
Fake Insulators

What are they, and how to spot them?

Louk Rademaker, SPICE, 26 May 2022
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Metal vs. Insulator

1/22Ref: Dobrosavljevic et al., Conductor-Insulator Quantum Phase Transitions (CUP 2012)

T=0 T>0

activated

Fermi liquid

Critical: constant                     (25.8 kW)



ABC Trilayer Graphene on hBN
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ABC trilayer graphene: k3 dispersion

Ref: Chen Nature 2019; Chen Nature 2020

hBN substrate: flat moiré bands

tune displacement field (D) & density (n)



Metal-Insulator Transition
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Resistivity as a function of temperature and displacement field

Ref: Chen, unpublished (2022)

Critical Dc

metal

“insulator”



Insulator side
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Arrhenius plot to extract 
insulating gap

Gap dependence on
displacement field

… but it’s WRONG!!

NO
activated 

behavior at 
low T!



Fake insulators are everywhere
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Cao Nature 2018; Lu Nature 2019

Twisted bilayer 
WSe2

Twisted double 
bilayer graphene

Twisted bilayer graphene

Szentpéteri Nano Lett 2021

Ghiotto Nature 2021



Band theory of MIT: Kubo formula
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Kubo formula:
(w/o vertex)

Density of states

Current operator

Fermi function

Apply to band transition: Density of states

with weak disorder

Drude formula
Scattering rate

Effective mass

Particle density



Band theory of MIT: Exact Solution
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Metal: negative slope!

Insulator: activated

Critical: not constant

“fake insulator”



Band theory of MIT: Scaling
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Exact solution

has scaling form

leading to universal resistivity curves
close to the metal-insulator transition



Application: MoTe2/WSe2

9/22Ref: Li, Nature (2021)

Aligned TMD heterobilayer
MoTe2/WSe2

Bandwidth can be tuned by displacement field
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FIG. 1. Transport behavior across the MIT at integer band filling.
All the qualitative features found in experiments (upper panel) are

captured by our CPA+DMFT theory (bottom panel). a, Experimental
R(T) curvesprovided by experimental group[11], with 0.399V/nm <

E < 0.544V/nm; d, theoretical curves for 0 < eAB/ t < 1.2. The
insetsb, e, show theextrapolated T = 0 conductivity, theboundary of

linear resistivity region T⇤, and the activation energy D, as function
of electric field E (experiments) or band separation eAB (theory). c,

f, TheslopeA describing low-T resistivity R(T) ⇡ R0 + AT , displays
non-monotonic behavior as a function of R0. Same analyses are also
performed on data in Ref.([8]), shown in SM[12].

which can be viewed as the minimal model for disorder-

dominated MITs in (moderately) interacting electron systems.

It describes how certain interaction effects are generally

enhanced in presence of disorder, leading to strong disorder

renormalization, which in some cases also triggers polaron

formation. This physical picture differs significantly [3]

from (non-interacting) Anderson localization, illustrating the

seminal ideas of Phil Anderson himself going back to 1970s

[17]. It also predicts the precise form of the scaling

behavior for the family of resistivity curves (see below), thus

formulating aconcretephenomenology that can bevery useful

in analyzing future generations of experiments.

FIG. 2. Disorder-averaged single-particle density of states per
site r (w) for different band separation eAB; here w is measured

with respect to the Fermi energy. The bands split beyond critical
separation eAB > ec

AB = 0.854, producing a continuous metal-

insulator transition, where all quantities display power-law behavior.

Model of interactions and disorder. Motivated by the

experimental setup in moiré TMD bilayers [8], we consider

a two-band model of electrons at integer band filling, in

presence of moderate disorder, and where interaction effects

are represented by the coupling of carriers to a bosonic field

[16]. Here we do not specify the physical origin of the

bosonic excitations, which could be soft phonons specific

to the bilayer structure [18], but could also represent the

response of other collective modes [19] to single-particle

displacements. Guided by experiments, which clearly

demonstrate theabsenceof Mott-likephysicsat integer filling,

we ignore the spin degree of freedom and thus any significant

role of the on-site Hubbard U . Our model is described by the

following Hamiltonian:

