong dispersive optical nonlinearities of nanosecond laser pulses in high number 
density atomic gases at room temperature. This is examined in a vapor cell setting 
where the laser light resonantly excites atoms to Rydberg P states through a single-
photon transition. Using fast Rabi flopping and strong Rydberg atom interactions, both 
in the order of GHz, can overcome the Doppler effect as well as dephasing due to 
thermal collisions between Rydberg electrons and surrounding atoms. In this strong-
driving regime both the light intensity and Rydberg interactions contribute to the 
generation of the optical nonlinearity. We show the emergence of a modified self-
induced transparency (SIT) where the stable light propagation relies on the Rydberg 
interactions, modifying the area theorem. We furthermore demonstrate that a 
conditional optical phase gate can be implemented by harvesting strong Rydberg atom 
interactions and SIT. Our study paves a route to explore nonlinear optics in Rydberg 
gases from low to room temperature, and contributes to current efforts in developing 
quantum information and communication devices with glass cell technologies. 

 
SPP 1929 – Seminar 

07 February 2020, 11:00 am 
 

Universität Tübingen 
Room D4 A19 

Auf der Morgenstelle 14, 72076 Tübingen 



How to characterize states of matter?

Characterize phases  
of matter 
- based on Landau paradigm 
- symmetry breaking  
- order parameter and long range order 
- thermal and quantum phase transitions

phase diagram of water

broken translation  
symmetry

Extremely successful 
- band insulator/Fermi liquids 

- crystals 

- superfluids 
   

 
- superconductors 
 
- ferromagnets and 
  anti-ferromagnets

- Bose-Einstein condensate 
- superfluid Helium



How to characterize states of matter?

Characterize phases  
of matter 
- based on Landau paradigm 
- symmetry breaking  
- order parameter and long range order 
- thermal and quantum phase transitions

phase diagram of water

broken translation  
symmetry

Extremely successful 
- band insulator/Fermi liquids 

- crystals 

- superfluids 
   

 
- superconductors 
 
- ferromagnets and 
  anti-ferromagnets

- Bose-Einstein condensate 
- superfluid Helium

But, not all states of matter  

follow this paradigm 



Characterizing ground states  
of quantum many-body  
systems at T=0 
 
- absence of symmetry breaking 
 
- gapped phases  

Topological phases

local Hamiltonians

gapped  
Hamiltonians*

Definition: 

two states are in the same topological 
phase if they can be smoothly 
transformed into each other without 
closing the gap

Two dimensions



Properties of topological phases in 2D

Topological character 
 
- ground state degeneracy scales  
  with genus of the manifold 
 
- ground states are indistinguishable  
  to any local probe 
 
- anyonic excitations: the statistics is  
  neither bosons nor fermions 
 
- long-range entanglement with 
  topological entanglement entropy
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: topological entanglement  
  entropyarea law

Examples 
- fractional quantum  
  Hall states 
 
- fractional Chern  
  insulators 

- bosonic models: 
  toric code, 
  Fibonacci anyons,  
  bosonic fractional  
  Chern insulators

Ap =
�

�x
i

Bs =
�

�z
i

Are there other topological phases also in 1D?



Symmetry protected topological phases

gapped  
Hamiltonians*

local Hamiltonians local Hamiltonians

gapped symmetric 
Hamiltonians*

require a 
symmetry

- restrict to systems, which  
  satisfy a certain symmetry 
 
- symmetry group         withS

One dimension



Outline

Symmetry protected Topological 
phases with Rydberg atoms 
- experimental setup of Rydberg atoms  
  in optical tweezers 

- Symmetry protected topological phase 
   S. de Léséleuc, et al, Science 365, 775 (2019)| 
 
- Haldane Spin-1 phase 

Bosonic fractional Chern insulator 
with Rydberg atoms 
- topological band structures  
 
- proof of principle experiments on a triangle 
  V. Lienhard, et al., Phys. Rev. X 10, 021031 (2020) 
 
- blueprint for realization of bosonic  
  fractional Chern insulator 
  S. Weber et al., arxiv:2202.00699 

Experimentally accessible scheme for a fractional Chern insulator in Rydberg atoms

S. Weber,1 R. Bai,1 N. Makki,1 J. Mögerle,1 T. Lahaye,2 A. Browaeys,2 M. Daghofer,3 N. Lang,1 and H. P. Büchler1
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We present a setup with Rydberg atoms for the realization of a bosonic fractional Chern insulator
in artificial matter. The suggested setup relies on Rydberg atoms arranged in a honeycomb lattice,
where excitations hop through the lattice by dipolar exchange interactions, and can be interpreted
as hard-core bosons. The quantum many-body Hamiltonian is studied within exact diagonalization
and DMRG. We identify experimentally accessible parameters where all signatures indicate the
appearance of a fractional state with the same topological properties as the ⌫ = 1/2 bosonic Laughlin
state. We demonstrate an adiabatic ramping procedure, which allows for the preparation of the
topological state in a finite system, and demonstrate an experimentally accessible smoking gun
signature for the fractional excitations.

I. INTRODUCTION

Many-body ground states that feature intrinsic topo-
logical order are distinguished by remarkable properties
such as excitations with anyonic statistics, long-range en-
tanglement, and/or robust edge states [1]. These prop-
erties make such topological phases of high interest for
applications in quantum information, e.g., topological
quantum computation and topological quantum mem-
ory [2]. The most prominent topological phases are frac-
tional quantum Hall states which naturally appear for
electrons confined in two dimensions in strong magnetic
fields [3]. However, in recent years a focus is on real-
izing such topological phases in artificial matter [4–13].
Such a quantum simulator allows to probe their prop-
erties with novel tools, and makes them amenable for
applications [14]. Especially platforms based on Ryd-
berg atoms have emerged as highly promising, and first
experiments demonstrate a symmetry protected topolog-
ical phase [15], and signatures of a spin liquid [16]. Here,
we investigate and predict the appearance of a bosonic
fractional Chern insulator in an experimentally accessible
system with Rydberg atoms.

Rydberg platforms are based on individual atoms
trapped by optical tweezers in a programmable array
with up to several hundred sites and near perfect unit-
filling [17–21]. Strong interactions are achieved by ex-
citing the atoms into Rydberg states, and the result-
ing van der Waals or dipolar exchange interactions en-
able the realization of di↵erent quantum many-body sys-
tems. Examples include Ising-like spin models [22–25],
and quantum many-body systems based on hard-core
bosons [15, 26]. Recently, the appearance of a topo-
logical spin liquid in such a Rydberg platform has been
predicted [13], and even first experimental signatures of
this topological phase have been reported [16]. However,
the quantum simulation of fractional quantum Hall-like
states remains an open challenge. A promising approach
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FIG. 1. Setup for the realization of a fractional Chern
insulator. (a) Rydberg atoms are arranged in a honeycomb
lattice with lattice spacing l. A homogeneous electric field Ez

and magnetic field Bz are applied perpendicular to the plane
of atoms, along the quantization axis z. (b) The fields isolate
the Rydberg levels of the V-structure |0i, |+i, and |�i (black
lines). The state |0i is treated as the vacuum state and the
excitations |±i as particles. The energy di↵erence � = E+ �
E� between |+i and |�i is controlled by the fields. (c) Single-
particle band structure along the depicted path through the
Brillouin zone for the experimental parameters that are given
in the main text (h is Planck’s constant). The lowest band has
the single-particle Chern number C = 1. (d) Average particle
density n of the many-body ground state as a function of the
chemical potential µ. The density shows a plateau at 1/4-
filling, indicating an incompressible phase.

is based on combining two main ingredients: strong in-
teractions between particles and the realization of band
structures characterized by a Chern number within flat
bands and/or homogeneous Berry curvature [27, 28]. A
setup with Rydberg atoms naturally gives rise to e↵ec-
tive bosonic particles with a hard-core constraint [15],
and the appearance of topological band structures has
been predicted for Rydberg excitations hopping under
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Rydberg-Rydberg interaction 

- strong van der Waals interactions  
  between Rydberg states 

- dipolar exchange interactions
- exchange of excitation between 
  two different Rydberg states 
 
- 

Experimental setup with Rydberg atoms

Rydberg atoms 

- one electron excited into a state  
  with high principal quantum  
  number n 

- here, Rubidium atoms n~40 -100, 
  excited into s-states and p-states 

electronion
rn � n2

nth : principal quantum number

d � n2

- attractive or repulsive 

- C6 � n11

A

B

C

D

Figure 1: Bosonic SSH model. (A) Dimerized one-dimensional lattice and the two sub-lattices
A and B. The staggered nearest neighbor hopping energies are denoted as J and J

0 with
|J | > |J 0|. (B) Each lattice site hosts a Rydberg atom with two relevant levels: 60S1/2 be-
ing the vacuum state |0i and 60P1/2 describing a bosonic particle b

†
i |0i. The dipolar exchange

interaction provides a hopping of the particles. (Inset in A) Angular dependence of the hopping
amplitude measured between two sites; filled (empty) disk: positive (negative) amplitude. It
vanishes and changes sign at the angle ✓m ' 54.7�. The solid line is the theoretical prediction .
Error bars, denoting

::
of

:
the standard

:::::::
angular

:::::::::::::
dependence.

:::::::::
Standard

:
error of the mean (s.e.m.) ,

::
of

:::
the

:::::
data are smaller than the symbol size. (C-D) Single-shot fluorescence images of the atoms

assembled in the artificial structure for the topological (C) and the trivial (D) configuration. The
chain is tilted by the angle ✓m to cancel couplings between sites in the same sub-lattice.
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Experimental setup with Rydberg atoms

Deterministic assembly in arbitrary 
structures and lattices 

- loading from a cold thermal cloud 
  
 
- prepare lattice structure by moving 
  the filled traps 
 
- prepare arbitrary 2D as well  
  as 3D structures 

- achieved by different groups:  
  Paris, Science 354, 1021 (2016) 
  Harvard, Science 354,1024 (2016) 
  Korea, Nat. Comm. 7, 13317 (2016)

Single atoms trapped in optical 
tweezers 

- individual traps for a single atom 
 
- not in ground state of the trapping potential 
 
- single site resolution

in
iti

al
fin

al

Barredo, et al., Science 354, 1021 (2016)

- stochastic loading

spatial light  
modulator

���FT[ei'(x,y)]
���
2

'(x, y)



Experimental setup with Rydberg atoms
Quantum Ising like models 

- all atoms coupled to a Rydberg S-state 
 
- van der Waals interaction between  
  Rydberg states 

|rii = | "ii

|gii = | #ii

�
a

nj =
1 + �z

j

2
H = ⌦

X

i

�
x
i +

X

i

�i�
z
i +

X

i 6=j

C6

|ri � rj |6
ninj

transverse  
field

longitudinal  
field

Ising type interaction

Quantum simulation of spin models 

- non-equilibrium quench dynamics 
- time dependent driven and disordered systems 
- up to several hundreds of atoms 
- Z2 spin liquid in analogy to toric code 

- Labuhn, et. al., Nature 534, 667 (2016) 
- Bernien, et al., Nature 551, 579 (2017) 
- Ebadi,  et. al.  Nature 595, 227 (2021) 
- Scholl, et al., Nature 595, 233 (2021) 
- Semeghini, et al., Science 374, 1242 (2021)

0–20 mV=cm so as to maximize Prr. For θ ≈ 0 the system
is faithfully described by a spin-1=2 system. For increasing
θ, we identify the range of magnetic fields where Rydberg
blockade is maintained. In addition, we observe a breaking
of the Rydberg blockade for negative B as predicted in

Ref. [26]. A similar analysis for various principal quantum
numbers n indicates that the presence of a Förster reso-
nance at n ¼ 59 is responsible for this sensitivity to weak
electric fields [29,31].
Now that we have identified parameters allowing us to

map our two-atom system onto a spin-1=2 model, we
extend the study to larger systems. We first revisit the
experimental realization of an 8-atom ring, reported in
Ref. [10], where we observed a discrepancy with the spin-
1=2 model. We apply a Rydberg excitation pulse and
observe the ensuing dynamics by measuring the fraction fR
of atoms that are excited to Rydberg states. We also extract
the probability P5þ that more than five atoms are excited,
i.e., that the blockade condition is violated, as, for our
parameters, nearest-neighbor excitation is thwarted. Prior
to this experiment we compensated the stray electric field
better than 5 mV=cm. Figures 6(a)–6(c) show the results
for two values of the magnetic field. For B¼ 6.9 G, we
observe a slow rise of P5þ above the prediction of the spin-
1=2 model. Contrarily, for B¼ 3.5 G, we find a much
better agreement with the spin-1=2 model as expected
from above.
We then probe a square array of 7 × 7 atoms [Figs. 6(d)–

6(f)]. As an exact simulation of the dynamics of the
49-atom system is no longer possible, we use the fact that
two neighboring atoms cannot be excited due to the

(a)

(b)

FIG. 5. Influence of θ, B, E on the mapping onto a spin-1=2
system. Calculated probability of double excitations at long
times (see text) as a function of the magnetic field B and the
angle θ. The interatomic distance is fixed at R¼ 6.5 μm. The
electric field is E¼ 0 in (a) and chosen between 0 and
20 mV=cm such that the probability for two Rydberg excita-
tions is maximized in (b).

(b) (c)

(e) (f)

(a)

(d)

FIG. 6. Dynamics of an ensemble of atoms under Rydberg excitation. (a) 8-atom ring with a nearest neighbor spacing of 6.5 μm. The
shaded ellipse illustrates the range of the anisotropic blockaded regionU > ℏΩ. (b) Evolution of the Rydberg fraction fR with the pulse
area Ωτ for B¼ 6.9 G. The inset shows the probability P5þ to observe configurations with at least 5 excitations. At large times, the
experimental points systematically lie above the results of a simulation of the corresponding spin-1=2 model (solid line). (c) Same
parameters with B¼ 3.5 G. (d) Square lattice of 7 × 7 traps (lattice spacing 6.1 μm). The blockade extends over nearest and next-
nearest neighbors. (e) Evolution of the Rydberg fraction forB¼ 6.9 G. Here the data show a slow increase in fR at long times, while the
spin-1=2 model predicts a saturation. (f) For B¼ 3.5 G, the agreement with the spin-1=2 model becomes very good. All figures: error
bars depict the standard error of the mean and are often smaller than the symbol size.

PHYSICAL REVIEW LETTERS 120, 113602 (2018)

113602-4

10	µm
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PRL 120, 113602 (2018)



Dipolar exchange interaction 

-  vacuum state: all atoms in a  
   Rydberg S-state  

- bosonic particles: excitations into a  
  Rydberg P-state 

- hopping by dipolar exchange  

- hard-core bosons: strong interactions

H =
X

ij

b
†
i Ĥijbj =

X

i2A,j2B

Jij

h
b
†
i bj + b

†
jbi

i

Experimental setup with Rydberg atoms

Alternative view in spin language:

Rydberg S-state: spin down 

Rydberg p-state: spin up

hard core bosons spin 1/2 system

| #i
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Dipolar exchange interaction 

-  vacuum state: all atoms in a  
   Rydberg S-state  

- bosonic particles: excitations into a  
  Rydberg P-state 

- hopping by dipolar exchange  

- hard-core bosons: strong interactions

H =
X

ij

b
†
i Ĥijbj =

X

i2A,j2B

Jij

h
b
†
i bj + b

†
jbi

i

Reminder: Fermionic SSH chain — topological insulator
- non-interacting Fermions 

- sub-lattice (chiral) symmetry 
  (anti-unitary operator) 
 
 
 
- on single particle Hamiltonian

SS =
Y

i

h
ci + (�1)ic†i

i
K

USĤU
†
S = �Ĥ (US)ij = (�1)j�ij

complex  
conjugation

 
- Jordan Wigner transformation 

 
 
 
 
  non-interacting 

fermions
hard-core 
bosons

: non-local  
 transformation

bj = ei⇡
P

k<j c†kckcj

Experimental setup with Rydberg atoms



Protecting symmetries 

- particle conservation 
 
- discrete  
  operation 
 
- symmetry  
  group  
 
- Hamiltonian 
 
- allows for 4 different SPT phases 
   X.-G. Wen, et al, Science (2012) 
   F. Pollman, et al, PRB (2010) 

SB =
Y

i

h
b†i + bi

i
K

U(1)⇥ ZT
2

[H,SB ] = 0

SPT phase  
 
- gapped ground state  
  at half-filling  
 
- four-fold ground state  
  degeneracy 
 
- zero energy edge states

Special point:  
 
 
 
 
Perturbations respecting  
the symmetry: 

|m,m0i =
⇣
b†1

⌘m ⇣
b†L

⌘m0 Y

i2even

1p
2

⇣
b†i + b†i+1

⌘
|0i

J 0 = 0

- arbitrary hoppings  
  (also complex) 
 
- interactions 

⇣
b†i bi � 1/2

⌘⇣
b†jbj � 1/2

⌘
b†i bj + b†jbi

Symmetry protected topological phase



SPT phase

trivial phase

gapless or symmetry  
forbidden states

J = J 0

J 0/J

pa
ra

m
et

er
 s

pa
ce

Symmetry protected topological phase
Ground state in  
normal phase 

- unique gapped  
  ground state

Ground state in  
SPT phase  
 
- ground state  
  degeneracy 
 
- edge states

Spin-1 anti-ferromagnet: Haldane state

2

A

B

C

D

Figure 1. Bosonic SSH model. (A) Dimerized one-dimensional lattice and the two sub-lattices A and B. The staggered
nearest neighbor hopping energies are denoted as J and J 0 with |J | > |J 0|. (B) Each lattice site hosts a Rydberg atom with
two relevant levels: 60S1/2 being the vacuum state |0i and 60P1/2 describing a bosonic particle b†i |0i. The dipolar exchange
interaction provides a hopping of the particles. (Inset in A) Angular dependence of the hopping amplitude measured between
two sites; filled (empty) disk: positive (negative) amplitude. It vanishes and changes sign at the angle ✓m ' 54.7�. The solid
line is the theoretical prediction. Error bars, denoting the standard error of the mean (s.e.m.), are smaller than the symbol
size. (C-D) Single-shot fluorescence images of the atoms assembled in the artificial structure for the topological (C) and the
trivial (D) configuration. The chain is tilted by the angle ✓m to cancel couplings between sites in the same sub-lattice.

state and an excitation gap, and a SPT phase, with a
four-fold ground state degeneracy due to edge states, and
a bulk excitation gap. Following an adiabatic preparation
of a half-filled chain, we detect the ground state degen-
eracy in the topological phase and probe the zero-energy
edge states. Furthermore, we experimentally demon-
strate the robustness of the SPT phase under a perturba-
tion respecting the protecting symmetry, and show that
this robustness cannot be explained at the single-particle
level, a feature that distinguishes our system from non-
interacting SPT phases.

