Quantum spin liquids and unconventional superconductivity in honeycomb materials

Jaime Merino

Universidad Autónoma de Madrid

In collaboration with: Manuel F. López, Universidad Autónoma de Madrid; Arnaud Ralko, Institut Néel, and Ben J. Powell, University of Queensland.

A. Ralko, and JM, PRL 124, 217203 (2020); M. F. López, and JM, PRB (2020); JM, M. F. López, and B. J. Powell, PRB (2021).

Supported by MINECO: RTI2018-098452-B-I00, PRX18/00070

Outline

- Motivation: unconventional superconductivity in strongly correlated 2D materials.
- Novel chiral quantum spin liquids in honeycomb Kitaev magnets.
- Unconventional superconductivity in decorated honeycomb materials.
- Conclusions and outlook.

Superconductivity in strongly correlated 2D materials

insulator

- Superconductivity arises in proximity to the Mott insulator: what is the mechanism?
- What is the connection (if any) between quantum spin liquids and superconductivity?
- Role of flat bands, Dirac points,...on electronic properties and superconductivity.

Anderson's RVB theory of cuprate superconductivity

Ground state of the Heisenberg model on a triangular lattice is an RVB state (1973):

RVB Mott insulator

Anderson's RVB theory of cuprate superconductivity

Ground state of the Heisenberg model on a triangular lattice is an RVB state (1973):

Under hole doping, the ground state of the t-J model is a high-Tc superconductor (1987):

TT /4

\

$$H_{t-J} = PTP + J \sum_{ij} \mathbf{S}_i \cdot \mathbf{S}_j \quad P = \prod_i (1 - n_i \uparrow n_i \downarrow)$$
oped holes
$$P |\Phi\rangle = P \left[\sum_{\vec{r}, \vec{r}'} \varphi(\vec{r} - \vec{r}') c^{\dagger}_{\vec{r}} c^{\dagger}_{\vec{r}'} \downarrow \right]^{N/2} |0\rangle$$
High To currend uptor

High-Tc superconductor

Key ingredients for quantum spin liquids

- Small spins, s=1/2 favor quantum fluctuations.
- Geometrical frustration:

• Strong spin-orbit coupling:

Broholm, et. al., Science (2020). Savary and Balents, Rep. Prog. Phys. (2017).

Key ingredients for quantum spin liquids

- Small spins, s=1/2 favor quantum fluctuations.
- Geometrical frustration:

• Strong spin-orbit coupling:

Broholm, et. al., Science (2020). Savary and Balents, Rep. Prog. Phys. (2017).

Key ingredients for quantum spin liquids

- Small spins, s=1/2 favor quantum fluctuations.
- Geometrical frustration:

• Strong spin-orbit coupling:

Broholm, et. al., Science (2020). Savary and Balents, Rep. Prog. Phys. (2017).

Quantum spin liquids in honeycomb materials

• Can novel chiral quantum spin liquids arise in Kitaev magnets?

Quantum spin liquids in honeycomb materials

• Can novel chiral quantum spin liquids arise in Kitaev magnets?

- Is there a quantum spin liquid in the Heisenberg model on the decorated honeycomb lattice?
- Can superconductivity arise by doping the half-filled decorated honeycomb lattice?

Novel chiral quantum spin liquids in Kitaev magnets

A. Ralko, and JM, PRL **124**, 217203 (2020).

Quantum spin liquid in α -RuCl₃

Y. Kasahara, et. al., Nature 559, (2018)

Kitaev spin model $H_{K} = \sum_{\langle ij \rangle} K_{\gamma} \sigma_{i}^{\gamma} \sigma_{j}^{\gamma} = \sum_{\langle ij \rangle} K_{x} \sigma_{i}^{x} \sigma_{j}^{x} + K_{y} \sigma_{i}^{y} \sigma_{j}^{y} + K_{z} \sigma_{i}^{z} \sigma_{j}^{z}$

A. Y. Kitaev, Ann. Phys. (2006).

Exact solution to the Kitaev model

Spins are represented through four Majorana fermions:

 $b^x, b^y, b^z =$ bond Majorana fermion c = matter Majorana fermion

$$\sigma^{x} = ib^{x}c$$

$$\sigma^{y} = ib^{y}c$$

$$\sigma^{z} = ib^{z}c$$

$$H_{K} = \frac{i}{4} \sum_{\langle ij \rangle} \hat{A}_{ij} c_{i} c_{j} = \frac{i}{4} \sum_{\langle ij \rangle} 2K_{\gamma} \hat{u}_{ij}^{\gamma} c_{i} c_{j}$$
$$\hat{u}_{ij}^{\gamma} = i b_{i}^{\gamma} b_{j}^{\gamma}, \ \hat{u}_{ji}^{\gamma} = -\hat{u}_{ij}^{\gamma}, \ \hat{A}_{ij} = -\hat{A}_{ji}$$
$$\left[\hat{u}_{ij}^{\gamma}, H_{K}\right] = 0, \ u_{ij} = \pm 1 \quad \text{Fix } \mathbb{Z}_{2} \text{ gauge fields quadratic H!}$$

• Quantum spin liquid with gapless Majorana excitations and two Dirac cones.

