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New platforms offer access to previously
hidden aspects of many body systems

Entanglement entropy:
Greiner Group (2018)

String correlators (topo. order):

Lukin, Greiner, Vuletic groups (2020)
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Quantum measurement and scrambling:
Google team (Nature 2019)
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Measurement in qguantum mechanics
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Quantum Collapse can destroy quantum correlations:
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Measurement in qguantum mechanics
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Measurements can also create new larger scale quantum correlations.

Quantum teleportation:




Measurement in qguantum mechanics
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« But can also create larger scale correlations

How do these effects manifest in many-body systems?

New phenomena from partial measurement of correlated states?

e N

A A A A

@/>+CZ

W=



Previous work: measurement induced transitions in qguantum circuits

1. Measurement induced phase transition in Hybrid quantum circuits. %
Skinner, Ruhman & Nahum PRX 2019 Li, Chen & Fisher PRB 2019; n
Choi, Bao & EA, PRL 2020; Gullans & Huse PRX 2020 ... =
Experiments: Noel et. al. Nature 2021; Koh et. al. arXiv:2203.04338 11
10) 0) [0) [0) [0) [0) [0) |0)
2. Finite time teleportation transition &
(e}
Bao, Block and EA arXiv:2110.06963 @ B @%’@ @* L,J 3|
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This talk

1. How do partial measurements of the ground state
change the long-distance correlations in that state?

Example 1: Critical 1d quantum gas

Example 2: Critical 1d transverse-field Ising model

2. Phase transition induced by a local quantum channel

(no measurements)

Topological mixed states and phase transitions
Yimu Bao, Ruiha Fan and Ashvin Vishwanath and EA
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How do measurements affect quantum critical correlations?

Example 1: One-dimensional quantum liquids Realized with ultracold atoms
' in optical lattices:
« Universal long wavelength description: Luttinger liquid e

Action of phase fluctuations: S = — [ dxdt {92 + (V@)Q] z < /
2T ‘ /
3 y

Paredes et. al.

For bosons: ¢T ~ o0 (I. Bloch group) Nature 2004
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How do measurements affect quantum critical correlations?

Example 1: One-dimensional quantum liquids Realized with ultracold atoms
' in optical lattices:
« Universal long wavelength description: Luttinger liquid e
Dual action for the particle position fluctuations: z o / .

/ /
S = 27%( /dasz [452 + (vgb)ﬂ "/I_y

Paredes et. al.

. : (1. Bloch group) Nature 2004
Closely related to density fluctuations:

on(x) ~ —%ng(a:) + % cos|2mpox — 2¢(x)]
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How do measurements affect quantum critical correlations?

Example 1: One-dimensional quantum liquids

« Universal long wavelength description: Luttinger liquid

Dual descriptions in terms of phase or density fluctuations

J
S = 2 [ dwar [67 + (voy? D S S ES T
1 .
S = 27T—K /dZCdT [¢2 + (V(b)ﬂ QW‘WQWQWWWM

@

K=1 corresponds to non interacting fermions or hard-core bosons.
K<1: fermions with repulsive interactions or bosons with power law interaction



How do measurements affect quantum critical correlations?

Example 1: One-dimensional quantum liquids Realized with ultracold atoms

in optical lattices:

/

Quantum critical states with continuously tunable exponents. Sl el

Density correlations: ‘ / /
* y

2 2K
1 1
(Wos|0n(x)dn(0)| W) ~ 1 (—) + ¢ cos(2mpox) <—> Paredes et. al.
£ L (1. Bloch group) Nature 2004
10'
(Vo(2)Ve(0)) (1(26(2)=20(0) |
100 %
Phase correlations: 2 | %
1 107 C;%
} i(0(x)—6(0)) 1 =% E &
<\Ijgs|w (x)w(o)‘\ljgs> ~ <6 > ~ " ~ 00%
102 Ll s s aaanl &,




Quantum Non-Demolition Measurement: Homodyne detection

lop lo) 1 lo>

« Weak measurement of the density everywhere: s 'Lii
probe light interacts weakly with the particles. g)/ fﬁ

» Measure polarizations of photons at different locations. er f)f f)

« QOutcome |1> = particle found at this location
Outcome |0> = “No click”. Particle occupation remains indefinite

ces o>

How does the partial/weak measurement affect the critical correlations?

(Weas| P (2)1(0) P [Vgs) 3 c1 (é)Q + ¢o cos(2mpo) (l)QK

X

1

? 7K
<\Ijgs‘meT(x)w(O)Pm|\Ijgs> ~ <l>

X

Important: there is no dynamics. Perform measurements then evaluate correlations in the output state.