SSH MODEL FOR HARD-CORE BOSONS

The SSH model is formulated on a one-dimensional
lattice with an even number of sites N and staggered
hopping of particles, see Fig. 1A. It is convenient to divide
the lattice into two sub-lattices: A = {1, 3, . . . , N � 1},
involving odd lattice sites, and B = {2, 4, . . . , N}, with
even sites. Then, a particle on site i of one sub-lattice
can hop to a site j of the other sub-lattice with a hopping
amplitude Jij (we do not restrict the system to nearest
neighbor hopping). The many-body Hamiltonian is

H = �
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jbi
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, (1)

with b
†
i (bi) the creation (annihilation) operator of a

particle on site i. In the original formulation of the

SSH model, the particles are non-interacting fermions.
Here we consider hard-core bosons and the operators b

†
i

(bi) satisfy bosonic commutation relations on di↵erent
sites i 6= j, and additionally the hard-core constraint
(b†i )

2 = 0, as two bosons cannot occupy the same site i. In
our realization, the nearest neighbor hoppings are dom-
inant with their energies denoted as J2i,2i+1 = J and
J2i�1,2i = J

0 with |J 0| < |J |, and are su�cient to de-
scribe the qualitative behavior of the model.
At the single particle level, the spectrum of the Hamil-

tonian in Eq. (1), shown in Fig. 2A, is obtained by diag-
onalizing the coupling matrix Jij . It displays two bands
separated by a spectral gap 2(|J |� |J 0|) and, depending
on the boundaries of the chain, localized zero-energy edge
modes. There are two such modes for a chain ending with
weak links J

0 (topological configuration, Fig. 1C) and
none if the chain ends with strong links J (trivial config-
uration, Fig. 1D). The topology of the bands emerges
from the sub-lattice (or chiral) symmetry of the SSH
Hamiltonian [5, 6], which notably constrains the hopping
matrix Jij to connect only sites of di↵erent sub-lattices,
e.g., next nearest neighbor hoppings Ji,i+2 = J

00 are for-
bidden. The existence and degeneracy of edge modes
are topologically protected from any perturbation that
does not break the sub-lattice symmetry. These single-
particle properties of the coupling matrix Jij defining the
SSH model have been observed in many platforms such
as, e.g., ultracold atoms [29, 30], polaritons in array of
micropillars [21] or mechanical granular chains [31].
We now turn to the properties of the quantum many-
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Figure 1. Bosonic SSH model. (A) Dimerized one-dimensional lattice and the two sub-lattices A and B. The staggered
nearest neighbor hopping energies are denoted as J and J 0 with |J | > |J 0|. (B) Each lattice site hosts a Rydberg atom with
two relevant levels: 60S1/2 being the vacuum state |0i and 60P1/2 describing a bosonic particle b†i |0i. The dipolar exchange
interaction provides a hopping of the particles. (Inset in A) Angular dependence of the hopping amplitude measured between
two sites; filled (empty) disk: positive (negative) amplitude. It vanishes and changes sign at the angle ✓m ' 54.7�. The solid
line is the theoretical prediction. Error bars, denoting the standard error of the mean (s.e.m.), are smaller than the symbol
size. (C-D) Single-shot fluorescence images of the atoms assembled in the artificial structure for the topological (C) and the
trivial (D) configuration. The chain is tilted by the angle ✓m to cancel couplings between sites in the same sub-lattice.

state and an excitation gap, and a SPT phase, with a
four-fold ground state degeneracy due to edge states, and
a bulk excitation gap. Following an adiabatic preparation
of a half-filled chain, we detect the ground state degen-
eracy in the topological phase and probe the zero-energy
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strate the robustness of the SPT phase under a perturba-
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interacting SPT phases.
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lattice with an even number of sites N and staggered
hopping of particles, see Fig. 1A. It is convenient to divide
the lattice into two sub-lattices: A = {1, 3, . . . , N � 1},
involving odd lattice sites, and B = {2, 4, . . . , N}, with
even sites. Then, a particle on site i of one sub-lattice
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our realization, the nearest neighbor hoppings are dom-
inant with their energies denoted as J2i,2i+1 = J and
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0 with |J 0| < |J |, and are su�cient to de-
scribe the qualitative behavior of the model.
At the single particle level, the spectrum of the Hamil-

tonian in Eq. (1), shown in Fig. 2A, is obtained by diag-
onalizing the coupling matrix Jij . It displays two bands
separated by a spectral gap 2(|J |� |J 0|) and, depending
on the boundaries of the chain, localized zero-energy edge
modes. There are two such modes for a chain ending with
weak links J

0 (topological configuration, Fig. 1C) and
none if the chain ends with strong links J (trivial config-
uration, Fig. 1D). The topology of the bands emerges
from the sub-lattice (or chiral) symmetry of the SSH
Hamiltonian [5, 6], which notably constrains the hopping
matrix Jij to connect only sites of di↵erent sub-lattices,
e.g., next nearest neighbor hoppings Ji,i+2 = J

00 are for-
bidden. The existence and degeneracy of edge modes
are topologically protected from any perturbation that
does not break the sub-lattice symmetry. These single-
particle properties of the coupling matrix Jij defining the
SSH model have been observed in many platforms such
as, e.g., ultracold atoms [29, 30], polaritons in array of
micropillars [21] or mechanical granular chains [31].
We now turn to the properties of the quantum many-
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Figure 3. Preparing the many-body phase at half-filling. (A) Microwave sweep with time-varying Rabi frequency
⌦µw and detuning �µw; the latter ends at �f . (B,C) Energy spectrum of the many-body system in the trivial (top) and
the topological (bottom) configuration for di↵erent particle numbers. The trivial chain exhibits a single gapped ground state
with 7 particles, while the topological configuration exhibits a four-fold degeneracy involving 6, 7 (two-fold degenerate), and
8 particles. Starting from the empty chain, the microwave adiabatic sweep loads hard-core bosons in the lattice and prepares
the lowest energy states. (D,E) We measure the occupancy of bulk (blue) and edge sites (green and brown) as a function of
the final detuning �f . For a sweep ending in the single-particle gap (dashed lines), the bulk of the chain is half-filled. Bosons
are loaded in the edge sites of the topological configuration when �f > 0. The error bars represent the standard errors of the
mean (s.e.m).

a theoretical analysis simulating the full time-evolution,
we expect that our ramping procedure ending at a final
detuning |~�f | < |J | � |J 0| prepares the ground state
with high fidelity [32].

We present in Fig. 3D-E the dependence of the local
density of particles on �f : the bulk sites occupancy (blue
curves) exhibits a characteristic plateau at half-filling
within the single particle gap. Especially, the fluctua-
tions of the number of particles in the bulk are strongly
reduced with a probability of 48 % to find exactly 6 parti-
cles on the 12 bulk sites (mainly decreased from 100 % by
detection errors [32]). While the local bulk properties are
independent of the topology of the setup, the situation is
drastically di↵erent for the edge occupancy: in the triv-
ial configuration, the edge sites behave as the bulk sites,
whereas for the topological chain the boundaries remain
depleted for �f < 0 and exhibit a sharp transition to full
occupancy for �f > 0. This behavior is consistent with
the expected ground state degeneracy.

We gain more insight about the many-body state by
analyzing the correlations between particles, that we can
measure as our detection scheme provides the full site-
resolved particle distribution. In the strongly dimer-
ized regime |J | � |J 0|, we expect the ⇠ N/2 particles
in the bulk to be highly correlated as they can mini-
mize their energy by each delocalizing on a dimer (two
sites connected by a strong link J). The picture re-
mains valid even in our regime where |J | ' 2.6|J 0|.
We measure a large and negative density-density cor-
relation C

z(2i, 2i + 1) = hZ2iZ2i+1i ' �0.67(1) with

Zi = 1 � 2b†i bi, corresponding to a suppressed probabil-
ity to find two particles on the same dimer. We also
access the o↵-diagonal correlations, C

x(i, j) = hXiXji
with Xi = bi + b

†
i measuring the coherence between two

sites i and j, by applying a strong microwave pulse be-
fore the detection which rotates the local measurement
basis around the Bloch sphere. We obtain C

x(2i, 2i+1) '
+0.48(2) indicating that a particle is coherently and sym-
metrically delocalized on two sites forming a dimer. Fur-
thermore, our detection scheme allows us to determine
string order parameters, which have emerged as an indi-
cator of topological states [39, 40]:

C
z
string = �

D
Z2 e

i⇡
2

PN�2
k=3 Zk ZN�1

E
(3)

and in analogy for C
x
string. Indeed, we measure a fi-

nite string order in the topological phase with C
z
string =

0.11(2) and C
x
string = 0.05(2), while in the trivial phase

they are consistent with zero, e.g., Cz
string = �0.02(3). All

measured correlators are in good agreement with simu-
lations [32].
We now demonstrate the degeneracy of the many-body

ground state in the topological phase and the bulk exci-
tation gap. We first prepare the many-body ground state
with the bulk at half-filling but empty edge states by an
adiabatic sweep ending at �f/(2⇡) = �1 MHz. We then
apply a weak microwave probe at various detunings �µw

(see Fig. 4A) and observe when particles are created or
annihilated in order to probe the excitation spectrum of
the many-body ground state. Figure 4B-C shows the
three expected and measured transitions: (i) a particle
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Figure S5. (A) Microwave sweep ending at �f/2fi = +1 MHz,
used to prepare the ground state of the topological setup with
filled edge states (here, for a chain of 10 sites). (B) Numeri-
cally calculated evolution of the number of excitations during
the sweep. The probability Pn for finding n excitations within
the system is depicted. As expected, there is mainly 6 par-
ticles at the end of the sweep. The dashed curve shows the
overlap with the target state with a final value of 0.963. (C)
Evolution of the number of excitations, measured experimen-
tally (disks) and calculated (lines) including preparation and
detection errors Á = 0.06 and ÁÕ = 0.07, slightly higher for
this dataset.

S1.5. Correlations and string orders

In the main text, we measured the correlations C
z,x

and string order parameters C
z,x
string

of the many-body
ground state. They were obtained for two observables
Zi = 1 ≠ 2b

†
i bi and Xi = bi + b

†
i . Here, we first explain

how we measured them and then compare the measured
C

z,x and C
z,x
string

to numerical simulations.
Figure S6A shows how we perform the experiments.

After a microwave sweep preparing the half-filled ground
state, we apply a strong microwave pulse that rotates the
measurement basis along the X ≠Z plane, as represented
in the Bloch sphere picture in Fig. S6B. We choose a large
Rabi frequency �µw/(2fi) = 14 MHz, much larger than
the interaction energies, to minimize their e�ects dur-
ing the rotation. The measured correlations between two
sites forming a dimer (connected by a strong link J) is
shown in Fig. S6C as a function of the pulse area. A
pulse lasting · ƒ 17 ns rotates the measurement basis
from Z to X. For completeness, we show the full correla-
tion maps in Fig. S6D-E. As expected (see the discussion
in the main text), we recognize strong correlations for
two sites connected by a strong link, both for the Z and
X observables. Let us note that we observe inter-dimer
correlations that are stronger when measuring along the
X axis, which is also predicted in numerical calculations.

Figure S6. (A) A microwave sweep first prepares the half-
filled ground state of a topological chain of 14 sites. Before
shining the read-out pulse, we apply a strong microwave field
�µw/(2fi) ƒ 14 MHz during a time · to rotate the measure-
ment basis, as shown in the Bloch sphere representation (B).
(C) Measured intra-dimer correlator as a function of the pulse
area �µw· . (D,E) Full correlation maps for two sites i and j
in the chain obtained when measuring the Z (D, �µw· = 0)
and X (E, �µw· = fi/2) observables.

Cz Cx Cz
string Cx

string

Th. (no errors) -0.96 0.98 0.78 0.88
Full simulation -0.69(1) 0.68(2) 0.11(2) 0.10(2)
Experiments -0.67(1) 0.48(2) 0.11(2) 0.05(2)

Table S1. Theoretical predictions (with and without experi-
mental imperfections) and experimental measurements of the
intra-dimer correlators Cz and Cx, as well as of the string
order parameters Cz

string and Cx
string.

Table S1 compares the measured correlators to numer-
ical simulations. The agreement is excellent for measure-
ments along the Z axis, whereas C

x and C
x
string

are below
the predicted values, suggesting that the rotation of the
measurement basis su�ers from experimental imperfec-
tions.

with experimental  imperfections
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Figure 6. Perturbation and robustness of the bosonic
topological phase. (A) The rightmost site is shifted up-
wards to give rise to a finite hopping amplitude J 00 to the
second neighbor. (B,C) Probability P1 to find a particle in
the left (green) and right (brown) edge sites when scanning
the detuning �rmµw of the microwave probe. The experiment
is performed either on an empty chain (B) or on the many-
body state  MB (C). Solid lines are Gaussian fits from which
we obtain the edge state energy. (D) The energy di↵erence
illustrates the robustness of the many-body topological phase
to the perturbation, in constrast to the single-particle case.

(should go to the outlook) Furthermore, the symmetry
SB also allows for complex hoppings of the bosons, as

well as interactions Vij = (2b†i bi � 1)(2b†jbj � 1). Adding
such terms allows us to smoothly connect our experi-
mentally realized SPT phase without closing the gap to
the AKLT model (cite) and the Haldane spin-1 phase
(cite).

OUTLOOK

Our results demonstrates that many-body topologi-
cal phase of matters can be explored using the resonant
dipole exchange interaction between Rydberg atoms.
The preparation fidelity of the atoms in the Rydberg
states can be readily improved by combining our STI-
RAP preparation technique with recent developments in
coherent control of ground-Rydberg qubits [47]. The ex-
aggerated response of Rydberg states to microwave fields
gave a large toolbox for characterizing many-body states
with global rotations of the measurement basis, a feat
di�cult to realize in lattice experiments with ultracold
atoms [48], and it can be completed with our address-
ing laser beam performing individual rotation on the z-
axis [46].
We believe that the combination of flexible geometries

o↵ered by the atom assembler technique, and strong co-
herent interactions between Rydberg atoms opens the
way to studies of various intriguing phase of matters.
This work could be extended to realize topological phase
in higher dimensions [49] or to study, e.g., the XXZ spin-
1/2 model by also considering van der Waals interactions
between Rydberg states which was made negligible on
purpose in the present work.
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Figure 4. Probing the SPT phase degeneracy and bulk excitation gap. (A) A microwave sweep ending at �f/(2⇡) =
�1 MHz first prepares the many-body ground state with 6 particles, and we then apply for 2µs a microwave probe with a Rabi
frequency ⌦µw/(2⇡) = 0.3 MHz and a variable detuning �µw. (B) Zoom on the bottom of the energy spectrum of a chain in
the topological configuration. Starting from the ground state with 6 particles (solid disk), we can (i) reach one of the other
degenerate ground states by adding a particle at the edge for zero energy cost. In addition, we can probe the bulk excitation
gap by (ii) adding a particle to, or (iii) removing a particle from, the bulk. (C) Measured occupancy of bulk (blue) and edge
sites (green and brown) showing the three expected transitions. Error bars are s.e.m.

is added at zero energy at the edge, and we reach an-
other of the four degenerate ground states, (ii) particles
are added to the bulk, which requires at least the bulk
gap in energy, while (iii) particles are removed from the
bulk, which appears as a dip at negative detuning.