Effect of a weak magnetic field

Applying a weak magnetic field to the Kitaev model:

$$V = -\sum_{j} (h_x \sigma_j^x + h_y \sigma_j^y + h_z \sigma_j^z)$$

Leads up to third order in the field:

$$H_{\rm eff}^{(3)} \sim -\frac{h_x h_y h_z}{{\rm K}^2} \sum_{j,k,l} \sigma_j^x \sigma_k^y \sigma_l^z, \label{eq:eff}$$

Majorana fermions on honeycomb lattice with n. n. n. chiral amplitudes:

- Gapped chiral quantum spin liquid with non-zero Chern number, $\nu = \pm 1$.
- Topological Majorana edge state gives rise to a half-quantized thermal conductivity.

Beyond the Kitaev model

- No exact solution to Kitaev model + moderate/strong magnetic fields, Heisenberg terms and/or the Dzyaloshinskii-Moriya contribution.
- We consider the general model:

$$H = H_{K} + H_{B} + H_{DM}$$
$$H_{B} = -\sum_{i} \mathbf{B} \cdot \mathbf{S}_{i}$$
$$H_{DM} = \sum_{\langle\langle ij \rangle\rangle} \mathbf{D}_{ij} \cdot \mathbf{S}_{i} \times \mathbf{S}_{j}$$

A. Ralko, and J. Merino, PRL (2020).

Majorana mean-field theory

• We introduce a HF mean-field decoupling of the Majoranas:

$$(\sigma_{i}^{\gamma}\sigma_{j}^{\gamma})_{HF} \approx \left\langle \frac{i}{2}b_{i}^{\gamma}c_{i}\right\rangle \frac{i}{2}b_{j}^{\gamma}c_{j} + \left\langle \frac{i}{2}b_{j}^{\gamma}c_{j}\right\rangle \frac{i}{2}b_{i}^{\gamma}c_{i} - \left\langle \frac{i}{2}b_{i}^{\gamma}c_{i}\right\rangle \left\langle \frac{i}{2}b_{j}^{\gamma}c_{j}\right\rangle \frac{i}{2}b_{j}^{\gamma}c_{j} \right\rangle \frac{Magnetic}{channel} \\ - \left\langle \frac{i}{2}b_{i}^{\gamma}b_{j}^{\gamma}\right\rangle \frac{i}{2}c_{i}c_{j} - \left\langle \frac{i}{2}c_{i}c_{j}\right\rangle \frac{i}{2}b_{i}^{\gamma}b_{j}^{\gamma} + \left\langle \frac{i}{2}b_{i}^{\gamma}b_{j}^{\gamma}\right\rangle \left\langle \frac{i}{2}c_{i}c_{j}\right\rangle + Spin liquid channel \\ - \left\langle \frac{i}{2}b_{i}^{\gamma}c_{j}\right\rangle \frac{i}{2}b_{j}^{\gamma}c_{i} - \left\langle \frac{i}{2}b_{j}^{\gamma}c_{i}\right\rangle \frac{i}{2}b_{i}^{\gamma}c_{j} + \left\langle \frac{i}{2}b_{i}^{\gamma}c_{j}\right\rangle \left\langle \frac{i}{2}b_{j}^{\gamma}c_{i}\right\rangle$$

• Together with the constraints to recover actual spin Hilbert space:

$b^z c + b^x b^y = 0$	60 self-consistent non-linear
$b^{y}c - b^{x}b^{z} = 0$	coupled equations for
$b^x c + b^y b^z = 0$	Kitaev+Heisenberg+DM

Majorana mean-field theory

Spectrum of pure Kitaev model

Beyond the Kitaev model

- No exact solution to Kitaev model + moderate/strong magnetic fields, Heisenberg terms and/or Dzyaloshinskii-Moriya contribution.
- We consider the general model:

$$H = H_{K} + H_{B} + H_{DM}$$
$$H_{B} = -\sum_{i} \mathbf{B} \cdot \mathbf{S}_{i}$$
$$H_{DM} = \sum_{\langle\langle ij \rangle\rangle} \mathbf{D}_{ij} \cdot \mathbf{S}_{i} \times \mathbf{S}_{j}$$

