

Slow dynamics in the Charge-Glass Forming Organic Conductors θ-(BEDT-TTF)₂MM'(SCN)₄

T. Thomas, Y. Saito, T. Thyzel, Y. Agarmani, H. Sun, M. Lonsky, M. Lang, J. Müller

Goethe University Frankfurt

K. Hashimoto

University of Tokyo, Chiba

T. Sasaki

Tohoku University, Sendai

H. M. Yamamoto

IMS, Okazaki

SPICE Workshop, May 24th-26th 2022, Ingelheim

Outline

1) Quasi-2D Organic Charge-Transfer Salts

• Charge-glass state in θ -(ET)₂*MM*'(SCN)₄

2) Fluctuation Spectroscopy

3) Structural Transition in θ -(ET)₂Cs*M*'(SCN)₄

- Resistance
- Thermal expansion
- Resistance noise

4) Comparison of the Charge-Crystal and Charge-Glass State

- Resistance noise in θ-(ET)₂RbZn(SCN)₄
- Resistance noise in θ_m -(ET)₂TIZn(SCN)₄

Quasi-2D Organic Charge-Transfer Salts

Different Charge States in θ -(BEDT-TTF)₂X

Cooling-rate dependence:

Oike et al., *PRB* **91**, 041101(R) (2015), Kagawa et al., *Nat. Phys.* **9**, 419 (2013)

- CO transition can be kinetically avoided
 - \rightarrow Charge-glass state

Geometric frustration:

Mori et al., *PRB* **57**, 12023 (1998), Kuroki, *Sci. Technol. Adv. Mater.* **10**, 024312 (2009)

Geometric Frustration

Oike et al., PRB 91, 041101(R) (2015)

Sato et al., Nat. Mater. 18, 229 (2019)

Stronger frustration

- reduces T_{CO}
- reduces critical cooling rate q_c
- enhances glass-forming ability

Charge-Glass State

180

G

Electronic crystallization:

- Cooling-rate dependence
- Lack of long-range order
- Non-equilibrium dynamics

Slow and heterogeneous dynamics

\rightarrow Fluctuation spectroscopy

Sato et al., *PRB* **89**, 121102(R) (2014), Kagawa et al., *Nat. Phys.* **9**, 419 (2013), Sasaki et al., *Science* **357**, 1381 (2017)

Charge-Glass State

Open questions:

- Charge dynamics in the charge-crystal and charge-glass state?
- Involvement of structural degrees of freedom?

Slow and heterogeneous dynamics

\rightarrow Fluctuation spectroscopy

Sato et al., *PRB* **89**, 121102(R) (2014), Kagawa et al., *Nat. Phys.* **9**, 419 (2013), Sasaki et al., *Science* **357**, 1381 (2017)

Outline

- 1) Quasi-2D Organic Charge-Transfer Salts
- Charge-glass state in θ-(ET)₂MM'(SCN)₄

2) Fluctuation Spectroscopy

3) Structural Transition in θ-(ET)₂CsM'(SCN)₄

- Resistance
- Thermal expansion
- Resistance noise

4) Comparison of the Charge-Crystal and Charge-Glass State

- Resistance noise in θ-(ET)₂RbZn(SCN)₄
- Resistance noise in θ_m -(ET)₂TIZn(SCN)₄

Two-level process:

Wiener-Khinchine theorem:

$$S_V(f) = 4 \int_0^\infty \Psi(\tau) \cos(2\pi f\tau) d\tau \quad \propto \frac{\tau_c}{1 + 4\pi^2 f^2 \tau_c^2}$$

Autocorrelation function: $\Psi(\tau) = \langle \delta V(t) \delta V(t+\tau) \rangle$

→ Microscopic kinetics of charge carriers

Simple model:

Superposition of many independent fluctuators

Dominating fluctuator:

 \rightarrow access to energy distribution of fluctuators

Dutta-Dimon-Horn (DDH) model

 \rightarrow access to activation energy of fluctuator

What causes slow dynamics?

Dutta et al., PRL 43, 9 (1979)

- large activation energy of localized process
 - collective effects

Parisi, Physik Journal 10, Nr. 8/9 (2011)

Simple model:

Superposition of many independent fluctuators

Dutta-Dimon-Horn (DDH) model Dutta et al., PRL 43, 9 (1979)

 \rightarrow access to energy distribution of fluctuators

Dominating fluctuator:

 \rightarrow access to activation energy of fluctuator

Useful for studying

- glassy transitions
- collective effects
- excitation of large clusters
- inhomogeneous current distribution
- percolation

• ...

Experiment

Outline

- 1) Quasi-2D Organic Charge-Transfer Salts
- Charge-glass state in θ -(ET)₂*MM*'(SCN)₄

2) Fluctuation Spectroscopy

3) Structural Transition in θ -(ET)₂Cs*M*'(SCN)₄

- Resistance
- Thermal expansion
- Resistance noise

4) Comparison of the Charge-Crystal and Charge-Glass State

- Resistance noise in θ-(ET)₂RbZn(SCN)₄
- Resistance noise in θ_m -(ET)₂TIZn(SCN)₄

Resistance of θ-CsCo

Resistance of θ-CsCo

- Hysteresis and q-dependence
- Consistent with measurements on θ-CsZn
- Previously observed Sato et al., PRB 89, 121102(R) (2014)

Criterion for T_q :

$$\begin{aligned} -|q| \cdot \left. \frac{d\tau}{dT} \right|_{T_{\rm g}} &\approx 1 \\ \Rightarrow & \ln|q| \sim -\frac{E_{\rm a}}{k_{\rm B}} \cdot T_g^{-1} \end{aligned}$$

Thermal Expansion of θ-CsCo

• Second glassy transition at T_{g}^{\dagger} ~120K

q (K/min)

