Fake Insulators

What are they, and how to spot them?

Louk Rademaker, SPICE, 26 May 2022

Metal vs. Insulator

ABC Trilayer Graphene on hBN

tune displacement field (**D**) & density (**n**)

 $ho_{\it xx}$ (kΩ)

T = 1.5 K

OFO

4

6

50

0

0

Ref: Chen Nature 2019; Chen Nature 2020

Metal-Insulator Transition

Resistivity as a function of temperature and displacement field

Ref: Chen, unpublished (2022)

Insulator side

Fake insulators are everywhere

Band theory of MIT: Kubo formula

Kubo formula:
$$\sigma = \frac{\pi}{2} \sum_{\alpha=x,y} \int \frac{d^2p}{(2\pi)^2} \int dz \operatorname{Tr} [A(\mathbf{p}, z) \mathbf{j}_{\alpha}(\mathbf{p}) A(\mathbf{p}, z') \mathbf{j}_{\alpha}(\mathbf{p})] \begin{pmatrix} -\frac{\partial n_F(z)}{\partial z} \\ -\frac{\partial n_F(z)}{\partial z} \end{pmatrix}$$
Fermi function

Apply to band transition:
$$\mathsf{Density of states} \quad A(\mathbf{p}, z) = \frac{1}{\pi} \frac{-\operatorname{Im}\Sigma(z)}{(z - \xi_{\mathbf{p}})^2 + (\operatorname{Im}\Sigma(z))^2}$$
with weak disorder $-\operatorname{Im}\Sigma(z) = 1/\tau$
Particle density
$$\sigma(T = 0) = \frac{e^2 n\tau}{m}$$
Scattering rate
Effective mass

Band theory of MIT: Exact Solution

Band theory of MIT: Scaling

Exact solution

$$\sigma(T) = \frac{e^2 \tau}{2\pi} T \left(\frac{E_F}{T} + \log\left[1 + e^{-\frac{E_F}{T}} \right] \right)$$

has scaling form

$$\sigma(T) = T^{\alpha} f\left(\frac{E_F}{T}\right)$$

leading to **universal resistivity curves** close to the metal-insulator transition

Application: MoTe₂/WSe₂

Aligned **TMD heterobilayer** MoTe₂/WSe₂

Bandwidth can be tuned by displacement field

Extended Data Fig. 2 | **Metal-insulator transition at**f=**2. a**, Temperature dependence of square resistance at varying electric fields at f=**2**. MIT is observed near 0.49 V nm⁻¹. Compared to the MIT at f=1, strong effective mass

Scaling in MoTe₂/WSe₂

Extrapolating the zero-temperature conductivity and insulating gap gives critical D_c

Ref: Li, Nature (2021); Tan, Tsang, Dobrosavljevic, arXiv:2112.11522 (2021)

Insulators at half-filling

Mott insulator

Spontaneous Symmetry Breaking

Simplest example: Stoner ferromagnetism

Ferromagnetic direct exchange $-J\vec{S}\cdot\vec{S}$

Spontaneous **polarization** shifts bands for up/down spins

Self-consistent Stoner mean field theory

$$m = n_{\uparrow} - n_{\downarrow} = \int d\omega A(\omega) \left[n_F(\omega - \frac{1}{2}mJ) - n_F(\omega + \frac{1}{2}mJ) \right]$$

Metal-insulator transition when *m* *****J* = *W* (bandwidth)

from *itinerant partially polarized* ferromagnet to *insulating fully polarized* ferromagnet

Resistivity scaling near SSB-MIT

Resistivity close to "full polarization MIT" displays "fake insulators" and scaling

Application: ABC Trilayer Graphene

low-density two-dimensional electron systems^{1–5}. Here we show that gate-tuned van Hove singularities in rhombohedral trilayer graphene⁶ drive spontaneous ferromagnetic polarization of the electron system into one or more spin and valley flavours. Using capacitance and transport measurements, we observe a cascade of

Observed curves never diverge as 1/T

- This is how a critical curve would look like

$$R_c(T) = \frac{a}{T} + b + cT$$

Hypothesis:

all resistivity curves correspond to the *metallic* side of a full polarization transition!

