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Introduction: Liquid, crystal, and glass

Glass-forming Liquid

GlassCrystal

Crystallization vs Vitrification

Viscous
liquid SiO2

Fused silica

Crystallization Vitrification

SiO2 SiO2

4

Rapid 
Cooling

Slow
Cooling

Quartz



ü Slowing down of dynamics ü Dynamical heterogeneity
Heterogeneity in space and timeDivergence of viscosity

From the cover of PNAS, Sep. 8th, 2009

Energy landscape

P. G. Debenedetti et al., Nature 410, 259 (2001).
0 1

・Science 125 Questions: What is the nature of the glassy state?
125th Anniversary Issue of Science (2005)
・The 70 Wonders of Physics: Is Glass a solid or liquid?
75th Anniversary Issue of JPSJ (2017)

What is the mechanism of glass formation? 

ü Energy landscape with multiple local minima

5Glass formation mechanism



Glass formation phenomena have been reported in various degrees of 
freedom of electrons in strongly correlated electron systems: 

Orbital glass

Superconducting 
vortex glass

spins, charges, orbitals, and superconducting vortices…

6Glass formation phenomena in SCES

However, the fundamental understanding of the glass formation 
mechanism is still an open question.

Spin glass



Extended Hubbard model 

On-site

Inter-site

1/4-filled

inter-site V

t

t vs V

Charge order (CO)

charge-richpoor

charge

1/2-filled

on-site U

t vs U

Mott transition
spin

Two representative insulating states in SCES

Spin frustration system Charge frustration system

Ising modelHeisenberg model
Charge rich

Charge poor

Spin liquid Charge glass

t
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V1
V2

Conducting
BEDT-TTF layer

Insulating
anion layer

H. Oike et al., PRB 91, 041101(R) (2015).

2D triangular lattice

Charge liquid/crystal/glass states in θ-(BEDT-TTF)2X

θ-(BEDT-TTF)2RbZn(SCN)4 (abbreviated as θ-RbZn)
H. Mori et al., PRB 91, 041101 (1998).-1+0.5

¼ filled hole band system with a 2D triangular lattice

Top view

F. Kagawa et al.,
Nature Phys. 9, 419 (2013).

V1

Charge crystal
(CC)

+0.85

+0.15

Slow cool

V2

Strong inter-site Coulomb repulsion V
Charge ordering (CO)

Charge liquid (CL)

Randomly distributed

Charge glass
(CG)

θ-RbZn
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Geometrical frustration of triangular lattice

H. Oike et al., PRB 91, 041101(R) (2015). Charge glass formation
Geometrical frustration between V1 and V2V1

V2

V2

(< 0.1 K/min)

T. Sato et al., JPSJ (2014). T. Sato et al., PRB (2014).

V1
V2

V2

θ-(BEDT-TTF)2MM’(SCN)4 (abbreviated as θ-MM’)
θ-

Tl
Zn

V
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θm-(BEDT-TTF)2TlZn(SCN)4

a

c
a

b

H. Mori et al., Bull. Chem. Soc. Jpn. 71, 797 (1998).

θo-(BEDT-TTF)2TlCo(SCN)4

More anisotropic
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Two different crystal forms in θ-TlZn/TlCo

MonoclinicOrthorhombic

・Horizontal CO
・Tm = 240 K 
・V2/V1 = 0.835

・Diagonal CO
・Tm = 170 K 
・V2/V1 = 0.816

S. Sasaki, KH et al.,
Science 357, 1381 (2017).
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> 50 K/min



Critical cooling rate for CG formation

The critical cooling rate of qm-TlZn is slower than that of qo-TlCo, suggesting 
different charge-glass formation mechanisms between these two systems.

V1
V2

V2
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Resistivity curves in CC and CG states 12
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KH et al., submitted.

θo-type: large difference between CC and CG states
θm-type: small difference between CC and CG states
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The CG state exhibits larger low-energy excitations than the CC state and becomes 
more metallic with increasing V1/V2.

The optical gaps in the CG and CC states are almost identical.
θm-type

θo-type

Optical conductivity spectra in θ-type compounds



Optical conductivity spectra of CG states in θ-type compounds 14
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As the anisotropy of the triangular lattice increases, the spectral weight 
in the low-energy region shifts to a higher-energy region.