Resistance Noise in θ-CsCo

- Noise maximum at *T*~130K
- Spectral weight shifts to lower frequencies
- \rightarrow Charge dynamics slows down when approaching $T_{\rm g}$
- Cf. θ-CsZn

Sato et al., JPSJ 85, 123702 (2016)

• Small features at 175K and 60K

Resistance Noise in θ-CsCo

Dutta-Dimon-Horn model

Dutta et al., *PRL* **43**, 9 (1979), Raquet et al., *PRB* **59**, 12435 (1999)

Independent fluctuators

Thermally activated two-level process

$$\tau = \tau_0 \exp\left(\frac{E_A}{k_B T}\right)$$

Distribution of activation energies

$$\frac{S_R(f)}{R^2}(T) = \frac{1}{\pi f} \int_0^\infty g(T) \frac{D(E)}{\cosh[(E - E_f)/k_B T]} dE$$

Frequency-Dependent Noise Maximum

• cf. κ-(ET)₂X

 \rightarrow similar glassy freezing of EEG in θ -(ET)₂X

• role of ethylene endgroups for CO:

→ order-disorder structural transition of EEG

Alemany et al., J. Phys.: Condens. Matter 27, 465702 (2015)

Vogel-Fulcher-Tammann law: $f = f_0 \exp\left(\frac{-DT_{\rm VF}}{T - T_{\rm VF}}\right)$

Müller et al., New J. Phys. 17, 083057 (2015)

θ-CsCo:

- unusual frequency dependence
- → due to coupling of structural and charge dynamics

Outline

- 1) Quasi-2D Organic Charge-Transfer Salts
- Charge-glass state in θ-(ET)₂MM'(SCN)₄

2) Fluctuation Spectroscopy

3) Structural Transition in θ-(ET)₂CsM'(SCN)₄

- Resistance
- Thermal expansion
- Resistance noise

4) Comparison of the Charge-Crystal and Charge-Glass State

- Resistance noise in θ-(ET)₂RbZn(SCN)₄
- Resistance noise in θ_m -(ET)₂TIZn(SCN)₄

Slow and heterogeneous dynamics above T_{MI}

Sasaki et al., Science 357, 1381 (2017)

 \rightarrow extend noise measurements to CC and CG state

Comparison of the CC and CG State

SPICE Workshop, May 24th-26th 2022, Ingelheim

Comparison of the CC and CG State

Heat pulse method

Hartmann et. al., PRB 90, 195150 (2014)

 \rightarrow Cooling rates of *q*~700K/s

Sasaki et al., *Science* **357**, 1381 (2017)

Cooling-rate dependence

Kagawa et al., Nat. Phys. 9, 419 (2013)

Critical cooling rate $q_c \sim 5$ K/min ?!

 \rightarrow dependence on sample quality?

(samples from Prof. H. M. Yamamoto)

Cooling-rate dependence

Critical cooling rate $q_c \sim 5$ K/min ?!

 \rightarrow dependence on sample quality?

```
(samples from Prof. H. M. Yamamoto)
```

- Heat pulse method
- \rightarrow full avoidance of CO transition

θ-RbZn: Charge-Crystal State

- *T*_{CO}~200K
- Large peaks at T_{CO}
- Noise increases already above T_{CO}
- → Slowing down of charge cluster and/or structural dynamics

T~125-205K:

superimposed Lorentzian spectra

θ-RbZn: Charge-Crystal State

Dominating two-level fluctuators (T~125-205K)

• Distributed Lorentzian model

Kagawa et al., Nat. Phys. 9, 419 (2013)

- Characteristic energies
- Slow and heterogeneous dynamics (cf. CL phase)

θ-RbZn: Charge-Glass State

Partly quenched state

- Relaxation at *T*~145K
- Complex noise behavior: Under-/overshoot of noise magnitude
- \rightarrow Due to mixed/inhomogeneous state?

θ-RbZn: Charge-Glass State

Fully quenched state

Critical cooling rate $q_c \sim 5$ K/min ?!

 \rightarrow dependence on sample quality?

(samples from Prof. H. M. Yamamoto)

Heat pulse method

 \rightarrow full avoidance of CO transition

Fully quenched state

\rightarrow Noise in CG state much lower than in CC state

cf. θ_m -TIZn

θ_m -TIZn: Charge-Crystal State

- *T*_{CO}~175K
- Resistance anomaly at *T**~120K

- Broad noise maximum around *T*~150K
- Large peaks at transition

θ_m -TIZn: Charge-Glass State

- Heat pulse suppresses CO transition
- Relaxation at T~110K

- Much lower noise magnitude in CG
- \rightarrow Inhomogeneous current distribution in CC
- \rightarrow Larger cluster size in CC
- \rightarrow Lower energy of fluctuators in CG

Summary

Investigation of the charge dynamics in θ -(ET)₂*MM*'(SCN)₄ reveals

- \rightarrow structural glass transition in θ -(ET)₂Cs*M*'(SCN)₄
- \rightarrow strong fluctuations at phase transition
- \rightarrow large differences in CC and CG state

Thomas & Saito et al., PRB 105, L041114 (2022)

Thomas et al., PRB 105, 205111 (2022)

Open questions:

- Relation between lattice and electron dynamics?
- Influence of disorder by x-ray irradiation?
- Role of ferroelectricity? Current-dependent noise

cf. β' -(ET)₂ICl₂, κ -(ET)₂Cu[N(CN)₂]Cl, κ -(ET)₂Hg(SCN)₂Cl, κ -(BETS)₂Mn[N(CN)₂]₃

Müller et al., PRB 102, 100103(R) (2020) Thomas et al., Phys. Status Solidi B, 1800746 (2019)