Simplest case: post-select on the null measurement outcome (no clicks)
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The no click state: W) = e~ J dzo(@)n(z) ‘\Ijgs>

If the measurement strength v(x) is oscillating in space at a wavelength commensurate with
the particle density, then we can represent it in terms of the long-wavelength fields:

|\Ijnc> _ e—vfd:p cos[2qb(:c)]‘qjgs>



Simplest case: post-select on the null measurement outcome (no clicks)
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Correlations in the no click state:

(n(2)n(0))ne = Hm (U op|e PH1L =0 [ dToosé)p () (0)e v S 42 cos(26) g =BHLL gy )
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The “no click” action

|0> o) 10) 1o)

(on(x)on(0) /nge wel?l 5 (2)0m(0) J’;/ H'(/ f/ ;’/

fwr

She = %LK /dZCdT [(0-0)% + (0,0)%] — ’U/dZE cos(

Compare to the well-known problem of a single impurity in a Luttinger liquid
[Kane and Fisher PRL 1992]

Simp = %LK /dxdT (0-0)% + (0:9)°] — U/dT cos(2¢)
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The “no click” action

0))ne = / Dee 5 n(z)n(0) ?Z ;f f f

She = %LK /dde (0-0)% + (0:9)7] — v/dm cos(2¢)

= Wick rotated impurity problem

impurity measurements
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Phase transition tuned by the Luttineger parameter K

'0> | o) I 0) I °>

She = ﬁ /dasz [((‘Lgb)Q + (Q,;gb)ﬂ — v/dx cos(2¢) Jff/ / ;/ /

d ; f rf
Scaling of the measurements : v =(1—-K)wv g’f

de

K >1 Measurements are irrelevant

CITT T
Long distance correlations unaffected for E
any finite measurement strength !
Vo :
Phase: (ei[9(x)—9(0)]> ~ y~V(EK) :
Smooth component A A 0 T T : l l

of the density: < V¢(O) V¢(x)> ~ x 2 1 K



Phase transition tuned by the Luttineger parameter K

0y o) o) o)

She = ﬁ /d[EdT [(0-0)% + (0,0)7] — v/dx cos(2¢) / / ;!/ /
Scaling of the measurements : dv =(1—-K)v 3)/{ ;rr; ;{ gf

de

K <1 Measurements are relevant

Non perturbative effect on long distance correlations: Il ; l l
( ei[é(x)—é(0)1> ~ x—VQK) _, —1K v

2N A [Tell,
(VPO)Vh(x)) ~x2 - x 2K ’ K

Performing local measurements has a highly non-local effect on the quantum state!



Ensemble of measurement outcomes

To implement the average over measurement outcomes we
need to introduce N replicas taking the limit N -> 0 at the end

N{palt] = Zssoa — 2N772 /d;EZCOS ©g)]

a<f >

The random measurement outcomes couple the
replicas attempting to lock them to each other.

Need to look at quantities that are non-linear in the density matrix, e.g.:

(2> Zp wm‘ei(H(r)—G(O))WmH?

Perturbative RG reveals a transition at K=1/2 in this case. 1/2 K ’



Example 2: critical transverse field Ising model

H:_Z(ZiZ’H—l‘l‘Xz’) £ N O O M 20 20 A o

(

Order parameter correlations: (Z; . Z;) ~ z~ /4
o) 10) 19 o>

QND measurements Z; Z;, 1 (or of X;): 1‘%% l, ,1, }{1‘ 1‘
Z; Zi,, . outcome |1> detects a domain wall. ;

X;: outcome |1> odd parity (4 - Uc

What are the correlations immediately after applying the weak measurements?



Simplest case: postselect on “no click”

oy o)) o) '4&

The general scheme for calculating the f / /
correlations in the no click state is the same: T 1‘ 1‘ ‘1' ‘1' 1‘ 1‘

1

_Snc

(ZisrZ3)e = 7 S Clo 0 // /

nc

{o}
No click action = Critical 2d Ising model with a line defect T A
having either weaker or stronger bonds than the bulk
Scaling analysis shows that such a defectis L
exactly marginal at the Ising critical point. O o
7,0 J+m7,0

Prediction: critical exponent for decay of the Ising correlations
is tuned continuously by varying the measurement strength ! >




Numerical confirmation through mapping to free fermions
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Critical ground state

Behavior of Ising correlations (Z;z,..,)__ after “no-click” measurements:

M; = X; M; = Z;iZiy1
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Order parameter correlation exponent tuned continuously by the measurement strength



Effect of measurement on the subsystem entanglement entropy
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The effective central charge is changing :‘ ")
continuously with X measurement strength. 1'0_ g~ %\o%

Need a theory of the entanglement entropy! 0| ——————————————————— | =3
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Ensemble of measurement outcomes

Averaging over measurement outcomes
leads to coupling of different replicas at t=0

Measurements are an irrelevant perturbation

No change in the decay of correlations at long
distances regardless of measurement strength

109( <Zizi+x > 2)

ANCANRLIL]

Critical ground state

<ZZi, x> 2 for X measurements

T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
log(x)




Summary and Outlook of this part

The effect of measurements of a many-body state in d
dimensions is mapped to the effect of a d dimensional
defect in a d+1 dimensional stat-mech model.