Ref: Zhou Nature 2021; Chen (unpublished 2022)

Scaling in ABC Trilayer Graphene

Indeed, all curves can be collapsed using a scaling ansatz of being close to MIT

Mott metal-insulator transition

Ref: Tan, Dobrosavljevic, Rademaker, "How to recognize the universal aspects of Mott criticality?" (2022, soon on arXiv)

Mott metal-insulator transition in MoTe₂/WSe₂

1. **Powerlaw** critical resistivity curve $R_c(T) \sim T^{-\alpha}$, α = 1.2

No "fake insulator" regime, but

Crossover scale T₀ signaling end of Fermi liquid with a resistivity maximum

3. Insulator has continuous vanishing gap Δ

Ref: Tan, Dobrosavljevic, Rademaker (2022, soon on arXiv); Li Nature 2021

Scaling near Mott metal-insulator transition

4. Perfect scaling of insulating and metallic curves

Ref: Tan, Dobrosavljevic, Rademaker, "*How to recognize the universal aspects of Mott criticality?*" (2022, soon on arXiv)

Theory of continuous Mott M-I-T

Theory predictions	2D Spinon theory	DMFT	Percolation theory
Transition Type	continuous	weakly first order (at $T < T_c \sim 0.01T_F$)	first order
Δ	$ert g - g_c ert S^{ u z}$, $ u z = 0.67$	$egin{aligned} U-U_{c1} ^{ u z},\ u z pprox 0.8 \end{aligned}$	remains finite
<i>m</i> *	weak: $\ln \frac{1}{ g-g_c }$	strong: $ U - U_{c2} ^{-1}$	no divergence
$A/(m^{*})^{2}$?	constant (KW law obeyed)	diverges: $(x_o - x_c)^{-t}$; $t = s/m$
$T_{ m FL}$	$ g-g_c ^{2 u}$	$ U - U_{c2} $	$T^* \sim x_o - x_c $
T_{max}	$T_{max} = \infty$	$ U - U_{c2} $	$T^* \sim x_o - x_c $

Caveats / Open problems

Fake fake insulators

Low temperature saturation in insulators can come from experimental issues

quantum resistance value h/e^2 . Data for $T \leq 20 \text{ mK}$ deviate from the systematic behaviour at higher temperatures, most likely due to the common issue of decoupling of the electron temperature from that of the immersion cryogen. The effect of an in-plane magnetic

Ref: Falson, Nat Mater 2022

Anderson insulation?

Standard theory predicts Anderson insulation at low density in presence of disorder in 2d

Phonons? Electron-electron interactions?

Still work to do in including further interactions mechanisms. Are there different **universality classes** associated with scaling close to the MIT?

Collaborators

Theory collaborators:

Vlad Dobrosavljevic & Yuting Tan Florida State U, USA

Simone Fratini *Grenoble, France*

Experimental data from:

Guorui Chen Shanghai Jiao Tong U, China

Jie Shan, Kin Fai Mak Cornell U, USA

Conclusions: A New Perspective on Metal-Insulator Transitions

- Critical resistivity is **not constant** but diverges as a **powerlaw**
- Close to the MIT there is a metallic regime with $d\rho/dT < 0$ ("fake" insulator)
- Close to the MIT there is universal scaling of resistivity curves $\rho(T)/\rho_c(T) = f(T/T_0(\delta))$
- Theory: weak disorder band transitions (with or without SSB)
- Applicable to experiments in **moiré systems** (graphene, TMDs)
- Mott MIT has different properties

Scaling in MoTe₂/WSe₂

Ref: Li, Nature (2021); Tan, Tsang, Dobrosavljevic, arXiv:2112.11522 (2021)