• Take magnetic field in the [1,1,1] direction: $\mathbf{B}=B(1,1,1)/\sqrt{3}$

Kitaev model under a magnetic field

A. Ralko, and J. Merino, PRL (2020).

Kitaev model under a magnetic field

A. Ralko, and J. Merino, PRL (2020).

Kitaev model under a magnetic field

A. Ralko, and J. Merino, PRL (2020).

Kitaev model under a magnetic field

A. Ralko, and J. Merino, PRL (2020).

A. Ralko, and J. Merino, PRL (2020).

Beyond the Kitaev model

- No exact solution to Kitaev model + moderate/strong magnetic fields, Heisenberg terms and/or Dzyaloshinskii-Moriya contribution.
- We consider the general model:

$$H = H_{K} + H_{B} + H_{DM}$$
$$H_{B} = -\sum_{i} \mathbf{B} \cdot \mathbf{S}_{i}$$
$$H_{DM} = \sum_{\langle \langle ij \rangle \rangle} \mathbf{D}_{ij} \cdot \mathbf{S}_{i} \times \mathbf{S}_{j}$$

- We take the magnetic field in the [1,1,1] direction: $\mathbf{B}=B(1,1,1)/\sqrt{3}$
- We take a DM field in the [0,0,1] direction: $\mathbf{D}=D(0,0,1)/\sqrt{3}$
- Obtain K-B-D phase diagram.

Full phase diagram

Full phase diagram

Full phase diagram

Beyond MMFT: exact diagonalization of K-B-D model

- An intermediate phase is found at sufficiently large: $B \sim K$
- Gap in intermediate phase is enhanced by the DM interaction.

Unconventional superconductivity in decorated honeycomb materials

JM, M. F. López, and B. J. Powell, PRB (2021).

M. F. López, and JM, PRB (2020).

$Mo_3S_7(dmit)_3$ and $Rb_3TT \cdot 2H_2O$ materials

Mo₃S₇(dmit)₃

Rosa Llusar, et. al., JACS (2004).

 $Rb_3TT \cdot 2H_20$

Y. Shuku et. al., Chem. Commun. (2018).

Tight-binding model for Mo₃S₇(dmit)₃ and Rb₃TT·2H₂O

- Dirac cones: non-trivial topology under significant spin-orbit coupling.
- Coulomb interaction effects enhanced in proximity to flat bands as in TBG.

Minimal strongly correlated model

Hubbard model on a decorated honeycomb lattice:

$$H = -t_c \sum_{\langle ij \rangle, \sigma} (c^{\dagger}_{i\sigma}c_{j\sigma} + H.c.) - t \sum_{\langle ij \rangle, \sigma} (c^{\dagger}_{i\sigma}c_{j\sigma} + H.c.) + U \sum_i n_{i\uparrow} n_{i\downarrow}$$

At half-filling and U, U>>t, t_c the Hubbard model maps onto:

$$\mathcal{H} = J \sum_{\langle j,k \rangle} \vec{S}_j \cdot \vec{S}_k$$

Is the ground state of the Heisenberg model on a decorated honeycomb a quantum spin liquid?

At finite hole doping consider the t-J model:

$$H = -t_c \sum_{\langle ij \rangle, \sigma} P_G(c_{i\sigma}^{\dagger}c_{j\sigma} + H.c.)P_G - t \sum_{\langle ij \rangle, \sigma} P_G(c_{i\sigma}^{\dagger}c_{j\sigma} + H.c.)P_G + J_c \sum_{\langle ij \rangle, \sigma} \vec{S}_i \vec{S}_j + J \sum_{\langle ij \rangle, \sigma} \vec{S}_i \vec{S}_j$$

Can unconventional superconductivity arise under hole doping? Which is the role played by the flat bands and the Dirac cones ?

RVB spin liquid on the decorated honeycomb lattice?

Exact diagonalization 42-sites

Tensor network T=0 phase diagram Lattice Triangular Kagomé Star -0.2172-0.1842-0.3091 e_0 m^+/m^+_{class} 0.386 0.000 0.122 -Dimer VBS Resonating J_c Dimer VBS $J = J_c = 1$ 0.6 star △ kagome o 0.5 triangular 🗆 0.4 $\Delta 0.3$ Spin gap 0.2 Ō Richter et. al., PRB (2004)- $\frac{J_c}{-} \sim 1.1$ 0.1 $\frac{J_c}{I} \ll 1$ $\frac{J_c}{I} \gg 1$ 36 24 18

0

0

0.02

0.04

1/N

0.06

0.08

• Ground state at J=J_c is a spin disordered Valence Bond Solid.

Jahromi, Orus, PRB (2018)

• Strongly suppressed long range AF order with large singlet-triplet spin gap.

