

Quantum Steering: passive vs. active navigation in Hilbert space

Yaroslav Herasymenko (Leiden→ Amsterdam/Delft) Igor Gornyi (KIT Karlsruhe) YG (Weizmann)

Measurement...

can we harness the measurement's backaction for something good? i.e. quantum steering -> quantum state engineering?

Arbitrary (unknown to us) initial state

robustness against perturbation

no control on the time of operation

target state: needs not be a ground state

PRINCIPLES OF QUANTUM STEERING

post-selective steering (exponentially small success probability

active feedback steering

$$\begin{array}{ll} \text{example:} & \text{Spin } \frac{1}{2}: \text{steer towards } S_z = \uparrow \\ \text{System} & \left| \psi_{sys} \right\rangle \\ \text{Detector} & \left| d_i \right\rangle \\ \end{array} \\ \begin{array}{l} \text{Detector} & \left| d_i \right\rangle \\ \end{array} \\ \begin{array}{l} U_{S-D} = \exp(-i\Delta t \cdot H_{S-D}) \Rightarrow \left| \Psi \right\rangle = U_{S-D} \left| \psi_{sys} \right\rangle \otimes \left| d_i \right\rangle \\ \end{array} \\ \begin{array}{l} \text{arbitrary state} \\ \left| d_i \right\rangle = \left| \uparrow \right\rangle_d \\ \end{array} \\ \begin{array}{l} H_{s-d} = J(\left| \downarrow_d \right\rangle \langle \uparrow_d \right|) \otimes (\left| \uparrow_s \right\rangle \langle \downarrow_s \right|) + \text{h.c.} \\ = J\left(\sigma_d^- \sigma_s^+ + \sigma_d^+ \sigma_s^- \right), \\ \end{array} \\ \begin{array}{l} \rho_s(n+1) = \operatorname{Tr}_d[U_{s-d}(\rho_s(n) \otimes \mathbb{P}_d)U_{s-d}^\dagger] \end{array} \end{array}$$

Spin $\frac{1}{2}$

System density matrix after nth iteration: $\rho_s(n) = (\mathbb{I}_2 + \mathbf{s}(n) \cdot \boldsymbol{\sigma}_s)/2$

example:

steering towards a weakly entangled many-body state...

AKLT chain

$$H_{AKLT} = \sum_{1}^{N} P_{S^{\text{total}}=2}^{(l,l+1)}$$

ground state: each bond has zero weight in the $S^{\text{total}} = 2$ sector

steering towards an AKLT gorund state

$$H_{\text{s-d}} = J \sum_{i=1}^{5} \left(\sigma_{\mathbf{d}_{i}^{(\ell,\ell+1)}}^{-} \otimes U_{i}^{(\ell,\ell+1)} + \sigma_{\mathbf{d}_{i}^{(\ell,\ell+1)}}^{+} \otimes (U_{i}^{(\ell,\ell+1)})^{\dagger} \right),$$

$$\begin{split} U_1^{(\ell,\ell+1)} &= (S_\ell^- - S_{\ell+1}^-) P_\ell^+ P_{\ell+1}^+ \propto (|1,1\rangle \langle 2,2|)_{(\ell,\ell+1)} \,, \\ U_2^{(\ell,\ell+1)} &= \left(\mathbb{I}_9 - \frac{S_\ell^- S_{\ell+1}^+}{2} \right) P_\ell^+ P_{\ell+1}^0 - \left(\mathbb{I}_9 - \frac{S_\ell^+ S_{\ell+1}^-}{2} \right) P_\ell^0 P_{\ell+1}^+ \propto (|1,1\rangle \langle 2,1|)_{(\ell,\ell+1)} \,, \\ U_3^{(\ell,\ell+1)} &= \left(\mathbb{I}_9 - \frac{(S_\ell^- S_{\ell+1}^+)^2}{4} \right) P_\ell^+ P_{\ell+1}^- - \left(\mathbb{I}_9 - \frac{(S_\ell^+ S_{\ell+1}^-)^2}{4} \right) P_\ell^- P_{\ell+1}^+ + (S_\ell^+ S_{\ell+1}^- - S_\ell^- S_{\ell+1}^+) P_\ell^0 P_{\ell+1}^0 \propto (|1,0\rangle \langle 2,0|)_{(\ell,\ell+1)} \,, \\ U_4^{(\ell,\ell+1)} &= \left(\mathbb{I}_9 - \frac{S_\ell^+ S_{\ell+1}^-}{2} \right) P_\ell^- P_{\ell+1}^0 - \left(\mathbb{I}_9 - \frac{S_\ell^- S_{\ell+1}^+}{2} \right) P_\ell^0 P_{\ell+1}^- \propto (|1,-1\rangle \langle 2,-1|)_{(\ell,\ell+1)} \,, \\ U_5^{(\ell,\ell+1)} &= (S_\ell^+ - S_{\ell+1}^+) P_\ell^- P_{\ell+1}^- \propto (|1,-1\rangle \langle 2,-2|)_{(\ell,\ell+1)} \,. \end{split}$$

compare to Lindblad: U plays the role of jump operators

steering towards an AKLT ground state

does a steering on a bond deter/compete

with steering on another bond?

