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Noisy circuits without error correction
▪ Noisy, intermediate-scale, quantum (NISQ) era: tradeoff between scale 

(system size) and low noise
◦ Currently can achieve one or the other, but hard to do both

▪ Goal: quantify this tradeoff and witness the “quantum signal”
▪ Has a direct bearing on algorithms: informs us which algorithms can 

work in practice
▪

◦ quantum computational advantage
◦ benchmarking noise
◦ modeling near-term algorithms

◦ chaotic & scrambling dynamics
◦ exponentially long growth of 

complexity

▪ We study random circuits
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Model - Parallel circuit architecture
▪ Haar-random gates
▪ Noise model: single-qubit Pauli noise 

after every time step:
        

▪
Noise strength: 

▪ Intuition: Pauli noise generally adds 
entropy, which we are not removing

ℰ[𝜌] = ∑
𝑃𝑖∈𝑃

𝑝𝑖𝑃𝑖𝜌𝑃𝑖

∑
𝑃𝑖, 𝑃𝑖≠𝐼

𝑝𝑖 = 𝛾

▪ Study convergence properties of output distribution with respect to 
uniform distribution

▪ Total variation distance (TVD) to uniform and anticoncentration 

𝑠 = 𝑛𝑑
Size

Output
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Distance to uniform distribution
▪ Prior work studied upper bounds on  in different 

settings 

𝛿: = 𝒟 − 𝒰

1 Aharonov et al., arXiv:quant-ph/9611028 2 Gao and Duan, arXiv:1810.03176 3 Boixo et al., Nat. Phys.14, 595-600 (2018) 4 Boixo et al., arXiv:1708.01875

▪ Aharonov et al.1 (foundational work on fault-tolerance): with depolarizing 
noise,  decays exponentially for any arbitrary circuit: .

▪ Gao and Duan2: for random circuits and slightly more general Pauli noise, 

▪ Boixo et al.3,4 numerically observed a faster decay to uniform (of the form 
) for small sizes

𝛿 𝛿 ≤ 2−Ω(𝛾𝑑)

E𝐶[𝛿] ≤ 2−Ω(𝛾𝑑)

2−Ω(𝛾𝑠)

▪ What about lower bounds? Not known so far for random circuits
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Lower bound on TVD
▪ Our result: for arbitrary local Pauli noise, E𝐶[𝛿] ≥ 𝑒−𝑂(𝑑)

Depth dependence of 
distance to uniformity is tight. 

1 Dalzell, Hunter-Jones, Brandão, arXiv:2111.14907

▪ Disproves the  possibility for large depth/noise
◦ Matches result of Dalzell et al.1 who showed  in limit 

▪ Our result applies in the physically relevant limit of 

𝑒−Ω(𝛾𝑠)

𝑒−Ω(𝛾𝑠) 𝛾 → 0
𝛾 = Θ(1)
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Intuition for lower bound
▪ By the data processing inequality, it suffices to consider a 

single-qubit density matrix on 1 site at the output𝜌 

▪ Show that  is far-enough away from  
◦ Works because we can consider second moments and replace Haar-random 

gates by Cliffords

▪ At constant depth, this density matrix cannot “know” how many 
other qubits there are, so no  dependence at constant .

𝜌 𝕀/2

𝑛 𝑑



2 Dalzell et al., PRX Quantum 3, 010333 (2022). /158

Upper bound on total-variation distance
▪ For Pauli noise with heralded error locations, we prove an upper bound 

on TVD of the form 𝔼𝐵[𝛿] ≤  poly(𝑛)exp( − Ω(𝑑))

1 Skinner et al., PRX 9, 031009 (2019), Li et al., PRB 100, 134306 (2019), Gullans et al., PRX 10, 041020 (2020).

▪ Method is based on a mapping from replica averages of quantum 
circuits to a statistical mechanics model for Ising spins2

◦ Proof idea: recursively construct a new circuit composed solely of 
single-qubit gates and dephasing events

▪ Implications for measurement-induced entanglement transitions1 - Rules 
out a phase transition with unknown measurement outcomes
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Implication in quantum advantage: Context
▪ Quantum advantage via random circuit sampling, assuming a 

complexity-theory conjecture.