PROBING THE PROTECTING SYMMETRY

We finally probe the robustness of the four-fold ground
state degeneracy to small perturbations, which respect
the protecting symmetry SB. To do so, we distort the
chain on one side by moving the rightmost site out of
the sub-lattice B, see Fig. 5A. As the edge site and its
second neighbor are not at the ‘magic angle’ anymore,
this creates a coupling J

00
/h ' 0.26 MHz between them.

This perturbation breaks the chiral symmetry protect-
ing the fermionic SSH model, and correspondingly leads
to a splitting of the single-particle edge modes. How-
ever, such a perturbation commutes with the symme-
try SB and therefore should not break the many-body
ground state degeneracy. To check these expectations, we
first repeat the spectroscopic measurement in the single-
particle regime (applying the microwave probe on an
empty chain, as shown in Fig.2A), and observe a splitting
of the edge modes, see Fig. 5B. In contrast, the spectro-
scopic measurement for the bosonic many-body ground
state (applying the probe after the adiabatic prepara-
tion reaching half-filling of the bulk, as done in Fig. 4)
indeed reveals a degenerate ground state, see Fig. 5C.
In [32], we checked that when we prepare the ground
state with a half-filled bulk, i.e., when �f lies in the re-
gion |~�f | < |J | � |J 0|, the spectroscopic measurement
reveals a symmetry protected ground state degeneracy.

The above experiment illustrates that, in contrast to a
non-interacting SPT phase, the robustness of the bosonic
many-body ground state at half-filling cannot be under-
stood at the single-particle level. To gain an intuition for
the di↵erences between the SPT phase of non-interacting
fermions and of hard-core bosons, we use the following
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Figure 5. Perturbation and robustness of the bosonic
topological phase. (A) The rightmost site is shifted up-
wards to give a finite hopping amplitude J 00 to the second
neighbor. (B,C) Probability to find a particle in the left
(green) and right (brown) edge sites when scanning the de-
tuning �µw of the microwave probe. The experiment is per-
formed either on (B) an initially empty chain to observe the
energy di↵erence between the two single-particle edge modes
caused by the perturbation J 00 or (C) on the many-body
ground state with a half-filled bulk (6 particles in a 14-site
chain) to observe the protection of the ground state degener-
acy. Solid lines are Gaussian fits from which we extract an
energy di↵erence of 0.21(1) MHz in (B) and 0.03(2) MHz in
(C).

simple picture. Considering only the three rightmost
sites (the edge and a dimer), and taking the perturba-
tive limit (J � J

0
, J

00), we first obtain the energy of
having no particle on the edge site and one delocalized
on the dimer: �J � (J 0 + J

00)2/ (2J) (the second term is
an energy correction due to virtual hopping of the par-
ticle from the bulk to the edge). On the contrary, when
there is one particle on the dimer and one on the edge, we
obtain �J � (J 0 ± J

00)2/ (2J) with an energy correction
now depending on the particle quantum statistics (+ sign
for bosons, � for fermions, due to commutation rules).
More details can be found in S3.3 of [32]. This simplified
model captures why the fermionic degeneracy is broken
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Figure 3.25: Phase diagram for varying the parameters D and B = V +≠. The black dot
denotes the proposed parameters (see equation (3.11)) for realizing the Haldane phase.
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We present a setup with Rydberg atoms for the realization of a bosonic fractional Chern insulator
in artificial matter. The suggested setup relies on Rydberg atoms arranged in a honeycomb lattice,
where excitations hop through the lattice by dipolar exchange interactions, and can be interpreted
as hard-core bosons. The quantum many-body Hamiltonian is studied within exact diagonalization
and DMRG. We identify experimentally accessible parameters where all signatures indicate the
appearance of a fractional state with the same topological properties as the ⌫ = 1/2 bosonic Laughlin
state. We demonstrate an adiabatic ramping procedure, which allows for the preparation of the
topological state in a finite system, and demonstrate an experimentally accessible smoking gun
signature for the fractional excitations.

I. INTRODUCTION

Many-body ground states that feature intrinsic topo-
logical order are distinguished by remarkable properties
such as excitations with anyonic statistics, long-range en-
tanglement, and/or robust edge states [1]. These prop-
erties make such topological phases of high interest for
applications in quantum information, e.g., topological
quantum computation and topological quantum mem-
ory [2]. The most prominent topological phases are frac-
tional quantum Hall states which naturally appear for
electrons confined in two dimensions in strong magnetic
fields [3]. However, in recent years a focus is on real-
izing such topological phases in artificial matter [4–13].
Such a quantum simulator allows to probe their prop-
erties with novel tools, and makes them amenable for
applications [14]. Especially platforms based on Ryd-
berg atoms have emerged as highly promising, and first
experiments demonstrate a symmetry protected topolog-
ical phase [15], and signatures of a spin liquid [16]. Here,
we investigate and predict the appearance of a bosonic
fractional Chern insulator in an experimentally accessible
system with Rydberg atoms.

Rydberg platforms are based on individual atoms
trapped by optical tweezers in a programmable array
with up to several hundred sites and near perfect unit-
filling [17–21]. Strong interactions are achieved by ex-
citing the atoms into Rydberg states, and the result-
ing van der Waals or dipolar exchange interactions en-
able the realization of di↵erent quantum many-body sys-
tems. Examples include Ising-like spin models [22–25],
and quantum many-body systems based on hard-core
bosons [15, 26]. Recently, the appearance of a topo-
logical spin liquid in such a Rydberg platform has been
predicted [13], and even first experimental signatures of
this topological phase have been reported [16]. However,
the quantum simulation of fractional quantum Hall-like
states remains an open challenge. A promising approach
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FIG. 1. Setup for the realization of a fractional Chern
insulator. (a) Rydberg atoms are arranged in a honeycomb
lattice with lattice spacing l. A homogeneous electric field Ez

and magnetic field Bz are applied perpendicular to the plane
of atoms, along the quantization axis z. (b) The fields isolate
the Rydberg levels of the V-structure |0i, |+i, and |�i (black
lines). The state |0i is treated as the vacuum state and the
excitations |±i as particles. The energy di↵erence � = E+ �
E� between |+i and |�i is controlled by the fields. (c) Single-
particle band structure along the depicted path through the
Brillouin zone for the experimental parameters that are given
in the main text (h is Planck’s constant). The lowest band has
the single-particle Chern number C = 1. (d) Average particle
density n of the many-body ground state as a function of the
chemical potential µ. The density shows a plateau at 1/4-
filling, indicating an incompressible phase.

is based on combining two main ingredients: strong in-
teractions between particles and the realization of band
structures characterized by a Chern number within flat
bands and/or homogeneous Berry curvature [27, 28]. A
setup with Rydberg atoms naturally gives rise to e↵ec-
tive bosonic particles with a hard-core constraint [15],
and the appearance of topological band structures has
been predicted for Rydberg excitations hopping under
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erties make such topological phases of high interest for
applications in quantum information, e.g., topological
quantum computation and topological quantum mem-
ory [2]. The most prominent topological phases are frac-
tional quantum Hall states which naturally appear for
electrons confined in two dimensions in strong magnetic
fields [3]. However, in recent years a focus is on real-
izing such topological phases in artificial matter [4–13].
Such a quantum simulator allows to probe their prop-
erties with novel tools, and makes them amenable for
applications [14]. Especially platforms based on Ryd-
berg atoms have emerged as highly promising, and first
experiments demonstrate a symmetry protected topolog-
ical phase [15], and signatures of a spin liquid [16]. Here,
we investigate and predict the appearance of a bosonic
fractional Chern insulator in an experimentally accessible
system with Rydberg atoms.

Rydberg platforms are based on individual atoms
trapped by optical tweezers in a programmable array
with up to several hundred sites and near perfect unit-
filling [17–21]. Strong interactions are achieved by ex-
citing the atoms into Rydberg states, and the result-
ing van der Waals or dipolar exchange interactions en-
able the realization of di↵erent quantum many-body sys-
tems. Examples include Ising-like spin models [22–25],
and quantum many-body systems based on hard-core
bosons [15, 26]. Recently, the appearance of a topo-
logical spin liquid in such a Rydberg platform has been
predicted [13], and even first experimental signatures of
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is based on combining two main ingredients: strong in-
teractions between particles and the realization of band
structures characterized by a Chern number within flat
bands and/or homogeneous Berry curvature [27, 28]. A
setup with Rydberg atoms naturally gives rise to e↵ec-
tive bosonic particles with a hard-core constraint [15],
and the appearance of topological band structures has
been predicted for Rydberg excitations hopping under
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Quantum many-body Hamiltonian 

Experimentally accessible scheme for a fractional Chern insulator in Rydberg atoms
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We present a setup with Rydberg atoms for the realization of a bosonic fractional Chern insulator
in artificial matter. The suggested setup relies on Rydberg atoms arranged in a honeycomb lattice,
where excitations hop through the lattice by dipolar exchange interactions, and can be interpreted
as hard-core bosons. The quantum many-body Hamiltonian is studied within exact diagonalization
and DMRG. We identify experimentally accessible parameters where all signatures indicate the
appearance of a fractional state with the same topological properties as the ⌫ = 1/2 bosonic Laughlin
state. We demonstrate an adiabatic ramping procedure, which allows for the preparation of the
topological state in a finite system, and demonstrate an experimentally accessible smoking gun
signature for the fractional excitations.

I. INTRODUCTION

Many-body ground states that feature intrinsic topo-
logical order are distinguished by remarkable properties
such as excitations with anyonic statistics, long-range en-
tanglement, and/or robust edge states [1]. These prop-
erties make such topological phases of high interest for
applications in quantum information, e.g., topological
quantum computation and topological quantum mem-
ory [2]. The most prominent topological phases are frac-
tional quantum Hall states which naturally appear for
electrons confined in two dimensions in strong magnetic
fields [3]. However, in recent years a focus is on real-
izing such topological phases in artificial matter [4–13].
Such a quantum simulator allows to probe their prop-
erties with novel tools, and makes them amenable for
applications [14]. Especially platforms based on Ryd-
berg atoms have emerged as highly promising, and first
experiments demonstrate a symmetry protected topolog-
ical phase [15], and signatures of a spin liquid [16]. Here,
we investigate and predict the appearance of a bosonic
fractional Chern insulator in an experimentally accessible
system with Rydberg atoms.

Rydberg platforms are based on individual atoms
trapped by optical tweezers in a programmable array
with up to several hundred sites and near perfect unit-
filling [17–21]. Strong interactions are achieved by ex-
citing the atoms into Rydberg states, and the result-
ing van der Waals or dipolar exchange interactions en-
able the realization of di↵erent quantum many-body sys-
tems. Examples include Ising-like spin models [22–25],
and quantum many-body systems based on hard-core
bosons [15, 26]. Recently, the appearance of a topo-
logical spin liquid in such a Rydberg platform has been
predicted [13], and even first experimental signatures of
this topological phase have been reported [16]. However,
the quantum simulation of fractional quantum Hall-like
states remains an open challenge. A promising approach
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FIG. 1. Setup for the realization of a fractional Chern
insulator. (a) Rydberg atoms are arranged in a honeycomb
lattice with lattice spacing l. A homogeneous electric field Ez

and magnetic field Bz are applied perpendicular to the plane
of atoms, along the quantization axis z. (b) The fields isolate
the Rydberg levels of the V-structure |0i, |+i, and |�i (black
lines). The state |0i is treated as the vacuum state and the
excitations |±i as particles. The energy di↵erence � = E+ �
E� between |+i and |�i is controlled by the fields. (c) Single-
particle band structure along the depicted path through the
Brillouin zone for the experimental parameters that are given
in the main text (h is Planck’s constant). The lowest band has
the single-particle Chern number C = 1. (d) Average particle
density n of the many-body ground state as a function of the
chemical potential µ. The density shows a plateau at 1/4-
filling, indicating an incompressible phase.

is based on combining two main ingredients: strong in-
teractions between particles and the realization of band
structures characterized by a Chern number within flat
bands and/or homogeneous Berry curvature [27, 28]. A
setup with Rydberg atoms naturally gives rise to e↵ec-
tive bosonic particles with a hard-core constraint [15],
and the appearance of topological band structures has
been predicted for Rydberg excitations hopping under
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dipolar exchange interaction [29]. The key ingredient is
the intrinsic spin-orbit coupling of the dipolar exchange
interaction, which has been experimentally demonstrated
in a setup with three atoms [26].

Here, we present a detailed proposal for the realiza-
tion of a bosonic fractional Chern insulator with Ryd-
berg atoms that features the same topological properties
as the ⌫ = 1/2 Laughlin state [30]. We consider a sys-
tem similar to the models whose single-particle sector
gives rise to topological bands with Chern number C = 1
[29], and study the ground state properties in the quan-
tum many-body regime within exact diagonalization and
DMRG. Based on a microscopic analysis, the interactions
between the Rydberg states are derived, and we perform
an extensive parameter scan to identify an experimen-
tally accessible regime, where the topological phase ap-
pears at particle density n = 1/4. The key signatures
of the topological phase are an excitation gap above two
nearly degenerate ground states on a torus, a many-body
Chern number C = 1, as well as a finite topological en-
tanglement entropy. We present an adiabatic ramping
scheme, which allows the preparation of the topological
state in a finite system with a large excitation gap dur-
ing the full ramping procedure. Finally, we demonstrate
a clear smoking gun signature of the topological phase,
which is accessible with current experimental techniques.

II. SYSTEM

Our system consists of 87Rb atoms arranged in a
two-dimensional honeycomb lattice. For each atom, we
consider the Rydberg states |0i = |nS1/2,mj = 1/2i,
|+i = |nP3/2,mj = 3/2i, and |�i = |nP3/2,mj = �1/2i.
These states form a V-level structure. We apply a homo-
geneous electric field Ez and magnetic field Bz perpen-
dicular to the plane of atoms, along the quantization axis
z, and use the resulting Stark and Zeeman shifts to en-
ergetically isolate these states from other Rydberg states
[29], see Fig. 1(a,b). The fields also allow for tuning the
energy di↵erence � = E+�E� between |+i and |�i. We
interpret |0i as the vacuum state and an excitation into
one of the two other states as a bosonic particle, where
|+i and |�i correspond to the possible internal states of
the particle. We introduce the bosonic operators a†

i and

b
†
i that create an excitation at lattice site i in the inter-

nal state a
†
i |0i = |+ii and b

†
i |0i = |�ii, respectively. As

there is exactly one atom on each lattice site, double oc-
cupations are prevented and each lattice site can either
be empty or occupied by one particle. The bosonic oper-
ators thus satisfy the hard-core constraint (a†

i )
2 = 0 and

(b†
i )

2 = 0, as well as the mutual constraint a†
i b

†
i = 0.

The dipolar exchange interaction between the Rydberg
states gives rise to the hopping Hamiltonian [29, 31]

H0 =
X

i 6=j

✓
ai

bi

◆† ✓�t
a
ij !ij

!
⇤
ij �t

b
ij

◆✓
aj

bj

◆
+�

X

i

n
a
i , (1)

with n
a
i = a

†
iai. Here, taij and t

b
ij are the amplitude of the

hopping of a |+i-particle and a |�i-particle, respectively,
between sites i and j. The internal state of the particle is
conserved by these hoppings. By contrast, the hopping
that is associated with the amplitude !ij = |!ij |e�2i�ij

changes a |+i-particle into a |�i-particle and vice versa.
This change of the internal state of the particle is ac-
companied by the collection of a phase ±2�ij (spin-orbit
coupling), where the angle �ij is the polar angle of the
distance vector rij = rj � ri between sites i and j [26].
While this angle depends on the chosen coordinate sys-
tem, the physically meaningful phase, that is collected
on a closed path, is independent of this choice.
Van der Waals interactions and other higher order in-

teraction processes can give rise to density-density in-
teraction. Another contribution comes from the applied
electric field that induces static dipole moments to the
Rydberg states. The density-density interactions can be
written as

Hint =
1

2

X

i 6=j
↵,�2{0,a,b}

V
↵�
ij n

↵
i n

�
j , (2)

with n
a
i = a

†
iai, nb

i = b
†
i bi, n0

i = 1�n
a
i �n

b
i , and V

↵�
ij the

strength of the density-density interaction between sites
i and j. While in principle additional two-body terms
are possible, these terms are two orders of magnitude
smaller than the relevant energy scales for the realistic
experimental parameters studied in this manuscript; see
Appendix B for an example of such a term. Thus, the
full microscopic Hamiltonian reads H = H0 +Hint.
For the realization of a fractional Chern insulator we

find a suitable set of realistic experimental parameters,
see Appendix A. We propose to use the principal quan-
tum number n = 60, the lattice spacing l = 12 µm,
the electric field Ez = 0.725 V/cm, and the magnetic
field Bz = �8 G. For these parameters, we apply
the software pairinteraction [32] to calculate the Stark
and Zeeman shifted Rydberg states. Within the ba-
sis of these states, we calculate the hopping amplitudes
and interactions, and derive the e↵ective Hamiltonian
for the relevant levels, see Appendix B for details. For
the chosen experimental parameters, the energy di↵er-
ence is �/h = 18.52 MHz with Planck’s constant h and
the nearest neighbor hoppings are t

a
/h = 1.26 MHz,

t
b
/h = 0.49 MHz, and !/h = 2.38 MHz. For large

distances, the hopping amplitudes decrease as 1/|rij |3
in good approximation. The precise values are given in
Appendix B, where the values of the density-density in-
teractions are also listed. In general, |V ↵�

ij |  0.3 MHz
and we checked that the results do not change qualita-
tively if we switch o↵ the density-density interactions.

hopping Hamiltonian energy difference

na
i = a†iai
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Hard-core bosons 

- honeycomb lattice

Parameters 

- Rubidium atoms           in Rydberg state n=60 
 
- lattice spacing  

- magentic field strength B=8G 

- additional weak density-density interactions

wij ⇠
e2i�ijw

|Ri �Rj |3
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generacy. For the realization of our V-level structure, it
is crucial that the sign of the field is negative so that
we can compensate for the huge resulting energy split-
ting between |+i and |�i by applying an electric field of
about Ez = 0.7 V/cm. We can use Ez to fine-tune �
without a↵ecting the other parameters much, see Fig. 6.