KH et al., submitted.



qo-type: equilateral triangular lattice

Frustration between V1 and V2V1
V2

V2

θo-RbZn: qd = (1/4 1/3)
θo-CsZn: qd = (2/3 1/3)

Short-range 3-fold COs

Geometrical frustration on equilateral and isosceles triangle lattices

qm-type: isosceles triangle lattice

V1
V2

V2

Chain-striped COs along the V1 direction

Frustration between two V2

S. Sasaki, KH et al., Science 357, 1381 (2017).

Superpositions of 
insulating 2-fold 
stripe COs
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θm-TlZn: qd = (1/2 l)

Extended Hubbard model (EHM)

V1 = V2

V1 > V2

Diffuse lines

θo-RbZn

F. Kagawa et al.,
Nature Phys. 9, 419 (2013).

Metallic
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TCO

Time evolution of charge crystallization

The crystallization time becomes faster with decreasing temperature, 
and then, it becomes slower below ~ 160 K.
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Supercooled liquid/glass state

Charge-crystal stateθm-TlZn
S. Sasaki, KH et al., 
Science 357, 1381 (2017).



Time-Temperature-Transformation (TTT) diagram

Dome-shapedθm-TlZn

θo-RbZn

T. Sato et al., 
Science 357, 1378 (2017).

Metallic glass

H2O(simulation)

E. B. Moore, et al., Nature 479, 506 (2011).

J. Schroers, et al., APL 77, 1158 (2000).

The dome-shaped TTT diagram is universally observed in other glass-
forming liquids such as metallic glasses and water as well as θo-RbZn.

17

S. Sasaki, KH et al., 
Science 357, 1381 (2017).



Heat flow

�S(T ) =
⇣Z

�q̇(T )dt
⌘
/T

DSC is a very powerful probe to observe crystallization, melting, 
and glass transitions.

Melting

Recrystallization

Glass transition

Recrystallization

Melting

Differential scanning calorimetry (DSC) technique

Sample Reference

Heaters

Thermometers

18



Melting
Crystallization
Recrystallization

DSC-8500 (Perkin Elmer Corp.) at IMR, Tohoku Univ.
・N2 liquid (Lowest temperature: 135 K)
・He gas atmosphere
・Cooling/heating rate: 100 K/min
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Results of DSC measurements
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Time evolution of charge crystal growth
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144 K

Ostwald ripening

Area A

B
A-B

180.65 K 170.1 K 161.5 K 156.7 K

147.1 K 142.3 K 132.7 K151.9 K

・At high T, 3D crystal growth (n = 4)

Consistent with the results of NMR

・At low T, 1-2D crystal growth (n = 2) 
→ Ostwald ripening

Johnson–Mehl–Avrami–Kolmogorov (JMAK) model
�(t) = 1� exp(�btn) 3D: n = 3-4, 2D: n = 2-3, 1D: n = 1-2 

T. Sato et al., Science 357, 1378 (2017).
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nucleation
liquid

JMAK model
�(t) = 1� exp(�btn)

3D: n = 3-4
2D: n = 2-3
1D: n = 1-2 

1 or 2D growth + Ostwald ripening

TTT diagram constructed by DSC measurements 21
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Large sample dependence in the charge glass forming ability

We examined how the randomness effect affects the charge-glass forming
ability by using molecular defects introduced by x-ray irradiation.

F. Kagawa et al.,
Nature Physics 9, 2642 (2013)

Our crystals (from Yamamoto Group 
in the Institute for Molecular Science)

qo-RbZn qo-RbZn

300100 200 250150
Temperature (K)

0.1 K/min5 K/min

30 K/min

Randomness effect on charge glass-forming ability 22



Br

CuC
N

k-(ET)2Cu[N(CN)2]Br

Anion layer

X-ray

T. Sasaki et al., Phys. Satus. Solidi. B 249, 947(2012).

Infrared molecular vibrations in k-(ET)2Cu[N(CN)2]Br 

Defects are mainly introduced within the anion layers (CN bonds).