RVB spin liquid on the decorated honeycomb lattice?

Exact diagonalization on 42-sites

$$\langle \mathbf{S}_i \mathbf{S}_j \rangle^{\Delta \to \Delta} = -0.591$$

 $\langle \mathbf{S}_i \mathbf{S}_j^{\Delta} \rangle = -0.168$

 $\langle \mathbf{S_i S_j} \rangle^{\Delta \to \Delta} = -0.573 \\ \langle \mathbf{S_i S_j} \rangle^{\Delta} = -0.191$

RVB spin liquid on the decorated honeycomb lattice?

• NN-RVB state is a good candidate for the ground state of Heisenberg model on the DHL.

At non-zero hole doping we explore the t_c-t-J_c-J model:

$$H = -t_{c} \sum_{\langle \alpha i, \alpha j \rangle \sigma} P_{G}(c_{\alpha i \sigma}^{\dagger} c_{\alpha j \sigma} + c_{\alpha j \sigma}^{\dagger} c_{\alpha i \sigma})P_{G} - t \sum_{\langle A i, B i \rangle, \sigma} P_{G}(c_{A i \sigma}^{\dagger} c_{B i \sigma} + c_{B i \sigma}^{\dagger} c_{A i \sigma})P_{G}$$
$$+ J_{c} \sum_{\langle \alpha i, \alpha j \rangle} \left(\vec{S}_{\alpha i} \cdot \vec{S}_{\beta j} - \frac{n_{\alpha i} n_{\beta j}}{4} \right) + J \sum_{\langle A i, B i \rangle} \left(\vec{S}_{A i} \cdot \vec{S}_{B i} - \frac{n_{A i} n_{B i}}{4} \right) \qquad P_{G} = \prod_{i} (1 - n_{i \uparrow} n_{i \downarrow})$$

Introducing bond singlet operators: $h_{\alpha i,\beta j}^{\dagger} = \frac{1}{\sqrt{2}} \left(c_{\alpha i\uparrow}^{\dagger} c_{\beta j\downarrow}^{\dagger} - c_{\alpha i\downarrow}^{\dagger} c_{\beta j\uparrow}^{\dagger} \right)$

$$\sum_{\langle \alpha i,\beta j\rangle} \left(\vec{\boldsymbol{S}}_{\alpha i} \cdot \vec{\boldsymbol{S}}_{\beta j} - \frac{n_{\alpha i} n_{\beta j}}{4} \right) = -\sum_{\langle \alpha i,\beta j\rangle} h_{\alpha i,\beta j}^{\dagger} h_{\alpha i,\beta j}$$

Performing a Hartree-Fock-Bogoliubov decoupling of the free energy:

$$\Phi = -\frac{1}{\beta} \sum_{m,\mathbf{k},\sigma} \ln\left(1 + e^{-\beta\omega_m(\mathbf{k})}\right) - \sum_{m,\mathbf{k}} \omega_m(\mathbf{k}) + 6N_s\mu + \int_{\langle\alpha i,\alpha j\rangle} \left(|\Delta_{\alpha i,\alpha j}|^2 + |\chi_{\alpha i,\alpha j}|^2\right) + \int_{\langleA i,B i\rangle} \left(|\Delta_{A i,B i}|^2 + |\chi_{A i,B i}|^2\right)$$
$$\Delta_{\alpha i,\beta j} = \langle h_{\alpha i,\beta j} \rangle \quad \chi_{\alpha i,\beta j} = \langle h_{\alpha i,\beta j} \rangle \quad \text{Gutzwiller approx: } (J/t, J'/t) \to (\tilde{J}/\tilde{t}, \tilde{J}'/\tilde{t}) = \frac{2}{\delta(1+\delta)} (J/t, J'/t)$$

• Unconventional superconductivity: extended-s, extended-d and f-wave singlet pairing!

Unconventional superconductivity: extended-s, extended-d and f-wave singlet pairing!

- In the honeycomb lattice s* and d-wave singlet pairing occur. (Black-Schaffer, Doniach PRB(2007))
- In the decorated honeycomb lattice f-wave singlet pairing is allowed by the decoration.

Conclusions

- Kitaev magnets under magnetic fields and /or DM can host novel chiral quantum spin liquids.
- An RVB quantum spin liquid is a good candidate for the ground state of the Heisenberg model on the decorated honeycomb lattice.
- Extended s*, d* and f-wave singlet superconductivity can arise in decorated honeycomb lattices under hole doping.

Outlook:

- Theory: analyze rich variety of superconducting pairing states emerging in decorated lattices.
- Experiments: search for unconventional superconductivity in DHLs under doping!

Thank you for your attention!