For finding the optimal value for the electric field Ez,
we first calculate the flatness ratio f and Berry curva-
ture fluctuations �B as a function of Ez, see Fig. 7(a,b).
A large f and a small �B are beneficial for realizing
a fractional Chern insulator in the many-body regime.
However, these two quantities reach their respective op-
timal values for di↵erent Ez — we have to make some
compromise. We calculate the three lowest eigenenergies
on a torus at 1/4-filling for the clusters 20 and 24A to
determine the optimal value of Ez, see Fig. 7(c). The
ground state is nearly two-fold degenerate in a small re-
gion around Ez = 0.725 V/cm. Remarkably, this is not
the case for the region around Ez = 0.52 V/cm, de-
spite promising values of f and �B . We attribute the
lack of a two-fold degenerate ground state for this value
of the electric field to the fact that there, the two low-
est bands are not energetically separated from the other
bands. The determinant condition, which holds for two
band models, might potentially be violated [28]. Thus,
Ez = 0.725 V/cm is the optimal value for the electric
field.
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FIG. 6. Dependence of parameters of the Hamilto-
nian on the electric field. (a) The energy di↵erence �
depends strongly on the electric field Ez through the Stark
e↵ect. In comparison, the nearest-neighbor hopping ampli-
tudes only weakly depends on Ez. The dashed lines indicate
the value of Ez = 0.725 V/cm that was used throughout the
paper. Note that for some other values, other Rydberg pair
states get resonant and are admixed to the states of the V-
structure (gray regions indicate an admixture > 5%). There,
our perturbative calculation of the hopping amplitudes is no
longer valid. (b-d) Close-up views of the electric field depen-
dence of the nearest-neighbor hopping amplitudes.

Note that the proposed parameter set is not unique.
We can, for example, use a di↵erent principal quantum
number if we scale the other experimental parameters
accordingly.

Appendix B: Numerical calculation of the
parameters of the Hamiltonian

This section contains details on the numerical calcu-
lation of the parameters of the Hamiltonian and their
values that we used throughout the paper.
We first calculated the e↵ect of the electric and mag-

netic fields on the Rydberg states. For this, we con-
structed the Hamiltonian of a single Rydberg atom in the
presence of the fields using the pairinteraction software
[32]. We took into account states in the fine structure
basis that are at most 80 GHz away in energy from the
states of the V-structure S = {|0i , |+i , |�i} and have
principal quantum numbers 57  n  63 and azimuthal
quantum numbers l  4. By diagonalizing the Hamilto-
nian, we obtain dressed states that are shifted in energy
by the Stark and Zeeman e↵ect. Due to these shifts, the
pair states P = {|a, bi | |ai , |bi 2 S} get energetically

FIG. 7. Optimization of the electric field. (a) Flat-
ness ratio f of the lowest band of the single particle band
structure as a function of the electric field Ez (gray regions
indicate regimes where our perturbative calculation of hop-
ping amplitudes failed). A large flatness ratio is beneficial
for realizing a fractional Chern insulator in the many-body
regime. (b) Berry curvature fluctuations �B . Typically, a
small value is desirable. Note that f and �B reach their re-
spective optimal values for di↵erent Ez. Thus, we have to
make a compromise. (c) To figure out the optimal value of
Ez, we calculate the three lowest eigenenergies on a torus at
1/4-filling for the clusters 20 and 24A. The ground state is
nearly two-fold degenerate in a small region around the opti-
mal value Ez = 0.725 V/cm (dashed lines). For a zoom into
this region, see inset.

87Rb
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We present a setup with Rydberg atoms for the realization of a bosonic fractional Chern insulator
in artificial matter. The suggested setup relies on Rydberg atoms arranged in a honeycomb lattice,
where excitations hop through the lattice by dipolar exchange interactions, and can be interpreted
as hard-core bosons. The quantum many-body Hamiltonian is studied within exact diagonalization
and DMRG. We identify experimentally accessible parameters where all signatures indicate the
appearance of a fractional state with the same topological properties as the ⌫ = 1/2 bosonic Laughlin
state. We demonstrate an adiabatic ramping procedure, which allows for the preparation of the
topological state in a finite system, and demonstrate an experimentally accessible smoking gun
signature for the fractional excitations.

I. INTRODUCTION

Many-body ground states that feature intrinsic topo-
logical order are distinguished by remarkable properties
such as excitations with anyonic statistics, long-range en-
tanglement, and/or robust edge states [1]. These prop-
erties make such topological phases of high interest for
applications in quantum information, e.g., topological
quantum computation and topological quantum mem-
ory [2]. The most prominent topological phases are frac-
tional quantum Hall states which naturally appear for
electrons confined in two dimensions in strong magnetic
fields [3]. However, in recent years a focus is on real-
izing such topological phases in artificial matter [4–13].
Such a quantum simulator allows to probe their prop-
erties with novel tools, and makes them amenable for
applications [14]. Especially platforms based on Ryd-
berg atoms have emerged as highly promising, and first
experiments demonstrate a symmetry protected topolog-
ical phase [15], and signatures of a spin liquid [16]. Here,
we investigate and predict the appearance of a bosonic
fractional Chern insulator in an experimentally accessible
system with Rydberg atoms.

Rydberg platforms are based on individual atoms
trapped by optical tweezers in a programmable array
with up to several hundred sites and near perfect unit-
filling [17–21]. Strong interactions are achieved by ex-
citing the atoms into Rydberg states, and the result-
ing van der Waals or dipolar exchange interactions en-
able the realization of di↵erent quantum many-body sys-
tems. Examples include Ising-like spin models [22–25],
and quantum many-body systems based on hard-core
bosons [15, 26]. Recently, the appearance of a topo-
logical spin liquid in such a Rydberg platform has been
predicted [13], and even first experimental signatures of
this topological phase have been reported [16]. However,
the quantum simulation of fractional quantum Hall-like
states remains an open challenge. A promising approach
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FIG. 1. Setup for the realization of a fractional Chern
insulator. (a) Rydberg atoms are arranged in a honeycomb
lattice with lattice spacing l. A homogeneous electric field Ez

and magnetic field Bz are applied perpendicular to the plane
of atoms, along the quantization axis z. (b) The fields isolate
the Rydberg levels of the V-structure |0i, |+i, and |�i (black
lines). The state |0i is treated as the vacuum state and the
excitations |±i as particles. The energy di↵erence � = E+ �
E� between |+i and |�i is controlled by the fields. (c) Single-
particle band structure along the depicted path through the
Brillouin zone for the experimental parameters that are given
in the main text (h is Planck’s constant). The lowest band has
the single-particle Chern number C = 1. (d) Average particle
density n of the many-body ground state as a function of the
chemical potential µ. The density shows a plateau at 1/4-
filling, indicating an incompressible phase.

is based on combining two main ingredients: strong in-
teractions between particles and the realization of band
structures characterized by a Chern number within flat
bands and/or homogeneous Berry curvature [27, 28]. A
setup with Rydberg atoms naturally gives rise to e↵ec-
tive bosonic particles with a hard-core constraint [15],
and the appearance of topological band structures has
been predicted for Rydberg excitations hopping under
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Topological band structure 
 
- characterized by a topological invariant  

- relative high flatness and  
  homogeneous Berry curvature 
 

Interpretation 

- adiabatic elimination of the 
  for large energy difference  
 
- Haldane model on the honeycomb  
  lattice for single particles 
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FIG. 1. Spin-orbit coupling induced by dipolar exchange inter-
action. (a) Experimental configuration of three atoms trapped in a
tunable geometry. The quantization axis z, along the magnetic field,
is perpendicular to the array of atoms. (b) Schematic Zeeman struc-
ture of the two Rydberg manifolds 60S1/2 and 60P3/2 used in this
work. The three levels |0i, |+i and |�i of the V-structure involved in
the dipole-dipole interaction are indicated as black lines. The energy
difference between |+i and |�i is µ, controlled by DC magnetic and
electric fields perpendicular to the triangle. (c) The two processes
for a |�i excitation to hop from site i to site j: the |�i excitation is
annihilated on site i, and a |�i (solid arrow) or a |+i (dashed arrow)
excitation is created on site j.

We conclude by discussing the implications of this spin-orbit
coupling on square and honeycomb plaquettes.

II. SPIN-ORBIT COUPLING USING DIPOLAR
EXCHANGE INTERACTIONS

Our system consists of three 87
Rb atoms trapped in op-

tical tweezers placed in an equilateral configuration, see
Fig. 1(a). For each atom, we consider three Rydberg states
from the 60S1/2 and the 60P3/2 manifolds (separated in fre-
quency by 17.2 GHz) in a V-structure, as shown in Fig. 1(b).
The state |0i =

��60S1/2,mj = 1/2
↵

corresponds to the
absence of excitation, and the two excited states |+i =��60P3/2,mj = 3/2

↵
and |�i =

��60P3/2,mj = �1/2
↵
, cor-

respond to the two internal states of the excitation. We de-
scribe these two components of the excitation on a site i by
the bosonic operators a

†
i and b

†
i defined by a

†
i |0i = |+ii

and b
†
i |0i = |�ii. The energy difference µ = E+ � E�

between |+i and |�i is controlled by a magnetic field Bz

and an electric field Ez , both orthogonal to the atomic ar-
ray. The excitation transfer between two Rydberg atoms is
governed by the dipole-dipole interaction V̂ij = (d̂i · d̂j �
3(d̂i · r̂)(d̂j · r̂))/(4⇡✏0r3ij). In our configuration, the unit
vector r̂ = (cos�, sin�, 0) lies in the (x, y) plane, and V̂ij
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FIG. 2. Peierls phase on a triangle. (a) The two available processes
for a |�i excitation to hop from |�00i to |0�0i: direct hopping
with amplitude �tb, or virtual hoppings via |00+i. (b) Complex
plane representation of the effective hopping, which is the sum of
the two processes depicted in (a). (c) Calculated evolution of the
site probabilities after preparing |�00i with total flux 3' = ⇡/2,
for an ideal complex hopping (dashed lines) and for our three-level
structure involving the |+i states (solid lines). The excitation does
not spread as time flows, and moves from site to site in a chiral way.

thus reads

V̂ij =
1

4⇡✏0r
3
ij


d̂
z
i d̂

z
j +

1

2

⇣
d̂
+
i d̂

�
j + d̂

�
i d̂

+
j

⌘
(1)

�3

2

⇣
d̂
+
i d̂

+
j e

�i2�ij + d̂
�
i d̂

�
j e

i2�ij

⌘�
.

Here, d̂xi , d̂
y
i , d̂

z
i are the components of the dipole operator d̂i,

d̂
±
i = ⌥(d̂

x
i ± id̂

y
i )/

p
2, and rij and �ij denote the separation

and the polar angle between the two Rydberg atoms. The first
three terms in Eq. (1) correspond to a transfer of excitation
conserving the total internal angular momentum of the two
atoms. The last two terms describe the spin-orbit coupling:
the excitation changes its internal state by two quanta during
the transfer, and the conservation of the total angular momen-
tum requires that the corresponding hopping amplitudes ac-
quire a phase e

±i2�ij . Therefore, the dipolar interaction leads
to two ways for an excitation to hop from site i to site j, as il-
lustrated in Fig. 1(c): a resonant process, with amplitude �ta

or �tb, where the internal state of the excitation is conserved,
and an off-resonant process (by an energy offset µ) with com-
plex amplitude we

±2i�ij , where the excitation changes its in-
ternal state. The amplitudes ta,b and w scale as 1/r

3
ij (see

more details in Appendix A).
We now discuss the situation where three atoms are ar-

ranged in an equilateral triangle and derive the expression of
the complex hopping amplitude of a |�i excitation. We re-
strict ourselves to the case µ � ta,b, w and treat the hop-
pings perturbatively. As the internal state-flipping hopping is
off-resonant, the |�i excitation only has a small probability
of becoming a |+i excitation. In addition, as the interaction
conserves the number of excitations, once the atoms are ini-
tialized in the three-site state |�00i, they mostly remain in the
one excitation subspace consisting of the states |�00i, |0�0i
and |00�i. The hopping of a |�i excitation from site 1 to 2,
i.e. the change of the three-atom state from |�00i to |0�0i

V. Lienhard, et al., Phys. Rev. X 10, 021031 (2020)
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FIG. 1. Spin-orbit coupling induced by dipolar exchange inter-
action. (a) Experimental configuration of three atoms trapped in a
tunable geometry. The quantization axis z, along the magnetic field,
is perpendicular to the array of atoms. (b) Schematic Zeeman struc-
ture of the two Rydberg manifolds 60S1/2 and 60P3/2 used in this
work. The three levels |0i, |+i and |�i of the V-structure involved in
the dipole-dipole interaction are indicated as black lines. The energy
difference between |+i and |�i is µ, controlled by DC magnetic and
electric fields perpendicular to the triangle. (c) The two processes
for a |�i excitation to hop from site i to site j: the |�i excitation is
annihilated on site i, and a |�i (solid arrow) or a |+i (dashed arrow)
excitation is created on site j.

We conclude by discussing the implications of this spin-orbit
coupling on square and honeycomb plaquettes.

II. SPIN-ORBIT COUPLING USING DIPOLAR
EXCHANGE INTERACTIONS

Our system consists of three 87
Rb atoms trapped in op-

tical tweezers placed in an equilateral configuration, see
Fig. 1(a). For each atom, we consider three Rydberg states
from the 60S1/2 and the 60P3/2 manifolds (separated in fre-
quency by 17.2 GHz) in a V-structure, as shown in Fig. 1(b).
The state |0i =

��60S1/2,mj = 1/2
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corresponds to the
absence of excitation, and the two excited states |+i =��60P3/2,mj = 3/2
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the bosonic operators a
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i and b
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i defined by a
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and b
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i |0i = |�ii. The energy difference µ = E+ � E�

between |+i and |�i is controlled by a magnetic field Bz

and an electric field Ez , both orthogonal to the atomic ar-
ray. The excitation transfer between two Rydberg atoms is
governed by the dipole-dipole interaction V̂ij = (d̂i · d̂j �
3(d̂i · r̂)(d̂j · r̂))/(4⇡✏0r3ij). In our configuration, the unit
vector r̂ = (cos�, sin�, 0) lies in the (x, y) plane, and V̂ij
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FIG. 2. Peierls phase on a triangle. (a) The two available processes
for a |�i excitation to hop from |�00i to |0�0i: direct hopping
with amplitude �tb, or virtual hoppings via |00+i. (b) Complex
plane representation of the effective hopping, which is the sum of
the two processes depicted in (a). (c) Calculated evolution of the
site probabilities after preparing |�00i with total flux 3' = ⇡/2,
for an ideal complex hopping (dashed lines) and for our three-level
structure involving the |+i states (solid lines). The excitation does
not spread as time flows, and moves from site to site in a chiral way.
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2, and rij and �ij denote the separation

and the polar angle between the two Rydberg atoms. The first
three terms in Eq. (1) correspond to a transfer of excitation
conserving the total internal angular momentum of the two
atoms. The last two terms describe the spin-orbit coupling:
the excitation changes its internal state by two quanta during
the transfer, and the conservation of the total angular momen-
tum requires that the corresponding hopping amplitudes ac-
quire a phase e

±i2�ij . Therefore, the dipolar interaction leads
to two ways for an excitation to hop from site i to site j, as il-
lustrated in Fig. 1(c): a resonant process, with amplitude �ta

or �tb, where the internal state of the excitation is conserved,
and an off-resonant process (by an energy offset µ) with com-
plex amplitude we

±2i�ij , where the excitation changes its in-
ternal state. The amplitudes ta,b and w scale as 1/r

3
ij (see

more details in Appendix A).
We now discuss the situation where three atoms are ar-

ranged in an equilateral triangle and derive the expression of
the complex hopping amplitude of a |�i excitation. We re-
strict ourselves to the case µ � ta,b, w and treat the hop-
pings perturbatively. As the internal state-flipping hopping is
off-resonant, the |�i excitation only has a small probability
of becoming a |+i excitation. In addition, as the interaction
conserves the number of excitations, once the atoms are ini-
tialized in the three-site state |�00i, they mostly remain in the
one excitation subspace consisting of the states |�00i, |0�0i
and |00�i. The hopping of a |�i excitation from site 1 to 2,
i.e. the change of the three-atom state from |�00i to |0�0i
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FIG. 1. Spin-orbit coupling induced by dipolar exchange inter-
action. (a) Experimental configuration of three atoms trapped in a
tunable geometry. The quantization axis z, along the magnetic field,
is perpendicular to the array of atoms. (b) Schematic Zeeman struc-
ture of the two Rydberg manifolds 60S1/2 and 60P3/2 used in this
work. The three levels |0i, |+i and |�i of the V-structure involved in
the dipole-dipole interaction are indicated as black lines. The energy
difference between |+i and |�i is µ, controlled by DC magnetic and
electric fields perpendicular to the triangle. (c) The two processes
for a |�i excitation to hop from site i to site j: the |�i excitation is
annihilated on site i, and a |�i (solid arrow) or a |+i (dashed arrow)
excitation is created on site j.

