Emergent states of interacting electrons on triangular lattices

Kazushi Kanoda Applied Physics, University of Tokyo

	 Quantum spin liquid - κ-(ET)₂Cu₂(CN)₃ present status of experiments 	
	 2. Doped quantum spin liquid - κ-(ET)₄Hg_{2.89}Hg₈ - - non-FL to FL crossover 	
Spin liquid	 quantum critical phase BEC-BCS crossover 	PR X 12_011016 (2022) arXiv:2201 10714
	 reduced superfluid density preformed pairs & pairing symmetry 	arXiv:2202.06032 arXiv:2205.03682

Charge glass

- **3. Quantum charge glass** θ-(ET)₂X classical manifestations (slow dynamics, aging, short-range order)
 - anomalously high crystallization speed

arXix:2201.04855

- classical to quantum crossover

arXiv:2205.10795

Today's talk is based on collaboration with

K. Miyagawa, Kagawa, Shimizu, Kurosaki, Furukawa, H. Oike, M. Urai, Y. Suzuki, K. Wakamatsu, Y. Ueno, T. Fujii, J. Ibuka, T. Sato, H. Murase (U Tokyo)

G, Saito, M. Maesato (Kyoto U.)

T. Sasaki, S. Iguchi, M. Saito (Tohoku U., IMR)

R. Kato (RIKEN)

H. Taniguchi, M. Itou (Saitama U.)

S. Yamashita, Y. Nakazawa (Osaka)

F. Pratt (Rutherford-Appleton)

Y. Kohama, A. Miyake, T. Nomura (ISSP)

B. Mikche, M. Dressel (Stuttgart U.)

H. Mori (ISSP)

M. Tamura (Tokyo Sci. Univ.)

Organic materials \rightarrow flexible & controllable lattice geometry

Hotta, Seo, Fukuyama, Chem. Rev., 2004

Organic materials \rightarrow Physics of interaction and geometry

b

Mott physics

1/2-filled band

triangular lattice

Wigner Xtal/glass Massless Dirac ele. 1/4-filled band а triangular lattice +1/2 X-1 Hotta, Seo, Fukuyama, Chem. Rev., 2004

Resonating valence bond (RVB) state as a QSL

+

benzene

P. W. Anderson

(according to Ogata)

(P_G : projection operator to remove double occupancies)

 $|\text{spinon FS} \rangle = P_G | BCS; \Delta \rightarrow 0 \rangle$ gapless

 $|spinon Dirac cone >= P_G | nodal BCS > \qquad gapless \\ (Dirac point)$

|Chiral spin liquid > = P_G |*chiral SC* > (?) gapped

Quantum spin liquid (QSL) candidates with a triangular lattice

¹H NMR spectra

QSL manifestations

 $C_{P}T^{-1}/\text{ mJ K}^{-2} \text{ mol}^{-1}$

Specific heat

Thermal conductivity

gapped: $\Delta = 0.46 K$

S. Yamashita et al., Nat. Phys. 4 (2008) 459 M. Yamashita et al., Nat. Phys. 5 (2009) 44

Shimizu et al., Phys. Rev. Lett. (2003)

H-T phase diagram determined by μSR

Inhomogeneous internal field induced by external field

Internal Field

Spin gapped or not at low temperatures ? ESR and NMR

 κ -(ET)₂Cu₂(CN)

Nearly reproducible in separate samples

Field-insensitive above 5 K

Unconventional spin gapped state: instability of QSL?