CN bondBEDT-TTF

X-ray irradiation effect on k-type compounds

Small suppressions Large suppressions

X-ray irradiation does not largely affect the physical properties of p electrons 
such as charge carriers.
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・X-ray irradiation
・ Room temperature
・ Tungsten tube
(non-filtered, 40 kV, 20 mA)
・White x-rays

・ q-(ET)2RbZn(SCN)4 single crystals
・Electrochemical redox method
・Provided by S. Suda and H. Yamamoto

Carbon paste

Au wire

X-rays

Sample for resistivity 
measurements

Irradiation from the 
back of the sample

Experimental setup

・Experiments
・ Resistivity
・ Optical conductivity
・ Differential scanning calorimetry (DSC)

1 mm

60 µm

X-rays

Copper 
plate

Lead 
plate

Sample

150

140

130

120
110

100
90
80
70
60
50
40
30
20
10

0 h

Sample for optical 
measurements
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Reflectivity
C≡N stretching mode

C≡N stretching mode

Defects are mainly introduced within 
the anion layers (CN bonds).

BEDT-TTF 
layer

Anion 
layer

Reduction by 15% after 150 h irradiation

qo-RbZn

Molecular defect by x-ray irradiation in θo-RbZn

CN
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・ TCO is systematically suppressed by x-ray irradiation.
・ Almost no change in the total entropy at the CO transition

�H(T ) =

Z
�q̇(T )dt

�S = �H/T

qo-RbZn

The entropy change at CO is obtained by integrating 
the heat flow over time and divided by TCO.

X-ray irradiation effects on TCO and entropy change

The molecular defects introduced by x-ray 
irradiation act as impurities.
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K. Hashimoto et al., (unpublished)



20 h irradiated 50 h irradiated 70 h irradiatedpristine

Irradiation time (h)

X-ray irradiation effect on the critical cooling rate

The critical cooling rate for the charge 
glass formation becomes slower with 
increasing x-ray irradiation time.

Cooling-rate dependence of the resistivity curve 
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Irradiation time (h)

Charge
crystal

Charge
glass

The charge crystal regime is significantly 
suppressed by randomness introduced 
by x-rays

The critical cooling rate for the charge 
glass formation becomes slower with 
increasing x-ray irradiation time.

X-ray irradiation effect on the critical cooling rate

20 h irradiated 50 h irradiated 70 h irradiatedpristine
Cooling-rate dependence of the resistivity curve 
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• Clear optical gap
• Sharpening of 𝜈" mode
• Overtone of 𝜈" mode

K. Yamamoto et al., PRB 84, 064306 (2011).

Features of CO state
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𝜈!

Overtone of 𝜈! mode (2w)
Optical gap

Slow cooling
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X-ray irradiation effect on optical conductivity spectra

Charge glass state 
realized by rapid cooling

• Clear optical gap
• Sharpening of 𝜈" mode
• Overtone of 𝜈" mode

Features of CO state
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𝜈!

Overtone of 𝜈! mode (2w)
Optical gap

Slow cooling

Charge glass state 
realized by x-rays

Rapid cooling𝜈!
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Very similar 

X-ray irradiation effect on the optical conductivity spectra

Charge glass state 
realized by rapid cooling

• Clear optical gap
• Sharpening of 𝜈" mode
• Overtone of 𝜈" mode

K. Yamamoto et al., PRB 84, 064306 (2011).

Features of CO state

Charge glass state
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・The charge crystallization regime shifts to a longer-time region.

Charge crystallization is significantly suppressed by x-ray irradiation,
which leads to a slower critical cooling rate compared to that of the pristine sample.

・The nose temperature decreases.

qo-RbZn

X-ray irradiation effect on TTT diagrams

Slower critical 
cooling rate

TTT diagram conducted by DSC measurements 

Ø Even in θo-RbZn, one can make a charge glass state in a very slow cooling rate.
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The geometrical frustration of the triangular lattice 
plays an important role for the charge glass 
formation in this system.

H. Oike et al., PRB 91, 041101 (2015).
T. Sato et al., JPSJ 83, 083602 (2014).
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The energy difference between the crystalline 
state and the metastable states may be reduced.

Crystal
Metastable states

Randomness

X-ray irradiation

X-ray irradiated q -RbZn
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In addition to the geometric frustration, 
randomness is also an important 
factor for the charge glass formation.

X-rays promotes charge glass formation.
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Randomness effect is also an important factor for the charge glass formation.
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TTT diagram conducted by DSC
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