We conclude by discussing the implications of this spin-orbit
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Fig. 1(a). For each atom, we consider three Rydberg states
from the 60S1/2 and the 60P3/2 manifolds (separated in fre-
quency by 17.2 GHz) in a V-structure, as shown in Fig. 1(b).
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ray. The excitation transfer between two Rydberg atoms is
governed by the dipole-dipole interaction V̂ij = (d̂i · d̂j �
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FIG. 2. Peierls phase on a triangle. (a) The two available processes
for a |�i excitation to hop from |�00i to |0�0i: direct hopping
with amplitude �tb, or virtual hoppings via |00+i. (b) Complex
plane representation of the effective hopping, which is the sum of
the two processes depicted in (a). (c) Calculated evolution of the
site probabilities after preparing |�00i with total flux 3' = ⇡/2,
for an ideal complex hopping (dashed lines) and for our three-level
structure involving the |+i states (solid lines). The excitation does
not spread as time flows, and moves from site to site in a chiral way.
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and the polar angle between the two Rydberg atoms. The first
three terms in Eq. (1) correspond to a transfer of excitation
conserving the total internal angular momentum of the two
atoms. The last two terms describe the spin-orbit coupling:
the excitation changes its internal state by two quanta during
the transfer, and the conservation of the total angular momen-
tum requires that the corresponding hopping amplitudes ac-
quire a phase e

±i2�ij . Therefore, the dipolar interaction leads
to two ways for an excitation to hop from site i to site j, as il-
lustrated in Fig. 1(c): a resonant process, with amplitude �ta

or �tb, where the internal state of the excitation is conserved,
and an off-resonant process (by an energy offset µ) with com-
plex amplitude we

±2i�ij , where the excitation changes its in-
ternal state. The amplitudes ta,b and w scale as 1/r

3
ij (see

more details in Appendix A).
We now discuss the situation where three atoms are ar-

ranged in an equilateral triangle and derive the expression of
the complex hopping amplitude of a |�i excitation. We re-
strict ourselves to the case µ � ta,b, w and treat the hop-
pings perturbatively. As the internal state-flipping hopping is
off-resonant, the |�i excitation only has a small probability
of becoming a |+i excitation. In addition, as the interaction
conserves the number of excitations, once the atoms are ini-
tialized in the three-site state |�00i, they mostly remain in the
one excitation subspace consisting of the states |�00i, |0�0i
and |00�i. The hopping of a |�i excitation from site 1 to 2,
i.e. the change of the three-atom state from |�00i to |0�0i
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FIG. 3. Observation of the chiral motion of a single |�i excitation. (a) and (b) Evolution of the three-site probabilities to be in the states
|100i, |010i and |001i as a function of the interaction time for two opposite directions of Bz . Upper panel: experimental results and theoretical
predictions (solid lines) including experimental errors in the preparation and the detection, as well as shot-to-shot fluctuations in the atomic
position (which lead to the observed damping of the oscillations). Bottom panel: associated trajectories of the center-of-mass of the excitation
(x̄, ȳ) for specific windows of the excitation time ⌧ , defined by x̄ =

P3
i=1 xipi/

P3
i=1 pi, and ȳ =

P3
i=1 yipi/

P3
i=1 pi (where (xi, yi) are

the coordinates of site i, and pi the probability for the |�i excitation to be on site i). Error bars denote the standard error on the mean, and are
often smaller than the symbol size.

presented in Appendix A. The results are plotted as solid lines
on the data in Fig. 3(a) and (b). In both situations, we obtain
a good agreement with the model, which reproduces the fre-
quency, the amplitude and the damping of the chiral motion.

IV. DENSITY-DEPENDENT PEIERLS PHASE AND
MAPPING TO ANYONS

For ensembles of two-level atoms in resonant interaction,
the excitations can be mapped onto hard-core bosons, a fact
used in our previous work [34]. A natural question to ask
in our present multi-level situation is the consequence of the
hard-core constraint on the dynamics of the |�i excitations.
In order to explore this experimentally, we now initialize the
three-atom system with two |�i excitations on sites 2 and 3,
while site 1 is in state |0i, thus preparing the three atom state
|0��i. To do so we again use the addressing laser on site
1, but tune the ⇡ microwave pulse on resonance with the free
space |0i ! |�i transition.

In the case of hard-core bosons evolving with the Hamilto-
nian in Eq. (3), one would expect the hole (state |0i) to propa-
gate in the opposite direction to the single |�i excitation case,
as observed using superconducting circuits [18]. The result
of our experiment is presented in Fig. 4, where we use the
same parameters as for the single excitation experiment, i.e.,
a Peierls phase ' = ⇡/6. Remarkably, here we do not observe
any chiral motion: the hole state |0i propagates almost sym-
metrically towards sites 2 and 3, suggesting that the hopping
amplitude between sites is now real, and that the description of
the dynamics by the Hamiltonian (3) is no longer valid. This
indicates that the hard-core constraint between the excitations
|�i influences the induced Peierls phases.

To understand this, we come back to the hard-core con-
straint in our system. Two particles, irrespective of their in-
ternal state |+i or |�i, can not reside on the same site. As a
consequence, the effective hopping from site 1 to 2 is modi-
fied if an excitation is already present on site 3: this suppresses
the off-resonant process, which is at the origin of the complex
hopping amplitude in the single excitation case, leaving only
the direct hopping described by �tb. Therefore, the hard-core
constraint generates a density-dependent hopping, where the
phase of the hopping amplitude, as well as its strength, de-
pends on the occupation of the third lattice site. The effective
Hamiltonian describing this situation generalizes the one of
Eq. (3) to the case of more than one |�i excitation:

H
many
eff = �t

3X

i=1

h
e
i'(1�ni+2)b

†
i+1bi +�b

†
i+1bini+2 + h.c.

i

(4)
with ni+2 = b

†
i+2bi+2 the occupation of the third site and

� = (tb � t)/t. The first term in the effective Hamilto-
nian shows that the Peierls phase is now density-dependent.
The second term describes a conventional correlated hop-
ping, which does not modify the real or complex nature of
the couplings between sites (see Appendix B). In addition,
the adiabatic elimination leads to two-body interactions terms
/ (w

2
/µ)ninj , that do not play a role in an equilateral trian-

gle and that we therefore drop.
The influence of the density-dependent Peierls phases on

the hopping amplitudes has a simple interpretation in terms of
abelian anyonic particles in one-dimension in the absence of a
magnetic field [42, 45–48]. Here, we obtain anyonic particles
with a hard-core constraint and a statistical angle 3'. For this
mapping, we use a particle-hole transformation and interpret
a single hole as an anyonic particle. In the absence of a gauge
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We present a setup with Rydberg atoms for the realization of a bosonic fractional Chern insulator
in artificial matter. The suggested setup relies on Rydberg atoms arranged in a honeycomb lattice,
where excitations hop through the lattice by dipolar exchange interactions, and can be interpreted
as hard-core bosons. The quantum many-body Hamiltonian is studied within exact diagonalization
and DMRG. We identify experimentally accessible parameters where all signatures indicate the
appearance of a fractional state with the same topological properties as the ⌫ = 1/2 bosonic Laughlin
state. We demonstrate an adiabatic ramping procedure, which allows for the preparation of the
topological state in a finite system, and demonstrate an experimentally accessible smoking gun
signature for the fractional excitations.

I. INTRODUCTION

Many-body ground states that feature intrinsic topo-
logical order are distinguished by remarkable properties
such as excitations with anyonic statistics, long-range en-
tanglement, and/or robust edge states [1]. These prop-
erties make such topological phases of high interest for
applications in quantum information, e.g., topological
quantum computation and topological quantum mem-
ory [2]. The most prominent topological phases are frac-
tional quantum Hall states which naturally appear for
electrons confined in two dimensions in strong magnetic
fields [3]. However, in recent years a focus is on real-
izing such topological phases in artificial matter [4–13].
Such a quantum simulator allows to probe their prop-
erties with novel tools, and makes them amenable for
applications [14]. Especially platforms based on Ryd-
berg atoms have emerged as highly promising, and first
experiments demonstrate a symmetry protected topolog-
ical phase [15], and signatures of a spin liquid [16]. Here,
we investigate and predict the appearance of a bosonic
fractional Chern insulator in an experimentally accessible
system with Rydberg atoms.

Rydberg platforms are based on individual atoms
trapped by optical tweezers in a programmable array
with up to several hundred sites and near perfect unit-
filling [17–21]. Strong interactions are achieved by ex-
citing the atoms into Rydberg states, and the result-
ing van der Waals or dipolar exchange interactions en-
able the realization of di↵erent quantum many-body sys-
tems. Examples include Ising-like spin models [22–25],
and quantum many-body systems based on hard-core
bosons [15, 26]. Recently, the appearance of a topo-
logical spin liquid in such a Rydberg platform has been
predicted [13], and even first experimental signatures of
this topological phase have been reported [16]. However,
the quantum simulation of fractional quantum Hall-like
states remains an open challenge. A promising approach
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FIG. 1. Setup for the realization of a fractional Chern
insulator. (a) Rydberg atoms are arranged in a honeycomb
lattice with lattice spacing l. A homogeneous electric field Ez

and magnetic field Bz are applied perpendicular to the plane
of atoms, along the quantization axis z. (b) The fields isolate
the Rydberg levels of the V-structure |0i, |+i, and |�i (black
lines). The state |0i is treated as the vacuum state and the
excitations |±i as particles. The energy di↵erence � = E+ �
E� between |+i and |�i is controlled by the fields. (c) Single-
particle band structure along the depicted path through the
Brillouin zone for the experimental parameters that are given
in the main text (h is Planck’s constant). The lowest band has
the single-particle Chern number C = 1. (d) Average particle
density n of the many-body ground state as a function of the
chemical potential µ. The density shows a plateau at 1/4-
filling, indicating an incompressible phase.

is based on combining two main ingredients: strong in-
teractions between particles and the realization of band
structures characterized by a Chern number within flat
bands and/or homogeneous Berry curvature [27, 28]. A
setup with Rydberg atoms naturally gives rise to e↵ec-
tive bosonic particles with a hard-core constraint [15],
and the appearance of topological band structures has
been predicted for Rydberg excitations hopping under
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dipolar exchange interaction [29]. The key ingredient is
the intrinsic spin-orbit coupling of the dipolar exchange
interaction, which has been experimentally demonstrated
in a setup with three atoms [26].

Here, we present a detailed proposal for the realiza-
tion of a bosonic fractional Chern insulator with Ryd-
berg atoms that features the same topological properties
as the ⌫ = 1/2 Laughlin state [30]. We consider a sys-
tem similar to the models whose single-particle sector
gives rise to topological bands with Chern number C = 1
[29], and study the ground state properties in the quan-
tum many-body regime within exact diagonalization and
DMRG. Based on a microscopic analysis, the interactions
between the Rydberg states are derived, and we perform
an extensive parameter scan to identify an experimen-
tally accessible regime, where the topological phase ap-
pears at particle density n = 1/4. The key signatures
of the topological phase are an excitation gap above two
nearly degenerate ground states on a torus, a many-body
Chern number C = 1, as well as a finite topological en-
tanglement entropy. We present an adiabatic ramping
scheme, which allows the preparation of the topological
state in a finite system with a large excitation gap dur-
ing the full ramping procedure. Finally, we demonstrate
a clear smoking gun signature of the topological phase,
which is accessible with current experimental techniques.

II. SYSTEM

Our system consists of 87Rb atoms arranged in a
two-dimensional honeycomb lattice. For each atom, we
consider the Rydberg states |0i = |nS1/2,mj = 1/2i,
|+i = |nP3/2,mj = 3/2i, and |�i = |nP3/2,mj = �1/2i.
These states form a V-level structure. We apply a homo-
geneous electric field Ez and magnetic field Bz perpen-
dicular to the plane of atoms, along the quantization axis
z, and use the resulting Stark and Zeeman shifts to en-
ergetically isolate these states from other Rydberg states
[29], see Fig. 1(a,b). The fields also allow for tuning the
energy di↵erence � = E+�E� between |+i and |�i. We
interpret |0i as the vacuum state and an excitation into
one of the two other states as a bosonic particle, where
|+i and |�i correspond to the possible internal states of
the particle. We introduce the bosonic operators a†

i and

b
†
i that create an excitation at lattice site i in the inter-

nal state a
†
i |0i = |+ii and b

†
i |0i = |�ii, respectively. As

there is exactly one atom on each lattice site, double oc-
cupations are prevented and each lattice site can either
be empty or occupied by one particle. The bosonic oper-
ators thus satisfy the hard-core constraint (a†

i )
2 = 0 and

(b†
i )

2 = 0, as well as the mutual constraint a†
i b

†
i = 0.

The dipolar exchange interaction between the Rydberg
states gives rise to the hopping Hamiltonian [29, 31]

H0 =
X

i 6=j

✓
ai

bi

◆† ✓�t
a
ij !ij

!
⇤
ij �t

b
ij

◆✓
aj

bj

◆
+�

X

i

n
a
i , (1)

with n
a
i = a

†
iai. Here, taij and t

b
ij are the amplitude of the

hopping of a |+i-particle and a |�i-particle, respectively,
between sites i and j. The internal state of the particle is
conserved by these hoppings. By contrast, the hopping
that is associated with the amplitude !ij = |!ij |e�2i�ij

changes a |+i-particle into a |�i-particle and vice versa.
This change of the internal state of the particle is ac-
companied by the collection of a phase ±2�ij (spin-orbit
coupling), where the angle �ij is the polar angle of the
distance vector rij = rj � ri between sites i and j [26].
While this angle depends on the chosen coordinate sys-
tem, the physically meaningful phase, that is collected
on a closed path, is independent of this choice.
Van der Waals interactions and other higher order in-

teraction processes can give rise to density-density in-
teraction. Another contribution comes from the applied
electric field that induces static dipole moments to the
Rydberg states. The density-density interactions can be
written as

Hint =
1

2

X

i 6=j
↵,�2{0,a,b}

V
↵�
ij n

↵
i n

�
j , (2)

with n
a
i = a

†
iai, nb

i = b
†
i bi, n0

i = 1�n
a
i �n

b
i , and V

↵�
ij the

strength of the density-density interaction between sites
i and j. While in principle additional two-body terms
are possible, these terms are two orders of magnitude
smaller than the relevant energy scales for the realistic
experimental parameters studied in this manuscript; see
Appendix B for an example of such a term. Thus, the
full microscopic Hamiltonian reads H = H0 +Hint.
For the realization of a fractional Chern insulator we

find a suitable set of realistic experimental parameters,
see Appendix A. We propose to use the principal quan-
tum number n = 60, the lattice spacing l = 12 µm,
the electric field Ez = 0.725 V/cm, and the magnetic
field Bz = �8 G. For these parameters, we apply
the software pairinteraction [32] to calculate the Stark
and Zeeman shifted Rydberg states. Within the ba-
sis of these states, we calculate the hopping amplitudes
and interactions, and derive the e↵ective Hamiltonian
for the relevant levels, see Appendix B for details. For
the chosen experimental parameters, the energy di↵er-
ence is �/h = 18.52 MHz with Planck’s constant h and
the nearest neighbor hoppings are t

a
/h = 1.26 MHz,

t
b
/h = 0.49 MHz, and !/h = 2.38 MHz. For large

distances, the hopping amplitudes decrease as 1/|rij |3
in good approximation. The precise values are given in
Appendix B, where the values of the density-density in-
teractions are also listed. In general, |V ↵�

ij |  0.3 MHz
and we checked that the results do not change qualita-
tively if we switch o↵ the density-density interactions.

hopping Hamiltonian energy difference

na
i = a†iai
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Hard-core bosons 

- honeycomb lattice

wij ⇠
e2i�ijw

|Ri �Rj |3
<latexit sha1_base64="kCoU/EU5+nArO3qlIRBs1E6Y2bg="></latexit>

Does a fractional bosonic Chern  
insulator naturally appear?