1. Knight shift and $1/T_1$ do not vanish at low-T and line is broadened.

0.2 0.18

0.16

0.14

¹H NMR

 $1/T_1$

3 kbar

6K-anomaly in κ -(ET)₂Cu₂(CN)₃

Specific heat

S. Yamashita *et al.*, *Nature Phys.* 4 (2008) 459

Thermal conductivity

M. Yamashita *et al.*, *Nature Phys.* **5** (2009) 44

Thermal expansion coefficient Manna et al., *PRL* **104** (2010) 016403

Ultrasound velocity

Poirier et al.,

Search for quantum oscillations in κ -(ET)₂Cu₂(CN)₃ with magnetic fields up to 60 Tesla at ISSP

Kohama, Nomura, Miyake, Urai

Doped spin liquid candidate κ -(ET)₄Hg_{2.89}Br₈ (11% hole doping)

Nonstoichiometric compound κ -(ET)₄Hg_{2.89}Br₈

Non-doped and doped QSL candidates

Contrasting conductivity, similar magnetism — Doped QSL

H. Oike, et al., Nat. Commun. 8, 756 (2017).

Phase diagram : non-doped and doped spin liquid materials

Pressure dependence of Hall coefficient: from doped QSL to correlated metal

H. Oike, *et al.*, *PRL* **114**, 067002 (2015).

Non-Fermi liquid to Fermi liquid crossover

а

 κ -(ET)₄Hg_{2.89}Br₈

Suzuki et al, Phys RevX 12_011016 (2022)

Quantum criticality

 κ - $(ET)_4 Hg_{2.89} Br_8$

Seebeck coefficient S ($\nabla T//c$ -axis)

Quantum critical "phase"

CePdAl (Heavy fermion system with Kagome lattice) → Emergence of quantum critical *phase*, (not a point) H. Zhao, *et al.*, *Nat. Phys.* **15**, 1261 (2019).

Frustration makes QC point to QC phase

M. Vojta, Rep. Prog. Phys. 81, 064501 (2018)

Strength of Quantum criticality κ - $(ET)_4Hg_{2.89}Br_8$

 $S/T = \gamma' \ln(T/T_0)$ (10 K < T < 30 K)

Table S1 | $|\gamma'|$ values in the logarithmic part of -S/TThe $|\gamma'|$ values in $S/T = \gamma' \ln(T/T_0)$ in the unit of $\mu V/K^2$.

|γ'|

Wakamatsu et al., arXiv:2201.10714

κ -(ET)₄Hg_{2.89}Br₈

Y. Suzuki et al., Phys. Rev. X 12, 011016 (2022).

Superfluid density $\kappa - (ET)_4 Hg_{2.89} Br_8$

¹³C NMR Knight shift and relaxation rate $1/T_1$

Preformed pairs (and pseudo-gapped metal)

 $\kappa - (ET)_4 Hg_{2.89} Br_8$

Combination of hydrostatic and uniaxial pressures: variations of U/t and t/t

Electron (charge) glass

Quarter-filled band electrons on triangular lattice

Charge frustration

Electronic version of soft matters

J. Schmalian1 and P. G. Wolynes, PRL 85, 836 (2000)

Self-Generated Randomness

Electronic mayonese

Electron glass

- ✓ Quantum nature
- ✓ Controllable lattice geometry

Non-Equilibrium in Supercooled Liquid

Kagawa *et al., Nat. Phys.* **9**, 419 (2013). Sato *et al., PRB* **89**, 121102 (2014) Sato *et al., JPSJ* **83**, 083602 (2014) Sato *et al., JPSJ* **85**, 123702 (2016)

middle-range correlation

X-ray diffuse scattering

Correlation length levelling off

Electronic crystallization: p and NMR

T=140 K

150000 s

80000 s

40000 s

600 s

100 200 300 400

T. Sato et al., Science **357**, 1378 (2017) (cf. S. Sasaki et al., Science **357**, 1381 (2017))

Electronic crystallization: Raman spectroscopy

Raman imaging of E-crystallization at high T

Spaciotemporal observation of electronic crystallization: classical glass

Ultrafast crystal growth: quantum effect ?

five orders of magnitude faster than expected in the classical model !

From classical to quantum charge glass

Discussion | Energy landscape

Possible quantum melting of E-glass

Strange metal arising from frustration-driven charge instability

summary

Diverse electronic states spring from a single molecular species, ET, only by changing its arrangement

Electronic Xtal/glass

Massless Dirac electrons