3 Bouland et al.,  FOCS 2021 4 Kondo et al., FOCS 20211 Bouland et al., Nat. Phys. 15, 159–163 (2019) 2 Movassagh, arXiv:1909.06210

2−poly(𝑠) 2− Ω(𝑠log𝑠)

[1], [2] [3], [4] 

▪ Suffices to show that approximating output probability 
of random circuits to imprecision  is hard.

▪  comes from Hilbert space dimension

𝑝00…0 
2−𝑛

2−𝑛

2−Ω(𝑛)

Imprecision

𝑠  =  𝑛𝑑Recall:
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Tightness of quantum advantage: Results

▪ Is hardness with  imprecision optimal?2− 
~Ω(𝑠)

2− 
~Ω (𝑠) 2−Ω(𝑛)

Imprecision

▪ This is not the case  methods can be pushed further! ☺⇒

▪ One way of probing: hardness results also valid for noisy circuits! Ask 
whether these are tight for noisy circuits

▪ Because of convergence to uniform, trivial algorithm “guess ” can 
in principle work well.

▪ If  behaved as , then hardness results optimal

2−𝑛

𝛿 2−Θ(𝑠)
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Anticoncentration
▪ A property cited in the past as an important measure for quantum 

advantage. Measures how “spread out” a distribution is.

Not anticoncentrated

Output mass mostly 
distributed on few 
outcomes 

Anticoncentrated

Output mass well 
distributed on almost 
all outcomes 

Figure from Hangleiter et al. Phys. Rev. Lett. 122, 210502  

▪ Formally, a distribution is anticoncentrated if there are constants , , 

such that 

▪ Not inherently a hardness property (neither necessary nor sufficient for 
hardness of sampling)

▪ Can be a useful property when combined with other properties

𝑐 𝑎
Pr
𝐶 [𝑝00…0 ≥

𝑐
2𝑛 ] ≥ 𝑎
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Anticoncentration and depth dependence
▪ Physics intuition: Probes thermalization time of random circuits
▪ Follows from approximate 2-design property1-3, but not necessary4

▪ State of the art result4: 1D log-depth circuits anticoncentrate
▪ Can these results be improved further?

1 Harrow & Low, Comm. Math. Phys. (2009)
2 Brandão, Harrow, & Horodecki, Commun. Math. Phys. (2016)

3 Harrow and Mehraban, arXiv:1809.06957
4 Dalzell, Hunter-Jones, Brandão, PRX Quantum 3, 010333 (2022)

▪ We show: for , 

▪ Applies to both noisy and noiseless random circuits.

𝑑 = 𝑜(log𝑛) Pr
𝐵 [𝑝00…0 ≥

𝑐
2𝑛 ] = 𝑜(1)

Severe lack of anticoncentration 
at sub-logarithmic depth
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Application: constant-depth circuits
▪ Napp et al.1: it can be average-case hard to compute to error , 

but average-case easy to compute to .

▪ Small constant depth: uses a matrix-product-states-based “space-
evolving block decimation” (SEBD) algorithm

𝑝00…0  2−𝑠

2−𝑛

1 Napp et al., arXiv:2001.00021

2− 
~Ω (𝑠) 2−Ω(𝑛)

Imprecision

▪ Our results  don’t need the above

▪ Trivial algorithm “output 0” works well to compute  on average: 
already achieves error smaller than . 

⇒
𝑝00…0

2−𝑛
Not a sampling algorithm!
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Summary
▪ Lower (and upper) bounds on how fast noise takes you to uniform

◦
◦ Tight w.r.t. depth dependence

▪ Anticoncentration for both noisy and noiseless random circuits
◦ Sub-log depth: poorly anticoncentrated
◦ Log-depth and larger: anticoncentrated

𝐸𝐵[𝛿] ~ exp[ − Θ(𝑑)]
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Outlook
▪ Tightness of current proof techniques for hardness

◦ No obvious hurdle right now in improving techniques

▪ Typicality of ? We have computed 
◦ Can show typicality in some cases

▪ Implications for noise-induced barren plateaus1

◦ At  depth, enough information in output distribution to distinguish from 
uniform

▪ Log depth is the sweet spot!
▪ Classical simulations of noisy circuits might be efficient at low precision 

- implications for benchmarking and fault-tolerant simulations

𝛿 𝔼𝐶[𝛿]

log𝑛

1 Wang et al., Nat. Comms. 12, 6961 (2021)
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Thank you!