- single particle band structure  
   with Chern number C=1 

- relative high flatness f= 2.7 
 
- homogeneous Berry curvature
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FIG. 2. Ground state on a torus. (a) For 1/4-filling, the 10 lowest eigenstates are calculated via exact diagonalization for
di↵erent clusters of the honeycomb lattice with periodic boundary conditions. (b) For all clusters, the ground state is nearly
two-fold degenerate and separated from the first excited state by a gap �E/h & 0.2 MHz. E0 is the respective energy of the
lowest eigenstate. (c) For the ground state, density-density correlations show no order: The correlation function hninji /n2

with density operator ni = na
i + nb

i and average density n is short-ranged, and is depicted exemplarily for the clusters 24A.
(d,e) We now apply twisted boundary conditions with twist angles ✓1 and ✓2 as illustrated in the inset. We plot the lowest
eigenenergies as a function of one twist angle while keeping the other zero for the clusters 24A. The ground state remains
quasi-degenerate. (f) The gap to the first excited state stays wide open, independent of the twist angles. (g) The normalized
Berry curvature B/B of the quasi-degenerate ground state is mostly homogeneous as a function of the twist angles. Here, B
is the average of the Berry curvature B over all angles. The many-body Chern number is C = 1.

However, to be as close as possible to a potential exper-
imental realization, we keep these terms in our calcula-
tions. Throughout the paper, we take into account hop-
pings and interactions up to next-next-nearest neighbors
as longer ranging processes would cause issues due to self-
interaction in systems with periodic boundary conditions
as studied later on.

For now, let us focus on the single-particle band struc-
ture. Due to the two-site unit cell of the honeycomb
lattice and the two possible internal states of a par-
ticle, it has four bands. The external magnetic field
breaks time-reversal symmetry, enabling topologically
non-trivial bands. Indeed, the lowest band has a non-zero
single particle Chern number [33] C = 1, see Fig. 1(c).
The fluctuations of the Berry curvature over the Brillouin
zone, which are quantified by their root-mean-square
value �B = 0.4, are small; see [28] for the precise def-
inition of �B . It has been found that similar honeycomb
systems can feature rather flat bands [31]. This is also the
case for the experimental parameters we propose, where
the lowest band has a flatness ratio f = 2.7; here, f is the
ratio of band gap divided by band width. In combination
with the strong on-site interaction due to the hard-core
constraint, these properties of the single-particle band
structure make our system a promising candidate for the
realization of a fractional Chern insulator in the many-
body regime.

We start our exploration of the many-body regime by
applying a chemical potential µ to the system and calcu-
lating the resulting average particle density n = n

a + n
b

of the ground state with density matrix renormaliza-
tion group (DMRG), using the infinite-DMRG imple-
mentation of the open-source software TeNPy [34]. This
method is based on the matrix product state (MPS) ap-
proach and allows for the study of our system on an
infinite cylinder, see below for more details. The den-
sity shows a plateau at 1/4-filling, indicating an incom-
pressible phase, see Fig. 1(d). Note that the filling
n = 1/4 corresponds to 1/2-filling of the lowest band
with Chern number C = 1, and therefore is compatible
with a topological phase exhibiting the same properties
as the ⌫ = 1/2 bosonic Laughlin state.

III. TOPOLOGICAL ORDER

In the following, we study the many-body ground state
at 1/4-filling and demonstrate that it indeed shows the
characteristic properties of a bosonic fractional Chern in-
sulator.

A. Exact diagonalization on a torus

We start by analyzing the ground state properties with
exact diagonalization. For this analysis, we consider var-
ious clusters [35] of the honeycomb lattice with periodic
boundary conditions, see Fig. 2(a). The chosen clusters
are di↵erent tessellations of the honeycomb lattice, and
consist of L = 16 to L = 28 sites. Periodic boundary
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Experimentally accessible scheme for a fractional Chern insulator in Rydberg atoms
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We present a setup with Rydberg atoms for the realization of a bosonic fractional Chern insulator
in artificial matter. The suggested setup relies on Rydberg atoms arranged in a honeycomb lattice,
where excitations hop through the lattice by dipolar exchange interactions, and can be interpreted
as hard-core bosons. The quantum many-body Hamiltonian is studied within exact diagonalization
and DMRG. We identify experimentally accessible parameters where all signatures indicate the
appearance of a fractional state with the same topological properties as the ⌫ = 1/2 bosonic Laughlin
state. We demonstrate an adiabatic ramping procedure, which allows for the preparation of the
topological state in a finite system, and demonstrate an experimentally accessible smoking gun
signature for the fractional excitations.

I. INTRODUCTION

Many-body ground states that feature intrinsic topo-
logical order are distinguished by remarkable properties
such as excitations with anyonic statistics, long-range en-
tanglement, and/or robust edge states [1]. These prop-
erties make such topological phases of high interest for
applications in quantum information, e.g., topological
quantum computation and topological quantum mem-
ory [2]. The most prominent topological phases are frac-
tional quantum Hall states which naturally appear for
electrons confined in two dimensions in strong magnetic
fields [3]. However, in recent years a focus is on real-
izing such topological phases in artificial matter [4–13].
Such a quantum simulator allows to probe their prop-
erties with novel tools, and makes them amenable for
applications [14]. Especially platforms based on Ryd-
berg atoms have emerged as highly promising, and first
experiments demonstrate a symmetry protected topolog-
ical phase [15], and signatures of a spin liquid [16]. Here,
we investigate and predict the appearance of a bosonic
fractional Chern insulator in an experimentally accessible
system with Rydberg atoms.

Rydberg platforms are based on individual atoms
trapped by optical tweezers in a programmable array
with up to several hundred sites and near perfect unit-
filling [17–21]. Strong interactions are achieved by ex-
citing the atoms into Rydberg states, and the result-
ing van der Waals or dipolar exchange interactions en-
able the realization of di↵erent quantum many-body sys-
tems. Examples include Ising-like spin models [22–25],
and quantum many-body systems based on hard-core
bosons [15, 26]. Recently, the appearance of a topo-
logical spin liquid in such a Rydberg platform has been
predicted [13], and even first experimental signatures of
this topological phase have been reported [16]. However,
the quantum simulation of fractional quantum Hall-like
states remains an open challenge. A promising approach
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FIG. 1. Setup for the realization of a fractional Chern
insulator. (a) Rydberg atoms are arranged in a honeycomb
lattice with lattice spacing l. A homogeneous electric field Ez

and magnetic field Bz are applied perpendicular to the plane
of atoms, along the quantization axis z. (b) The fields isolate
the Rydberg levels of the V-structure |0i, |+i, and |�i (black
lines). The state |0i is treated as the vacuum state and the
excitations |±i as particles. The energy di↵erence � = E+ �
E� between |+i and |�i is controlled by the fields. (c) Single-
particle band structure along the depicted path through the
Brillouin zone for the experimental parameters that are given
in the main text (h is Planck’s constant). The lowest band has
the single-particle Chern number C = 1. (d) Average particle
density n of the many-body ground state as a function of the
chemical potential µ. The density shows a plateau at 1/4-
filling, indicating an incompressible phase.

is based on combining two main ingredients: strong in-
teractions between particles and the realization of band
structures characterized by a Chern number within flat
bands and/or homogeneous Berry curvature [27, 28]. A
setup with Rydberg atoms naturally gives rise to e↵ec-
tive bosonic particles with a hard-core constraint [15],
and the appearance of topological band structures has
been predicted for Rydberg excitations hopping under
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twisted boundary conditions

Berry curvature

topological entanglement entropy
4

conditions impose the topology of a torus on a cluster.
Thus, for our model, where the particles have two in-
ternal states, the resulting many-body bases comprise
2N

L!/N !(L � N)! states, which for L = 28 lattice sites
corresponds to ⇠ 152 million states at 1/4-filling with
N = 7 particles. Using exact diagonalization, we calcu-
late the 10 lowest eigenstates and find that the ground
state of our system fulfills three characteristic features of
a bosonic fractional Chern insulator:

• First, the ground state is nearly two-fold degener-
ate and separated from the first excited state by
a gap �E/h & 0.2 MHz for all the studied clus-
ters, see Fig. 2(b). These properties are robust un-
der twisted boundary conditions on the torus with
twist angles ✓1 and ✓2, see Fig. 2(d-f).

• Second, all local correlation functions in the ground
state decay exponentially in the bulk. As an ex-
ample, the short ranged behavior of the density-
density correlation is shown in Fig. 2(c). There-
fore, we find absence of any spontaneous symmetry
breaking.

• Third, we determine the many-body Chern num-
ber for the nearly degenerate two-fold ground state
manifold. The approach is based on applying
twisted boundary conditions and determining the
corresponding Berry curvature [36]. The Berry cur-
vature is mostly homogeneous, see Fig 2(g), and we
find the many-body Chern number C = 1.

These three observations are a clear indication of a
ground state exhibiting topological order with long-range
entanglement. Furthermore, all these observations are
the characteristic topological properties of a ⌫ = 1/2
bosonic Laughlin state [12, 30, 37, 38], which is the sim-
plest topological phase for bosons in a half-filled topo-
logical band and has been predicted in closely related
systems [37]. In order to demonstrate the long-range en-
tanglement, we determine the topological entanglement
entropy with DMRG in the next section.

B. Infinite-DMRG

We analyze the ground state properties within infinite-
DMRG, using TeNPy [34]. The chosen unit cell on the
honeycomb lattice for the MPS is shown in Fig 3(a) with
the width Ly of the cylinder varying from 3 to 6, i.e.,
up to 24 lattice sites, and convergence is checked by
studying bond dimensions up to � = 2000. A main re-
sult has already been pointed out above and is shown in
Fig. 1(d): the particle density n = n

a + n
b for varying

chemical potential exhibits a clear plateau at quarter fill-
ing n = 1/4, and demonstrates the existence of an incom-
pressible phase, which we identify as a bosonic fractional
Chern insulator. From the width of the incompressible
plateau, we can identify a single particle excitation gap
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FIG. 3. Scaling of the entanglement entropy. (a) The
unit cell used for infinite-DMRG calculations. We vary Ly

from 3 up to 6 (i.e. a maximum of 24 sites) and apply pe-
riodic boundary conditions in y direction. In x direction the
unit cell repeats forming an infinite cylinder. (b) Area law
behavior of the entanglement entropy for an equal bipartition
of the infinite cylinder and di↵erent cylinder circumferences.
Bond dimensions � up to 2000 are used to extrapolate the
entropy for � ! 1, (see Appendix C), from which then the
topological entanglement entropy � = (0.45 ± 0.1) ln 2 is de-
termined. The error is estimated by calculating � for the
entropies S(� = 2000) and corresponds to the shaded blue
region. (c) Entanglement entropy for varying energy di↵er-
ence �. The phase transition from the topological phase into
a gapless phase (shaded grey) is signaled by the divergence
of the entanglement entropy for increasing bond dimension.
The dashed line indicates the proposed experimental value
�/h = 18.52 MHz for the realistic setup. (d) Entanglement
entropy for varying Rabi frequency ⌦ as required for adiabatic
preparation. The gap closing is identified by a diverging peek
in the entanglement entropy and determines the critical value
⌦c/h = 0.032MHz. As the particle number is no longer fixed,
we set the chemical potential µ/h = �1.84 MHz.

⇠ 0.3 MHz, which is in the same range as the excita-
tion gap for a fixed number of particles found in exact
diagonalization.
Next, we focus on a detailed analysis of the ground

state with infinite-DMRG for fixed particle density n =
1/4. Especially, we study the entanglement entropy S

between the left and the right half of an infinite cylin-
der by cutting the cylinder into two halves. We find a
fast convergence of the entanglement entropy S with in-
creasing bond dimension � confirming the presence of an
excitation gap. For such a gapped phase, it is well estab-
lished that the entanglement entropy follows an area law
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FIG. 2. Ground state on a torus. (a) For 1/4-filling, the 10 lowest eigenstates are calculated via exact diagonalization for
di↵erent clusters of the honeycomb lattice with periodic boundary conditions. (b) For all clusters, the ground state is nearly
two-fold degenerate and separated from the first excited state by a gap �E/h & 0.2 MHz. E0 is the respective energy of the
lowest eigenstate. (c) For the ground state, density-density correlations show no order: The correlation function hninji /n2

with density operator ni = na
i + nb

i and average density n is short-ranged, and is depicted exemplarily for the clusters 24A.
(d,e) We now apply twisted boundary conditions with twist angles ✓1 and ✓2 as illustrated in the inset. We plot the lowest
eigenenergies as a function of one twist angle while keeping the other zero for the clusters 24A. The ground state remains
quasi-degenerate. (f) The gap to the first excited state stays wide open, independent of the twist angles. (g) The normalized
Berry curvature B/B of the quasi-degenerate ground state is mostly homogeneous as a function of the twist angles. Here, B
is the average of the Berry curvature B over all angles. The many-body Chern number is C = 1.

However, to be as close as possible to a potential exper-
imental realization, we keep these terms in our calcula-
tions. Throughout the paper, we take into account hop-
pings and interactions up to next-next-nearest neighbors
as longer ranging processes would cause issues due to self-
interaction in systems with periodic boundary conditions
as studied later on.

For now, let us focus on the single-particle band struc-
ture. Due to the two-site unit cell of the honeycomb
lattice and the two possible internal states of a par-
ticle, it has four bands. The external magnetic field
breaks time-reversal symmetry, enabling topologically
non-trivial bands. Indeed, the lowest band has a non-zero
single particle Chern number [33] C = 1, see Fig. 1(c).
The fluctuations of the Berry curvature over the Brillouin
zone, which are quantified by their root-mean-square
value �B = 0.4, are small; see [28] for the precise def-
inition of �B . It has been found that similar honeycomb
systems can feature rather flat bands [31]. This is also the
case for the experimental parameters we propose, where
the lowest band has a flatness ratio f = 2.7; here, f is the
ratio of band gap divided by band width. In combination
with the strong on-site interaction due to the hard-core
constraint, these properties of the single-particle band
structure make our system a promising candidate for the
realization of a fractional Chern insulator in the many-
body regime.

We start our exploration of the many-body regime by
applying a chemical potential µ to the system and calcu-
lating the resulting average particle density n = n

a + n
b

of the ground state with density matrix renormaliza-
tion group (DMRG), using the infinite-DMRG imple-
mentation of the open-source software TeNPy [34]. This
method is based on the matrix product state (MPS) ap-
proach and allows for the study of our system on an
infinite cylinder, see below for more details. The den-
sity shows a plateau at 1/4-filling, indicating an incom-
pressible phase, see Fig. 1(d). Note that the filling
n = 1/4 corresponds to 1/2-filling of the lowest band
with Chern number C = 1, and therefore is compatible
with a topological phase exhibiting the same properties
as the ⌫ = 1/2 bosonic Laughlin state.

III. TOPOLOGICAL ORDER

In the following, we study the many-body ground state
at 1/4-filling and demonstrate that it indeed shows the
characteristic properties of a bosonic fractional Chern in-
sulator.

A. Exact diagonalization on a torus

We start by analyzing the ground state properties with
exact diagonalization. For this analysis, we consider var-
ious clusters [35] of the honeycomb lattice with periodic
boundary conditions, see Fig. 2(a). The chosen clusters
are di↵erent tessellations of the honeycomb lattice, and
consist of L = 16 to L = 28 sites. Periodic boundary
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FIG. 2. Ground state on a torus. (a) For 1/4-filling, the 10 lowest eigenstates are calculated via exact diagonalization for
di↵erent clusters of the honeycomb lattice with periodic boundary conditions. (b) For all clusters, the ground state is nearly
two-fold degenerate and separated from the first excited state by a gap �E/h & 0.2 MHz. E0 is the respective energy of the
lowest eigenstate. (c) For the ground state, density-density correlations show no order: The correlation function hninji /n2

with density operator ni = na
i + nb

i and average density n is short-ranged, and is depicted exemplarily for the clusters 24A.
(d,e) We now apply twisted boundary conditions with twist angles ✓1 and ✓2 as illustrated in the inset. We plot the lowest
eigenenergies as a function of one twist angle while keeping the other zero for the clusters 24A. The ground state remains
quasi-degenerate. (f) The gap to the first excited state stays wide open, independent of the twist angles. (g) The normalized
Berry curvature B/B of the quasi-degenerate ground state is mostly homogeneous as a function of the twist angles. Here, B
is the average of the Berry curvature B over all angles. The many-body Chern number is C = 1.

However, to be as close as possible to a potential exper-
imental realization, we keep these terms in our calcula-
tions. Throughout the paper, we take into account hop-
pings and interactions up to next-next-nearest neighbors
as longer ranging processes would cause issues due to self-
interaction in systems with periodic boundary conditions
as studied later on.

