Dynamics, Complexity, and Entanglement of Noisy Random Circuits

JUNE 21, 2022 MICHAEL GULLANS

Collaborations and References

Abhinav Deshpande Pra

Pradeep Niroula

Oles Shtanko

Alexey Gorshkov

Bill Fefferman

Reference: A. Deshpande, P. Niroula, O. Shtanko, A. V. Gorshkov, B. Fefferman, and M. J. Gullans, arXiv:2112.00716, QIP2022

Discussions: Alex Dalzell

Related work: A. Dalzell, N. Hunter-Jones, and F. G. S. L. Brandao, arxiv:2111:14907, QIP2022

Ongoing work on classical simulations also with Brayden Ware

Noisy circuits without error correction

- Noisy, intermediate-scale, quantum (NISQ) era: tradeoff between scale (system size) and low noise
 - ° Currently can achieve one or the other, but hard to do both
- Goal: quantify this tradeoff and witness the "quantum signal"
- Has a direct bearing on algorithms: informs us which algorithms can work in practice
- We study random circuits
 - quantum computational advantage
 - benchmarking noise
 - modeling near-term algorithms

- chaotic & scrambling dynamics
- exponentially long growth of complexity

Model - Parallel circuit architecture

- Haar-random gates
- Noise model: single-qubit Pauli noise after every time step:

$$\mathscr{E}[\rho] = \sum_{P_i \in P} p_i P_i \rho P_i$$

Noise strength:

h:
$$\sum_{P_i, P_i \neq I} p_i = \gamma$$

- Intuition: Pauli noise generally adds entropy, which we are not removing
- Study convergence properties of output distribution with respect to uniform distribution
- Total variation distance (TVD) to uniform and anticoncentration

Distance to uniform distribution

- Prior work studied upper bounds on δ : = $|\mathscr{D} \mathscr{U}||$ in different settings
- Aharonov *et al.*¹ (foundational work on fault-tolerance): with depolarizing noise, δ decays exponentially for any arbitrary circuit: $\delta \leq 2^{-\Omega(\gamma d)}$.
- Gao and Duan²: for random circuits and slightly more general Pauli noise, $E_C[\delta] \le 2^{-\Omega(\gamma d)}$
- Boixo et al.^{3,4} numerically observed a faster decay to uniform (of the form $2^{-\Omega(\gamma s)}$) for small sizes
- What about lower bounds? Not known so far for random circuits

Lower bound on TVD

• Our result: for arbitrary local Pauli noise, $E_C[\delta] \ge e^{-O(d)}$

Depth dependence of distance to uniformity is tight.

- Disproves the $e^{-\Omega(\gamma s)}$ possibility for large depth/noise • Matches result of Dalzell *et al.*¹ who showed $e^{-\Omega(\gamma s)}$ in limit $\gamma \to 0$
- Our result applies in the physically relevant limit of $\gamma = \Theta(1)$

Intuition for lower bound

- By the data processing inequality, it suffices to consider a single-qubit density matrix ρ on 1 site at the output
- Show that ρ is far-enough away from $\mathbb{I}/2$
 - Works because we can consider second moments and replace Haar-random gates by Cliffords
- At constant depth, this density matrix cannot "know" how many other qubits there are, so no n dependence at constant d.

Upper bound on total-variation distance

- For Pauli noise with heralded error locations, we prove an upper bound on TVD of the form $\mathbb{E}_B[\delta] \leq \operatorname{poly}(n) \exp(-\Omega(d))$
- Implications for measurement-induced entanglement transitions¹ Rules out a phase transition with unknown measurement outcomes
- Method is based on a mapping from replica averages of quantum circuits to a statistical mechanics model for Ising spins²
 - Proof idea: recursively construct a new circuit composed solely of single-qubit gates and dephasing events

¹ Skinner et al., PRX 9, 031009 (2019), Li et al., PRB 100, 134306 (2019), Gullans et al., PRX 10, 041020 (2020). ² Dalzell et al., PRX Quantum 3, 010333 (2022). 8/15

Implication in quantum advantage: Context

- Quantum advantage via random circuit sampling, assuming a complexity-theory conjecture.
- Suffices to show that approximating output probability $p_{00...0}$ of random circuits to imprecision 2^{-n} is hard.
- 2^{-n} comes from Hilbert space dimension

Tightness of quantum advantage: Results

- Is hardness with $2^{-\tilde{\Omega}(s)}$ imprecision optimal?
- One way of probing: hardness results also valid for noisy circuits! Ask whether these are tight for noisy circuits
- Because of convergence to uniform, trivial algorithm "guess 2⁻ⁿ" can in principle work well.
- If δ behaved as $2^{-\Theta(s)}$, then hardness results optimal
- This is not the case \Rightarrow methods can be pushed further! \odot

Anticoncentration

A property cited in the past as an important measure for quantum advantage. Measures how "spread out" a distribution is.

Anticoncentrated

• Formally, a distribution is anticoncentrated if there are constants c, a,

such that
$$\Pr_{C}\left[p_{00\ldots 0} \ge \frac{c}{2^{n}}\right] \ge a$$

- Not inherently a hardness property (neither necessary nor sufficient for hardness of sampling)
- Can be a useful property when combined with other properties

Anticoncentration and depth dependence

- Physics intuition: Probes thermalization time of random circuits
- Follows from approximate 2-design property¹⁻³, but not necessary⁴
- State of the art result⁴: 1D log-depth circuits anticoncentrate
- Can these results be improved further?

We show: for
$$d = o(\log n)$$
, $\Pr_B\left[p_{00\dots 0} \ge \frac{c}{2^n}\right] = o(1)$

Severe lack of anticoncentration at sub-logarithmic depth

- Applies to both noisy and noiseless random circuits.
- ¹ Harrow & Low, Comm. Math. Phys. (2009)
 ² Brandão, Harrow, & Horodecki, Commun. Math. Phys. (2016)

³ Harrow and Mehraban, arXiv:1809.06957
⁴ Dalzell, Hunter-Jones, Brandão, PRX Quantum 3, 010333 (2022)

Application: constant-depth circuits

• Napp et al.¹: it can be average-case hard to compute $p_{00...0}$ to error 2^{-s} , but average-case easy to compute to 2^{-n} .

- Small constant depth: uses a matrix-product-states-based "spaceevolving block decimation" (SEBD) algorithm
- Our results \Rightarrow don't need the above
- Trivial algorithm "output 0" works well to compute $p_{00...0}$ on average: already achieves error smaller than 2^{-n} . Not a sampling algorithm!

Summary

- Lower (and upper) bounds on how fast noise takes you to uniform
 E_B[δ] ~ exp[-Θ(d)]
 - Tight w.r.t. depth dependence

- Anticoncentration for both noisy and noiseless random circuits
 - Sub-log depth: poorly anticoncentrated
 - Log-depth and larger: anticoncentrated

Outlook

- Tightness of current proof techniques for hardness
 - No obvious hurdle right now in improving techniques
- Typicality of δ ? We have computed $\mathbb{E}_{C}[\delta]$
 - Can show typicality in some cases
- Implications for noise-induced barren plateaus¹
 - At log*n* depth, enough information in output distribution to distinguish from uniform
- Log depth is the sweet spot!
- Classical simulations of noisy circuits might be efficient at low precision
 implications for benchmarking and fault-tolerant simulations

Thank you!