H = − t Â
hi, j i

c†i c j + Â
i2A

eAc†i ci + Â
i2B

eBc†i ci

+ Â
i

(xi − µ)c†i ci + gÂ
i

Xi(c
†
i ci − n) + Hb, (1)

where c†i (ci) are the creation (annihilation) operators for

spinlesselectrons hopping between sites i and j of atriangular

lattice, with hopping integrals t. The two-band model is

obtained by periodically modulating the site energies within

a unit cell consisting of three sites, with one site in the unit

cell (sublattice B) having site energy eB, while the other two

sites (corresponding to the two degenerate sublattices) have

energies eA. We define the "band splitting" energy eAB =

eA − eB. Extrinsic disorder is characterized by a random

distribution of site energies xi , with a uniform distribution

of the form Po (x ) = 1
W q

⇣
W
2

2
− x 2

⌘
, where W measures

the disorder strength. In addition, the electrons interact

Scaling in MoTe2/WSe2
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Extrapolating the zero-temperature conductivity and insulating gap gives critical Dc

Ref: Li, Nature (2021); Tan, Tsang, Dobrosavljevic, arXiv:2112.11522 (2021)

Fake
insulator

Critical curve
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locally with dispersionless bosonsof frequency wo =
p

K/ M,

described by Hb = Âi KX2
i / 2 + P2

i / 2M. We use t = 1 as

our unit of energy. The strength of electron-boson coupling

is measured by the dimensionless coupling constant l =
g2

2KD
, where 2D = 9t is the bare bandwidth of our triangular

lattice. In addition, the lattice filling n = 1
N

D

Â i c
†
i ci

E
is kept

constant at n = 1/ 3, giving aband insulator (lowest band fully

occupied) in the split-band limit.

To solve this model we use a self-consistent theory of

interactions and disorder [14], which combines dynamical

mean field theory (DMFT) for interaction effects together

with thecoherent potential approximation (CPA) for electrons

in random lattices. Similarly as for the popular SYK model

[20], the theory becomes an exact solution both in the limit

of infinite range hopping or for large coordination. Details of

thecalculations can be found in theSupplementary Materials,

where wealso show how to use theKubo formula to calculate

the corresponding transport properties within this approach.

Because weattribute the linear-T behavior of the resistivity

to incoherent electron-boson scattering above an appropriate

Debye scale [18], we can ignore the dynamics of the bosons,

which in turn enables a fully self-consistent solution of the

problem in the semi-classical (thermal) regime. For the same

reason, the actual form of the boson dispersion is irrelevant

to our purposes and we ignore it. As a matter of fact, a

close look at the experimental data (Fig.1a) reveals that the

resisitivity deviates from linear behavior at the very lowest

temperatures(T < 1K), which can be viewed as the lower

boundary for the validity of the semi-classical treatment.

Describing the interplay of thermal bosonic excitations with

disorder within a poor metal is the central goal of our

theory. Thismechanism should not beconfused with "Strange

Metal" behavior [20] found in many Mott materials and other

examples strongly correlated matter. The latter are not likely

to be of relevance in the regime around integer band filling

we consider, where the strong correlation effects are neither

expected nor experimentally detected [8].

Results. In the following, we present a detailed solution

of our model, which due to its simplicity can be analytically

solved in several limits, while the corresponding numerical

solution can be obtained with any desired accuracy. To

be specific, we select the following values of the model

parameters g = 1, K = 1 and W = 1, corresponding to

moderate disorder (W/ 2D ⇡ 0.1) and moderate electron-

boson coupling (l ⇡ 0.1). Theevolution of thesingle-particle

density of states (DOS) r (w) at T = 0, as a function of band

splitting at eAB is shown in Fig.2. For eAB = 0, it resembles

the conventional density of states of the triangular lattice,

however with some rounding introduced by disorder. When

eAB increases, the DOS at the Fermi energy starts to decrease,

until ahard insulating gap formsat ec
AB = 0.854, indicating the

MIT. Thecorresponding residual conductivity s0 (blue line in

Fig.1e) decreases linearly as the MIT is approached: s0 =

s (T = 0) = 1/ R(T = 0) ⇠ dµ , where d = (ec
AB − eAB)/ ec

AB

measures the distance to the transition and the conductivity

a

cb

FIG. 3. a, Scaling analysis for the experimental resistance curves
corresponding to Fig. 1a, for 0.405V/nm < E < 0.453V/nm,
reveals near-perfect agreement with the theoretical scaling function

(red line), with no adjustable parameters. b, Critical resistance
Rc ⇠ T− x on experiments displays behavior consistent with the

theoretical prediction for exponent x = 1 (see SM[12]). c,
Crossover temperature T0(d) obtained from the scaling collapse of

experimental data (the superscripts M and I designate respectively
the metallic and insulating branch. The estimated critical exponent

zn ⇡ 1± 0.1 is consistent with the theoretical value zn = 1.

exponent is µ = 1. Our model can be further solved at finite

temperature, producing the entire family of resistivity curves

(Fig.1d), similar as in theexperiments, which wenow analyze

in detail.