For now, let us focus on the single-particle band struc-
ture. Due to the two-site unit cell of the honeycomb
lattice and the two possible internal states of a par-
ticle, it has four bands. The external magnetic field
breaks time-reversal symmetry, enabling topologically
non-trivial bands. Indeed, the lowest band has a non-zero
single particle Chern number [33] C = 1, see Fig. 1(c).
The fluctuations of the Berry curvature over the Brillouin
zone, which are quantified by their root-mean-square
value �B = 0.4, are small; see [28] for the precise def-
inition of �B . It has been found that similar honeycomb
systems can feature rather flat bands [31]. This is also the
case for the experimental parameters we propose, where
the lowest band has a flatness ratio f = 2.7; here, f is the
ratio of band gap divided by band width. In combination
with the strong on-site interaction due to the hard-core
constraint, these properties of the single-particle band
structure make our system a promising candidate for the
realization of a fractional Chern insulator in the many-
body regime.

We start our exploration of the many-body regime by
applying a chemical potential µ to the system and calcu-
lating the resulting average particle density n = n

a + n
b

of the ground state with density matrix renormaliza-
tion group (DMRG), using the infinite-DMRG imple-
mentation of the open-source software TeNPy [34]. This
method is based on the matrix product state (MPS) ap-
proach and allows for the study of our system on an
infinite cylinder, see below for more details. The den-
sity shows a plateau at 1/4-filling, indicating an incom-
pressible phase, see Fig. 1(d). Note that the filling
n = 1/4 corresponds to 1/2-filling of the lowest band
with Chern number C = 1, and therefore is compatible
with a topological phase exhibiting the same properties
as the ⌫ = 1/2 bosonic Laughlin state.

III. TOPOLOGICAL ORDER

In the following, we study the many-body ground state
at 1/4-filling and demonstrate that it indeed shows the
characteristic properties of a bosonic fractional Chern in-
sulator.

A. Exact diagonalization on a torus

We start by analyzing the ground state properties with
exact diagonalization. For this analysis, we consider var-
ious clusters [35] of the honeycomb lattice with periodic
boundary conditions, see Fig. 2(a). The chosen clusters
are di↵erent tessellations of the honeycomb lattice, and
consist of L = 16 to L = 28 sites. Periodic boundary
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Experimentally accessible scheme for a fractional Chern insulator in Rydberg atoms
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1
Institute for Theoretical Physics III and Center for Integrated Quantum Science and Technology,

Universität Stuttgart, Pfa↵enwaldring 57, 70569 Stuttgart, Germany
2
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We present a setup with Rydberg atoms for the realization of a bosonic fractional Chern insulator
in artificial matter. The suggested setup relies on Rydberg atoms arranged in a honeycomb lattice,
where excitations hop through the lattice by dipolar exchange interactions, and can be interpreted
as hard-core bosons. The quantum many-body Hamiltonian is studied within exact diagonalization
and DMRG. We identify experimentally accessible parameters where all signatures indicate the
appearance of a fractional state with the same topological properties as the ⌫ = 1/2 bosonic Laughlin
state. We demonstrate an adiabatic ramping procedure, which allows for the preparation of the
topological state in a finite system, and demonstrate an experimentally accessible smoking gun
signature for the fractional excitations.

I. INTRODUCTION

Many-body ground states that feature intrinsic topo-
logical order are distinguished by remarkable properties
such as excitations with anyonic statistics, long-range en-
tanglement, and/or robust edge states [1]. These prop-
erties make such topological phases of high interest for
applications in quantum information, e.g., topological
quantum computation and topological quantum mem-
ory [2]. The most prominent topological phases are frac-
tional quantum Hall states which naturally appear for
electrons confined in two dimensions in strong magnetic
fields [3]. However, in recent years a focus is on real-
izing such topological phases in artificial matter [4–13].
Such a quantum simulator allows to probe their prop-
erties with novel tools, and makes them amenable for
applications [14]. Especially platforms based on Ryd-
berg atoms have emerged as highly promising, and first
experiments demonstrate a symmetry protected topolog-
ical phase [15], and signatures of a spin liquid [16]. Here,
we investigate and predict the appearance of a bosonic
fractional Chern insulator in an experimentally accessible
system with Rydberg atoms.

Rydberg platforms are based on individual atoms
trapped by optical tweezers in a programmable array
with up to several hundred sites and near perfect unit-
filling [17–21]. Strong interactions are achieved by ex-
citing the atoms into Rydberg states, and the result-
ing van der Waals or dipolar exchange interactions en-
able the realization of di↵erent quantum many-body sys-
tems. Examples include Ising-like spin models [22–25],
and quantum many-body systems based on hard-core
bosons [15, 26]. Recently, the appearance of a topo-
logical spin liquid in such a Rydberg platform has been
predicted [13], and even first experimental signatures of
this topological phase have been reported [16]. However,
the quantum simulation of fractional quantum Hall-like
states remains an open challenge. A promising approach
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FIG. 1. Setup for the realization of a fractional Chern
insulator. (a) Rydberg atoms are arranged in a honeycomb
lattice with lattice spacing l. A homogeneous electric field Ez

and magnetic field Bz are applied perpendicular to the plane
of atoms, along the quantization axis z. (b) The fields isolate
the Rydberg levels of the V-structure |0i, |+i, and |�i (black
lines). The state |0i is treated as the vacuum state and the
excitations |±i as particles. The energy di↵erence � = E+ �
E� between |+i and |�i is controlled by the fields. (c) Single-
particle band structure along the depicted path through the
Brillouin zone for the experimental parameters that are given
in the main text (h is Planck’s constant). The lowest band has
the single-particle Chern number C = 1. (d) Average particle
density n of the many-body ground state as a function of the
chemical potential µ. The density shows a plateau at 1/4-
filling, indicating an incompressible phase.

is based on combining two main ingredients: strong in-
teractions between particles and the realization of band
structures characterized by a Chern number within flat
bands and/or homogeneous Berry curvature [27, 28]. A
setup with Rydberg atoms naturally gives rise to e↵ec-
tive bosonic particles with a hard-core constraint [15],
and the appearance of topological band structures has
been predicted for Rydberg excitations hopping under
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behavior with the scaling behavior for large Ly [39, 40]

S = aLy � � . (3)

Here, � describes the topological entanglement entropy,
which becomes finite in a topological phase with long-
range entanglement. We extract this topological term
� by studying the behavior of the entanglement entropy
for increasing transverse width Ly of the cylinder, see
Fig. 3(b). As the convergence of the entanglement en-
tropy becomes slower for increasing width Ly, we apply
a fitting procedure to estimate the entanglement entropy,
see Appendix C. We find a non-vanishing topological en-
tanglement entropy � = (0.45± 0.1) ln 2, which is consis-
tent with the value � = 1/2 ln 2 for the Laughling state
at filling ⌫ = 1/2 [12, 38–40].

Finally, we study the stability of this topological phase.
The most natural tuning parameter is the energy di↵er-
ence � between the |+i and |�i excitation, which is con-
trolled by the strength of the electric field. In Fig. 3(c),
we show the entanglement entropy for 12 MHz < �/h <

25 MHz; the latter corresponds to a variation in the elec-
tric field 0.67 V/cm < Ez < 0.79 V/cm, see Appendix A.
We find a clear phase transition from the gapped topo-
logical phase, where the entanglement entropy exhibits
an area law and converges quickly to a finite value deter-
mined by the circumference of the cylinder, to a gapless
phase with a slowly diverging entanglement entropy for
increasing bond dimension; the most prominent candi-
date for this gapless phase is a superfluid. Remarkably,
the topological phase is stable over a wide range of en-
ergy di↵erences �, which demonstrates robustness under
realistic experimental imperfections.

IV. EXPERIMENTAL PREPARATION

The preparation of the fractional Chern insulator in
a closed system, such as the experimental realization
with Rydberg atoms discussed here, requires an adia-
batic sweep with a time-dependent Hamiltonian from a
trivial state into the topological phase. The most natural
initial state is the vacuum state with all Rydberg atoms
in the level |0i. Here, we propose to apply a coupling
of the state |0i to |�i by a microwave field with time
dependent Rabi frequency ⌦(⌧) and detuning �(⌧),

Hc =
X

i

⌦(⌧)
h
b
†
i + bi

i
�

X

i

�(⌧)
h
n

a
i + n

b
i

i
. (4)

A sketch of the proposed time dependence is shown in
Fig. 4(a) with the system initially prepared into the triv-
ial state at ⌧ = 0, and one ends in the topological state
at ⌧ = 1. Here, we introduced the relative time ⌧ = t/T

with T the total time of the applied pulse. The detuning
�(1) at the end of the pulse corresponds to the chem-
ical potential µ for the setup. Its value is determined
by the condition to end in the topological phase. In the
following, we choose �(1)/h = �1.84 MHz, see Fig. 1(d).

FIG. 4. Adiabatic preparation of the ground state. (a)
Parameter sweep profile showing the three regimes of varying
the Rabi frequency ⌦ and the detuning � as a function of the
sweep parameter ⌧ . (b) For the 24 site lattice shown in the
inset of (d), we plot the energy gaps between the lowest four
excited states and the ground state, as well as the average
particle density n for the duration of the sweep. At ⌧ = 0,
the system has a wide excitation gap and a particle density
n = 0. The transition into the topological phase occurs during
the final stage of the parameter sweep, where ⌦ decreases and
�/h is fixed at �0.73 (MHz), as indicated by the gap closing
around ⌧ ⇡ 0.8. At the end of the parameter sweep, the
ground state is quarter filled (n(1) = 0.25). (c) Zooming into
the transition region, we determine the critical point of the
e↵ective model which occurs around ⌦/h ⇡ 0.5 (MHz), and
observe a finite size gap (E1 � E0)/h = 0.05 (MHz). (d)
The gap closing is smoothed out in the case where ⌦(⌧) is
spacially inhomogeneous. The intensity in color of each site
of the lattice shown in the inset correlates to the value of the
Rabi frequency this site experiences. The intensity is 100%
for outermost sites and drops to 75% and 35% as we get closer
to the center.

For such an adiabatic sweep, we start in a topologically
trivial gapped state and remain in a gapped state during
the adiabatic sweep except at a critical coupling strength
⌦c, where the gap closes and the phase transition into the
topological phase takes place. Note that such a gap clos-
ing is unavoidable for the adiabatic preparation of a topo-
logical phase with long-range entanglement. We start by
deriving the critical Rabi frequency ⌦c within infinite-
DMRG on a cylinder. The closing of the gap is signaled
by a sharp divergence in the entanglement entropy for in-
creasing bond dimension, see Fig. 3(d), and we estimate
the critical Rabi frequency ⌦c/h = 0.032MHz at fixed
detuning �(1)/h = �1.84 MHz.

In a next step, we analyze the adiabatic sweep for re-
alistic systems with open boundary conditions and ana-
lyze the finite size gap at the transition; the latter limits
the speed for the adiabatic sweep. For this purpose, we
perform again exact diagonalization, i.e., at each fixed
time ⌧ we determine the ground state and the gap to the
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first few excited states. As the number of excitations is
no longer conserved, the system sizes accessible within
exact diagonalization are limited to 16 sites. To study
larger systems, we resort to an e↵ective model describing
our system by adiabatically eliminating the Rydberg |+i
state, and keeping only the leading terms. This e↵ective
model reduces to [26]

H

tb
=�

X

hi,ji

b
†
i bj � ⇣

X

hhhi,jiii

b
†
i bj + �

X

hi,ji

ninj (5)

�
X

hhi,jii

✓
1

33/2
+ �e

i 2⇡
3 pij

�
1� nīj

�◆
b
†
i bj + h.c.

Here, again the operator b
†
i creates a |�i-excitation at

site i, i.e., b†
i |0i = |�ii, while tb/h = 0.49 MHz denotes

the nearest-neighbor hopping strength. The factor 1
33/2

accounts for the reduced strength of next-nearest neigh-
bor hopping; pij = ±1 depends on the direction of the
hopping process, i.e., it is positive for a clockwise hop-
ping around a hexagon and negative for anti-clockwise
hopping, and gives rise to an induced e↵ective magnetic
flux. Finally, nīj is the occupation of the site between
i and j. The parameter � = w

2
/�tb accounts for the

terms due to adiabatic elimination. For the appearance
of the topological phase, we are in a parameter regime
where the adiabatic elimination is no longer fully justi-
fied, and with the parameters above, the e↵ective model
does not show a topological phase. However, it is pos-
sible to add a next-next nearest-neighbor hopping with
strength ⇣ = �0.207 and choose � = 0.254 such that
the single particle band structure of the e↵ective model
exhibits again a large flatness. Then, we find the same
bosonic fractional Chern insulator within the e↵ective
model at 1/4-filling as for the full model. Note that in a
closely related model, the appearance of such a fractional
Chern insulator state for hard-core bosons has been pre-
viously predicted [37].

We expect that the e↵ective model in Eq. (5) captures
the qualitative features of our full system and allows us to
study the adiabatic preparation for much larger systems.
As shown in Fig. 4(a), the proposed parameter sweep pro-
file consists of three segments: First, ⌦ increases from
zero while � is fixed at �(0). Second, ⌦ is fixed while
� increases to �(1). Finally, ⌦ decreases back to zero
while � is fixed. The initial and final values of the detun-
ing �(0)/h and �(1)/h are chosen to be �1.47 MHz and
�0.73 MHz, respectively. This choice guarantees that we
start in the trivial phase with all atoms prepared in the
state |0i and end in the topological phase. In Fig. 4(b-c),
we show the excitation gaps performing exact diagonal-
ization for a system with 24 sites for a geometry as shown
in the inset. Again, we find a clear closing of the excita-
tion gap at the transition into the topological phase at a
critical Rabi frequency ⌦c with a residual finite size gap
�E/h ⇡ 0.01 MHz. It is this finite size gap which lim-
its the speed of the adiabatic ramping procedure close to
the critical point. Note that for open boundary condi-
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FIG. 5. Detection of fractional charges. We consider a
cylinder with Lx = 8 and Ly = 3 that is finite along x direc-
tion. We apply a chemical potential µ � 0 to the 12 leftmost
sites SL and the opposite potential to the 12 rightmost sites
SR. Using DMRG with bond dimension � = 200, we calcu-
late the number of particles on the left hNLi and on the right
hNRi as a function of µ with NL,R =

P
i2SL,R

ni. (a) The

number of particles hNL,Ri jumps in steps of 1/2, indicated
by the dashed lines. (b) The particle density hnii increases
on the leftmost sites and drops on the rightmost ones if µ
is increased. (c) For comparison, we study our system in
the topologically trivial sector, where the number of particles
hNL,Ri changes continuously. The system was brought into
the trivial sector by increasing �/h by 50 MHz so that the
|+i state can be neglected. (d) Corresponding changes in the
particle density hnii.

tions the ground state in the topological phase is unique
with a bulk gap and edge modes with a finite size gap.
Remarkably, we find that using an appropriate inho-

mogeneous Rabi frequency, see Fig. 4(d), the excitation
gap remains large for the full ramping procedure. The
choice is to reduce the Rabi frequency in the center and
continuously increase it towards the boundary. The intu-
itive interpretation for this phenomena is that the tran-
sition into the topological phase occurs first in the center
and then grows towards the boundary. Therefore, excita-
tions are continuously pushed towards the boundary. We
expect therefore that such a ramping procedure with an
inhomogeneous Rabi frequency allows for a much more ef-
ficient preparation of the topological phase even for larger
systems. Experimentally, such an inhomogeneous Rabi
frequency can be achieved by the combination of a mi-
crowave field with an optical Raman transition; for the
latter, the Rabi frequency can be varied over distances
comparable to the lattice spacing, see Appendix D.

V. EXPERIMENTAL DETECTION

While quantities like ground state degeneracy, many-
body Chern number, and entanglement entropy can be

Raciunas, et al., Phys. Rev. A  (2018)
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behavior with the scaling behavior for large Ly [39, 40]

S = aLy � � . (3)

Here, � describes the topological entanglement entropy,
which becomes finite in a topological phase with long-
range entanglement. We extract this topological term
� by studying the behavior of the entanglement entropy
for increasing transverse width Ly of the cylinder, see
Fig. 3(b). As the convergence of the entanglement en-
tropy becomes slower for increasing width Ly, we apply
a fitting procedure to estimate the entanglement entropy,
see Appendix C. We find a non-vanishing topological en-
tanglement entropy � = (0.45± 0.1) ln 2, which is consis-
tent with the value � = 1/2 ln 2 for the Laughling state
at filling ⌫ = 1/2 [12, 38–40].

Finally, we study the stability of this topological phase.
The most natural tuning parameter is the energy di↵er-
ence � between the |+i and |�i excitation, which is con-
trolled by the strength of the electric field. In Fig. 3(c),
we show the entanglement entropy for 12 MHz < �/h <

25 MHz; the latter corresponds to a variation in the elec-
tric field 0.67 V/cm < Ez < 0.79 V/cm, see Appendix A.
We find a clear phase transition from the gapped topo-
logical phase, where the entanglement entropy exhibits
an area law and converges quickly to a finite value deter-
mined by the circumference of the cylinder, to a gapless
phase with a slowly diverging entanglement entropy for
increasing bond dimension; the most prominent candi-
date for this gapless phase is a superfluid. Remarkably,
the topological phase is stable over a wide range of en-
ergy di↵erences �, which demonstrates robustness under
realistic experimental imperfections.