Open qustions

« Use feedback on measurement outcome to alleviate N
post-selection ? 12

Theory of the entanglement entropy following partial Tus
measurement. Explain the continuously varying of Z s
the effective central charge in the Ising case "

Phase transitions tuned by decoherence/errors instead "1

of measurements?
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Part 2 : Effect of a local decoherence channel on a topological state:
Mixed topological phases and phase transitions

With: Yimu Bao, Ruiha Fan and Ashvin Vishwanath * +|, ‘H’ ﬂ’ ‘H’
NN
Consider po = [¥)(¥| the ground state of a 2d AR K A% BY
topologically ordered state (e.g. Toric code) ¥ ‘H’ H’ H’ ¥ ‘H’
g, = WO

Now operate on p, with a local quantum channel, such as

p— (L=7)p+7yXipX;

Is there topological order in the mixed state? A critical y 7
How to diagnose the mixed state topological order?

the channel can be represented as a finite depth unitary circuit using ancillas.

Observables linear in p are expected to show topological order for all y

Nonetheless we can have a topological transition induced by the quantum channel



Topological transition in the mixed state p— (1—7)p+~vX;pX;
LA o o o

Can only be seen in quantities that are non-linear in the bW oW W b ¥
density matrix. Linear observables remain topological for any * ‘H. H. H. * ‘H.
local channel (can be represented as finite depth unitary). W H, b b ¥ ¥
Write p as a state vector: g, = V><¥|

00) = [, ¥) = lim e PHSTHIRH)|,

B—00 '1 B
‘p) — lim e” 2 Xinge_B(Hl—FHQ)‘pOO) ll 2x(Toric code)

B— 00 |
p 3 | ~
— lim €7 2 (8 &)(&8) o =B(H1+Hz) | 1 S

/////////,//////// ) LIS

B—00

|
| 2x(Toric code)
Two independent copies of the toric code are coupled by the channel !
at 1=0. Leads to condensation of anyon pairs on the 2d defect RESSES b = = s s g




Topological transition in the mixed state p— (1—7)p+~vX;pX;

. (ere?yete2)y — * * * * #
p) = h_{ilo e 2 iy (Ei€)(8585) 5(H1+H2)|poo) *
) AR MR

Anyon condensation diagnosed by a string order parameter: +|, H. H. H, +|. H.
1o T gty Ox OFl pe)) g, H<H
_—
(U)W JGolc-CTra |
= = +T‘[€ (E"Le'lg\- S e{e"\-}v-)‘\ ; .
Z ! 2x(Toric code)
Diagnoses quantum information encoded in anyons. b ] ',
L : / ;
« Applies generally to topologically ordered states. M%é\\\
Diagnosed via pair condensates on d dimensional defect! |

« Alternative diagnostics: |
- Coherent information in code space ,'
- Topological log negativity 4

2x(Toric code)

» Related to error threshold for topological codes



Effect of a local decoherence channel:
Mixed topological phase and phase transitions

We consider Po = [¥){¥| the ground state of a 2d #—%——W+

topologically ordered state (e.g. Toric code) f .H»* H'Hv H-H’ Hv* H:H' )
Now operate on p, with a local quantum channel, such as ‘H' H' H' ‘H'

Q. = >V
p— (1 =7)p+yXipX;
Write p as a state vector: 3t “r//{/////////////////%/‘ S
po) = [, 9) = Jim e”PHETHE D po) |
—00
\\ y T 2 x (3d Ising model)

‘ij) — Bﬁ_{%o 672<7;j> Zz-lZ Z2Z2 _5(H1+H2)‘,0c>o)

p)

Only the quantum channel at the top boundary couples the two Ising models



The decoherence channel induces a boundary

phase transition at a critical value of

When strong enough, the term v » Z/Z; Z}Z;

(i)
leads to spontaneously broken symmetry on boundary,
diagnosed by establishment of long range order in the
order parameter 7} Z?

(p|(Z2}Z3)(Z2},,. 22, ) ‘P) tr(pZi ZiyrpZiZitr)

> const
(plp) tr(p?)

Breaks the individual Z2 symmetries of the two copies,
but preserves the physical combined Z2 symmetry

Physical meaning: distinguishability between two states p
and a state with an extra pair of Ising charges

|
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Effect of a local decoherence channel on a topological state:
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