As in the experiment, the theoretical curves exhibit linear-

T behavior at low temperature on the metallic side of the

transition. The evolution of the slope (TCR) with external

field exactly matches the experimentally-observed trends, as

can be seen from (Fig. 1c and 1f). The slope A (and

R0) initially increases upon application of the electric field,

because the number of available carriers decreases as the

size of the electron (hole) Fermi pockets shrinks (see SM

for details). At larger fields the trend reverses, recovering

the "Mooij correlation" behavior expected when disorder

becomes dominant. This phenomenon, which implies the

breakdown of Matthiessen’s rule, generally precedes the MIT

itself [14], and is caused by the buildup of correlations

between the increasingly inhomogeneous electronic density

and the bosons responsible for thermal scattering.

An additional energy scale characterizing the metallic

regime is T⇤, the boundary of the linear-T region, which

decreases linearly towards the transition as T⇤⇠ d. Similar

behavior is also found for the the activation gap D⇠d, which

describes the approach to the transition from the insulating

side. Remarkably, all the qualitative trends and the values of

the critical exponent µ = 1 predicted by our model precisely

match the experimental findings.

Quantum Critical Scaling. A direct analysis of the

With scaling of the resistivity curves



Insulators at half-filling
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Mott insulator Spontaneous Symmetry Breaking



Simplest example: Stoner ferromagnetism

12/22

Ferromagnetic direct exchange

Spontaneous polarization shifts bands for up/down spins

Self-consistent Stoner mean field theory

↑ ↑

m J

Metal-insulator transition when m J = W (bandwidth)

from itinerant partially polarized ferromagnet 
to insulating fully polarized ferromagnet



Resistivity scaling near SSB-MIT
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Resistivity close to “full polarization MIT” displays “fake insulators” and scaling

Critical curve 

Metallic region with 



Application: ABC Trilayer Graphene
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ABC trilayer graphene is ferromagnetic: 

Ref: Zhou Nature 2021; Chen (unpublished 2022)

Observed curves never diverge as 1/T

This is how a critical curve would look like

Hypothesis:
all resistivity curves correspond to the 
metallic side of a full polarization transition!



Scaling in ABC Trilayer Graphene

15/22Ref: Chen (unpublished 2022)

Indeed, all curves can be collapsed using a scaling ansatz of being close to MIT

“Distance to MIT” is 
measured by 
scaling parameter T0

Zero T conductivity 
will vanish when
T0 vanishes



Mott metal-insulator transition

16/22Ref: Tan, Dobrosavljevic, Rademaker, “How to recognize the universal aspects of Mott criticality?” (2022, soon on arXiv)

Dilute 2DEGs Mott organics Half-filled MoTe2/WSe2



Mott metal-insulator transition in MoTe2/WSe2

17/22Ref: Tan, Dobrosavljevic, Rademaker (2022, soon on arXiv); Li Nature 2021

1. Powerlaw critical resistivity curve                            , a = 1.2

No ”fake insulator” regime, but 

2. Crossover scale T0 signaling end of Fermi liquid with a   
resistivity maximum

3. Insulator has continuous 
vanishing gap D



Scaling near Mott metal-insulator transition
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4.    Perfect scaling of insulating and metallic curves

Ref: Tan, Dobrosavljevic, Rademaker, “How to recognize the universal aspects of Mott criticality?” (2022, soon on arXiv)



Theory of continuous Mott M-I-T

19/22Ref: Tan, Dobrosavljevic, Rademaker, “How to recognize the universal aspects of Mott criticality?” (2022, soon on arXiv)



Caveats / Open problems
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Fake fake insulators
Low temperature saturation in insulators can come from experimental issues

Ref: Falson, Nat Mater 2022

Anderson insulation?
Standard theory predicts Anderson insulation at low density in presence of disorder in 2d

Phonons? Electron-electron interactions? 
Still work to do in including further interactions mechanisms.
Are there different universality classes associated with scaling close to the MIT?
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Conclusions: A New Perspective on Metal-Insulator Transitions
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• Close to the MIT there is a metallic regime with 
(“fake” insulator)

• Close to the MIT there is universal scaling of resistivity curves

• Theory: weak disorder band transitions (with or without SSB)

• Applicable to experiments in moiré systems (graphene, TMDs)

• Mott MIT has different properties
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Scaling in MoTe2/WSe2
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Extrapolating the
zero-temperature conductivity
gives critical Dc

where the resistivity follows

Ref: Li, Nature (2021); Tan, Tsang, Dobrosavljevic, arXiv:2112.11522 (2021)

Fake
insulator

Critical curve

scaling
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