IV. EXPERIMENTAL PREPARATION

The preparation of the fractional Chern insulator in
a closed system, such as the experimental realization
with Rydberg atoms discussed here, requires an adia-
batic sweep with a time-dependent Hamiltonian from a
trivial state into the topological phase. The most natural
initial state is the vacuum state with all Rydberg atoms
in the level |0i. Here, we propose to apply a coupling
of the state |0i to |�i by a microwave field with time
dependent Rabi frequency ⌦(⌧) and detuning �(⌧),

Hc =
X
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⌦(⌧)
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�(⌧)
h
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i + n
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. (4)

A sketch of the proposed time dependence is shown in
Fig. 4(a) with the system initially prepared into the triv-
ial state at ⌧ = 0, and one ends in the topological state
at ⌧ = 1. Here, we introduced the relative time ⌧ = t/T

with T the total time of the applied pulse. The detuning
�(1) at the end of the pulse corresponds to the chem-
ical potential µ for the setup. Its value is determined
by the condition to end in the topological phase. In the
following, we choose �(1)/h = �1.84 MHz, see Fig. 1(d).

FIG. 4. Adiabatic preparation of the ground state. (a)
Parameter sweep profile showing the three regimes of varying
the Rabi frequency ⌦ and the detuning � as a function of the
sweep parameter ⌧ . (b) For the 24 site lattice shown in the
inset of (d), we plot the energy gaps between the lowest four
excited states and the ground state, as well as the average
particle density n for the duration of the sweep. At ⌧ = 0,
the system has a wide excitation gap and a particle density
n = 0. The transition into the topological phase occurs during
the final stage of the parameter sweep, where ⌦ decreases and
�/h is fixed at �0.73 (MHz), as indicated by the gap closing
around ⌧ ⇡ 0.8. At the end of the parameter sweep, the
ground state is quarter filled (n(1) = 0.25). (c) Zooming into
the transition region, we determine the critical point of the
e↵ective model which occurs around ⌦/h ⇡ 0.5 (MHz), and
observe a finite size gap (E1 � E0)/h = 0.05 (MHz). (d)
The gap closing is smoothed out in the case where ⌦(⌧) is
spacially inhomogeneous. The intensity in color of each site
of the lattice shown in the inset correlates to the value of the
Rabi frequency this site experiences. The intensity is 100%
for outermost sites and drops to 75% and 35% as we get closer
to the center.

For such an adiabatic sweep, we start in a topologically
trivial gapped state and remain in a gapped state during
the adiabatic sweep except at a critical coupling strength
⌦c, where the gap closes and the phase transition into the
topological phase takes place. Note that such a gap clos-
ing is unavoidable for the adiabatic preparation of a topo-
logical phase with long-range entanglement. We start by
deriving the critical Rabi frequency ⌦c within infinite-
DMRG on a cylinder. The closing of the gap is signaled
by a sharp divergence in the entanglement entropy for in-
creasing bond dimension, see Fig. 3(d), and we estimate
the critical Rabi frequency ⌦c/h = 0.032MHz at fixed
detuning �(1)/h = �1.84 MHz.

In a next step, we analyze the adiabatic sweep for re-
alistic systems with open boundary conditions and ana-
lyze the finite size gap at the transition; the latter limits
the speed for the adiabatic sweep. For this purpose, we
perform again exact diagonalization, i.e., at each fixed
time ⌧ we determine the ground state and the gap to the
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first few excited states. As the number of excitations is
no longer conserved, the system sizes accessible within
exact diagonalization are limited to 16 sites. To study
larger systems, we resort to an e↵ective model describing
our system by adiabatically eliminating the Rydberg |+i
state, and keeping only the leading terms. This e↵ective
model reduces to [26]
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hhhi,jiii

b
†
i bj + �

X

hi,ji

ninj (5)

�
X

hhi,jii

✓
1

33/2
+ �e

i 2⇡
3 pij

�
1� nīj
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†
i bj + h.c.

Here, again the operator b
†
i creates a |�i-excitation at

site i, i.e., b†
i |0i = |�ii, while tb/h = 0.49 MHz denotes

the nearest-neighbor hopping strength. The factor 1
33/2

accounts for the reduced strength of next-nearest neigh-
bor hopping; pij = ±1 depends on the direction of the
hopping process, i.e., it is positive for a clockwise hop-
ping around a hexagon and negative for anti-clockwise
hopping, and gives rise to an induced e↵ective magnetic
flux. Finally, nīj is the occupation of the site between
i and j. The parameter � = w

2
/�tb accounts for the

terms due to adiabatic elimination. For the appearance
of the topological phase, we are in a parameter regime
where the adiabatic elimination is no longer fully justi-
fied, and with the parameters above, the e↵ective model
does not show a topological phase. However, it is pos-
sible to add a next-next nearest-neighbor hopping with
strength ⇣ = �0.207 and choose � = 0.254 such that
the single particle band structure of the e↵ective model
exhibits again a large flatness. Then, we find the same
bosonic fractional Chern insulator within the e↵ective
model at 1/4-filling as for the full model. Note that in a
closely related model, the appearance of such a fractional
Chern insulator state for hard-core bosons has been pre-
viously predicted [37].

We expect that the e↵ective model in Eq. (5) captures
the qualitative features of our full system and allows us to
study the adiabatic preparation for much larger systems.
As shown in Fig. 4(a), the proposed parameter sweep pro-
file consists of three segments: First, ⌦ increases from
zero while � is fixed at �(0). Second, ⌦ is fixed while
� increases to �(1). Finally, ⌦ decreases back to zero
while � is fixed. The initial and final values of the detun-
ing �(0)/h and �(1)/h are chosen to be �1.47 MHz and
�0.73 MHz, respectively. This choice guarantees that we
start in the trivial phase with all atoms prepared in the
state |0i and end in the topological phase. In Fig. 4(b-c),
we show the excitation gaps performing exact diagonal-
ization for a system with 24 sites for a geometry as shown
in the inset. Again, we find a clear closing of the excita-
tion gap at the transition into the topological phase at a
critical Rabi frequency ⌦c with a residual finite size gap
�E/h ⇡ 0.01 MHz. It is this finite size gap which lim-
its the speed of the adiabatic ramping procedure close to
the critical point. Note that for open boundary condi-
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FIG. 5. Detection of fractional charges. We consider a
cylinder with Lx = 8 and Ly = 3 that is finite along x direc-
tion. We apply a chemical potential µ � 0 to the 12 leftmost
sites SL and the opposite potential to the 12 rightmost sites
SR. Using DMRG with bond dimension � = 200, we calcu-
late the number of particles on the left hNLi and on the right
hNRi as a function of µ with NL,R =

P
i2SL,R

ni. (a) The

number of particles hNL,Ri jumps in steps of 1/2, indicated
by the dashed lines. (b) The particle density hnii increases
on the leftmost sites and drops on the rightmost ones if µ
is increased. (c) For comparison, we study our system in
the topologically trivial sector, where the number of particles
hNL,Ri changes continuously. The system was brought into
the trivial sector by increasing �/h by 50 MHz so that the
|+i state can be neglected. (d) Corresponding changes in the
particle density hnii.

tions the ground state in the topological phase is unique
with a bulk gap and edge modes with a finite size gap.
Remarkably, we find that using an appropriate inho-

mogeneous Rabi frequency, see Fig. 4(d), the excitation
gap remains large for the full ramping procedure. The
choice is to reduce the Rabi frequency in the center and
continuously increase it towards the boundary. The intu-
itive interpretation for this phenomena is that the tran-
sition into the topological phase occurs first in the center
and then grows towards the boundary. Therefore, excita-
tions are continuously pushed towards the boundary. We
expect therefore that such a ramping procedure with an
inhomogeneous Rabi frequency allows for a much more ef-
ficient preparation of the topological phase even for larger
systems. Experimentally, such an inhomogeneous Rabi
frequency can be achieved by the combination of a mi-
crowave field with an optical Raman transition; for the
latter, the Rabi frequency can be varied over distances
comparable to the lattice spacing, see Appendix D.

V. EXPERIMENTAL DETECTION

While quantities like ground state degeneracy, many-
body Chern number, and entanglement entropy can be
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behavior with the scaling behavior for large Ly [39, 40]

S = aLy � � . (3)

Here, � describes the topological entanglement entropy,
which becomes finite in a topological phase with long-
range entanglement. We extract this topological term
� by studying the behavior of the entanglement entropy
for increasing transverse width Ly of the cylinder, see
Fig. 3(b). As the convergence of the entanglement en-
tropy becomes slower for increasing width Ly, we apply
a fitting procedure to estimate the entanglement entropy,
see Appendix C. We find a non-vanishing topological en-
tanglement entropy � = (0.45± 0.1) ln 2, which is consis-
tent with the value � = 1/2 ln 2 for the Laughling state
at filling ⌫ = 1/2 [12, 38–40].

Finally, we study the stability of this topological phase.
The most natural tuning parameter is the energy di↵er-
ence � between the |+i and |�i excitation, which is con-
trolled by the strength of the electric field. In Fig. 3(c),
we show the entanglement entropy for 12 MHz < �/h <

25 MHz; the latter corresponds to a variation in the elec-
tric field 0.67 V/cm < Ez < 0.79 V/cm, see Appendix A.
We find a clear phase transition from the gapped topo-
logical phase, where the entanglement entropy exhibits
an area law and converges quickly to a finite value deter-
mined by the circumference of the cylinder, to a gapless
phase with a slowly diverging entanglement entropy for
increasing bond dimension; the most prominent candi-
date for this gapless phase is a superfluid. Remarkably,
the topological phase is stable over a wide range of en-
ergy di↵erences �, which demonstrates robustness under
realistic experimental imperfections.

IV. EXPERIMENTAL PREPARATION

The preparation of the fractional Chern insulator in
a closed system, such as the experimental realization
with Rydberg atoms discussed here, requires an adia-
batic sweep with a time-dependent Hamiltonian from a
trivial state into the topological phase. The most natural
initial state is the vacuum state with all Rydberg atoms
in the level |0i. Here, we propose to apply a coupling
of the state |0i to |�i by a microwave field with time
dependent Rabi frequency ⌦(⌧) and detuning �(⌧),

Hc =
X

i

⌦(⌧)
h
b
†
i + bi

i
�

X

i

�(⌧)
h
n

a
i + n

b
i

i
. (4)

A sketch of the proposed time dependence is shown in
Fig. 4(a) with the system initially prepared into the triv-
ial state at ⌧ = 0, and one ends in the topological state
at ⌧ = 1. Here, we introduced the relative time ⌧ = t/T

with T the total time of the applied pulse. The detuning
�(1) at the end of the pulse corresponds to the chem-
ical potential µ for the setup. Its value is determined
by the condition to end in the topological phase. In the
following, we choose �(1)/h = �1.84 MHz, see Fig. 1(d).

FIG. 4. Adiabatic preparation of the ground state. (a)
Parameter sweep profile showing the three regimes of varying
the Rabi frequency ⌦ and the detuning � as a function of the
sweep parameter ⌧ . (b) For the 24 site lattice shown in the
inset of (d), we plot the energy gaps between the lowest four
excited states and the ground state, as well as the average
particle density n for the duration of the sweep. At ⌧ = 0,
the system has a wide excitation gap and a particle density
n = 0. The transition into the topological phase occurs during
the final stage of the parameter sweep, where ⌦ decreases and
�/h is fixed at �0.73 (MHz), as indicated by the gap closing
around ⌧ ⇡ 0.8. At the end of the parameter sweep, the
ground state is quarter filled (n(1) = 0.25). (c) Zooming into
the transition region, we determine the critical point of the
e↵ective model which occurs around ⌦/h ⇡ 0.5 (MHz), and
observe a finite size gap (E1 � E0)/h = 0.05 (MHz). (d)
The gap closing is smoothed out in the case where ⌦(⌧) is
spacially inhomogeneous. The intensity in color of each site
of the lattice shown in the inset correlates to the value of the
Rabi frequency this site experiences. The intensity is 100%
for outermost sites and drops to 75% and 35% as we get closer
to the center.

For such an adiabatic sweep, we start in a topologically
trivial gapped state and remain in a gapped state during
the adiabatic sweep except at a critical coupling strength
⌦c, where the gap closes and the phase transition into the
topological phase takes place. Note that such a gap clos-
ing is unavoidable for the adiabatic preparation of a topo-
logical phase with long-range entanglement. We start by
deriving the critical Rabi frequency ⌦c within infinite-
DMRG on a cylinder. The closing of the gap is signaled
by a sharp divergence in the entanglement entropy for in-
creasing bond dimension, see Fig. 3(d), and we estimate
the critical Rabi frequency ⌦c/h = 0.032MHz at fixed
detuning �(1)/h = �1.84 MHz.

In a next step, we analyze the adiabatic sweep for re-
alistic systems with open boundary conditions and ana-
lyze the finite size gap at the transition; the latter limits
the speed for the adiabatic sweep. For this purpose, we
perform again exact diagonalization, i.e., at each fixed
time ⌧ we determine the ground state and the gap to the
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We present a setup with Rydberg atoms for the realization of a bosonic fractional Chern insulator
in artificial matter. The suggested setup relies on Rydberg atoms arranged in a honeycomb lattice,
where excitations hop through the lattice by dipolar exchange interactions, and can be interpreted
as hard-core bosons. The quantum many-body Hamiltonian is studied within exact diagonalization
and DMRG. We identify experimentally accessible parameters where all signatures indicate the
appearance of a fractional state with the same topological properties as the ⌫ = 1/2 bosonic Laughlin
state. We demonstrate an adiabatic ramping procedure, which allows for the preparation of the
topological state in a finite system, and demonstrate an experimentally accessible smoking gun
signature for the fractional excitations.

I. INTRODUCTION

Many-body ground states that feature intrinsic topo-
logical order are distinguished by remarkable properties
such as excitations with anyonic statistics, long-range en-
tanglement, and/or robust edge states [1]. These prop-
erties make such topological phases of high interest for
applications in quantum information, e.g., topological
quantum computation and topological quantum mem-
ory [2]. The most prominent topological phases are frac-
tional quantum Hall states which naturally appear for
electrons confined in two dimensions in strong magnetic
fields [3]. However, in recent years a focus is on real-
izing such topological phases in artificial matter [4–13].
Such a quantum simulator allows to probe their prop-
erties with novel tools, and makes them amenable for
applications [14]. Especially platforms based on Ryd-
berg atoms have emerged as highly promising, and first
experiments demonstrate a symmetry protected topolog-
ical phase [15], and signatures of a spin liquid [16]. Here,
we investigate and predict the appearance of a bosonic
fractional Chern insulator in an experimentally accessible
system with Rydberg atoms.

Rydberg platforms are based on individual atoms
trapped by optical tweezers in a programmable array
with up to several hundred sites and near perfect unit-
filling [17–21]. Strong interactions are achieved by ex-
citing the atoms into Rydberg states, and the result-
ing van der Waals or dipolar exchange interactions en-
able the realization of di↵erent quantum many-body sys-
tems. Examples include Ising-like spin models [22–25],
and quantum many-body systems based on hard-core
bosons [15, 26]. Recently, the appearance of a topo-
logical spin liquid in such a Rydberg platform has been
predicted [13], and even first experimental signatures of
this topological phase have been reported [16]. However,
the quantum simulation of fractional quantum Hall-like
states remains an open challenge. A promising approach

(a) (b)

K � M K

0

20

E
/h

(M
H

z)

C = 1
C = �1

(c)

�3 �2 �1

µ/h (MHz)

0.1

0.2

0.3

0.4

n

(d)

x

y
z

mj −3/2 −1/2 1/2 3/2

nS1/2

nP3/2
|+

|0

|
l

∆

K
M

Γ

Ez
Bz

FIG. 1. Setup for the realization of a fractional Chern
insulator. (a) Rydberg atoms are arranged in a honeycomb
lattice with lattice spacing l. A homogeneous electric field Ez

and magnetic field Bz are applied perpendicular to the plane
of atoms, along the quantization axis z. (b) The fields isolate
the Rydberg levels of the V-structure |0i, |+i, and |�i (black
lines). The state |0i is treated as the vacuum state and the
excitations |±i as particles. The energy di↵erence � = E+ �
E� between |+i and |�i is controlled by the fields. (c) Single-
particle band structure along the depicted path through the
Brillouin zone for the experimental parameters that are given
in the main text (h is Planck’s constant). The lowest band has
the single-particle Chern number C = 1. (d) Average particle
density n of the many-body ground state as a function of the
chemical potential µ. The density shows a plateau at 1/4-
filling, indicating an incompressible phase.

is based on combining two main ingredients: strong in-
teractions between particles and the realization of band
structures characterized by a Chern number within flat
bands and/or homogeneous Berry curvature [27, 28]. A
setup with Rydberg atoms naturally gives rise to e↵ec-
tive bosonic particles with a hard-core constraint [15],
and the appearance of topological band structures has
been predicted for Rydberg excitations hopping under
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