steering towards an AKLT ground state

many-body yet local steering

Frobenius norm
$$D_F(t) = \sqrt{Tr_s[\rho_s(t) - \rho_{s=target}]^2}$$

trace norm $D_1(t) = Tr_s[\sqrt{(\rho_s(t) - \rho_{s=target})^2}]/2$

S. Roy, J. Chalker, I. Gornyi, YG 2020

ACTIVE STEERING ...

active feedback steering : steering

non-trivial feedback: coordinated steering

$$\frac{\text{Element 1}: multiple $H_{s-d}^{(\alpha)}}{[H_{s-d}, H_{s-d}] \neq 0}$

$$t_{0 use in } U_{s-d} = e^{-iH_{s-d}^{(\alpha)} \cdot \delta t}$$

$$\frac{\text{Element 2}: \alpha \text{ policy;}}{m = readout hislory} \Rightarrow with.$$$$

quantum compass: cost function policy

global

introduce a cost function, $r(\rho_s)$ to be minimized in the protocol.

Example: *infidelity* $r^{(inf)}$ of the system's state P_s to the target state $|\Psi_s^{(target)}\rangle$

$$r^{(\text{inf})}(\rho_s) = 1 - \left\langle \psi_s^{(\text{target})} \left| \rho_s \right| \psi_s^{(\text{target})} \right\rangle$$

note: if we know the initial state of the system we know ρ_s hence we can calculate $r^{(inf)}$

Objective: find a sequence $(H_{s-d}^{\alpha 1}, H_{s-d}^{\alpha 2}, H_{s-d}^{\alpha 3}, ...)$ that brings the system to the global minimum of $r^{(inf)}(\rho_s)$ in the fastest expected time \Rightarrow greedy version (cheaper): the fastest expected reduction of the cost function in a single measurement step

NON-COMMUTING STEERING :weakly entangled state (AKLT)

• AKLT state is the ground state of the parent AKLT Hamiltonian:

$$H_{\text{AKLT}} = \sum_{i} H_{i,i+1} = \sum_{i} \left[\overrightarrow{S}_{i} \cdot \overrightarrow{S}_{i+1} + \frac{1}{3} \left(\overrightarrow{S}_{i} \cdot \overrightarrow{S}_{i+1} \right)^{2} \right]$$

• With 4 local ground states $|\phi_a^{(j)}\rangle$ and 5 excited states $|\theta_a^{(j)}\rangle$, make a coupling family:

$$V(\mathbf{c}, i) = |\phi_4^i\rangle\langle\theta_5^i| + \sum_{\alpha, \beta=1,..4} c_{\alpha\beta} |\phi_\alpha^i\rangle\langle\theta_\beta^i|$$

$$H_{s,d} = V_s \sigma_d^+ + V_s^\dagger \sigma_d^-$$

• $V(\mathbf{c}, i)$ allow preparing the ground state passively by choosing one random \mathbf{c}

• Navigation strategy: iterate cyclically over location *i* and optimise the matrix c; this is to be compared with no optimisation over c.

time to infidelity 0.01

600

global cost function, e.g., $r^{(inf)}(\rho_s)$, may be fundamentally flawed

target state
$$|0,0,0,0,..\rangle$$
 (product state)
initial state $|1,1,1,1,..\rangle$
sequence $|1,1,1,1,1,..\rangle \rightarrow |1,0,0,1,1..\rangle \rightarrow |1,0,0,1,0,..\rangle \rightarrow$
orthogonal to $|0,0,0,0..\rangle$

 $r^{(inf)} = 1$ for most states \Rightarrow flat landscape "Anderson orthogonality catastrophe"

local cost function

active steering: a Quantum State Machine

steering transformation Λ^{click} , Λ^{n-c} + basis (vertices) \Rightarrow quantum graph (we will denote only Λ^{click} , Λ^{n-c} is implicit)

Quantum State Machine (QSM) for active steering: combining all graphs to a single "colored" graph

- Quantum State Machine (QSM) is a coloured multigraph representing entire coupling set $\{V_s(\mathbf{p})\}$.
- In simplest ("classical") cases, optimal active decision directly follows from QSM
- This "classicality" is basis-dependent and generally does not occur

Example of a classical Quantum State Machine

Optimal decision-making here is straightforward

Quantum State Machine mapping

Coarse-graining and semiclassical QSM

• QSM with "quantum" subgraphs cannot be used for optimising the feedback policy in a classical way

• Instead, QSM is first to be coarse-grained into a `semi-classical' graph

Semiclassical coarsegraining of a QSM active steering: a Quantum State Machine: the W-state

a 3-qubit state :

initial state :

possible steering operators :

$$W = \frac{1}{\sqrt{3}} (|100\rangle + |010\rangle + |001\rangle)$$

ABC
000

 $V_1 = \sigma_A^+ - \sigma_C^+,$ $V_2 = \sigma_A^- \sigma_C^-,$ $V_3 = \sigma_A^- \sigma_B^+ - P_A^0 P_B^1,$ $V_4 = \sigma_B^+ \sigma_C^- - P_B^1 P_C^0,$

 $H_{s-d} = V_i \sigma_d^+ + h.c.$

Preparing W-state: success statistics

scale up system sizes (eg AKLT)

k local cost function (milestone trajectory)

💥 role of frustration

...

state manipulation / logical gates / error correction

