Dynamics of coherence in measurement induced phase transitions

And its role in quantum communication

Shane P. Kelly

With Jamir Marino¹⁾, Mathew Fisher²⁾,

Ulrich Poschinger¹⁾, and Ferdinand Schmidt-Kaler¹⁾ 1) Mainz 2) Santa Barbara

JG

Measurement induced entanglement transitions

Weak Measurements

Volume law entanglement

Measurement induced purification transition Weak Measurements **Strong Measurements**

Mixed State

 $p_m < p_c$

 $S(\rho_T) = Tr[\rho_T \log \rho_T] > 0$

Image from PRB.98.205136 Li, Chen, Fisher

Measurement induced memory transition Can Bob try to destroy Alice's state?

Can Alice reconstruct from collected light and final state?

Alice collects light and applies unitaries

Alice

Alice encodes diary in her quantum system

Strong Measurements

Zero Channel Capacity $C_{s} = 0$

Alice **can't** recover $|\psi_k\rangle$

Image from PRB.98.205136 Li, Chen, Fisher

What if Alice is constrained in her ability to generate coherence?

Coherence: Quantum uncertainty in a given basis

Teaser: The utility of coherence to Alice Coherence = Quantum uncertainty (entropy) of a given basis

We quantify coherence requirement for quantum error correction

d < ma $|\psi\rangle\in$

$$\underset{\mathbb{Z}}{\operatorname{tx}} C(|\psi\rangle, D)$$

Quantum coherence A natural perspective on "what is quantum uncertainty?"

$$|\text{cat}\rangle = | \overbrace{c} \\ \rho_c = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 V

- ρ_c is classically uncertain about cat vitality
- ρ_q has zero classical uncertainty
 - physical state known perfectly

Basis specific!

Relative entropy of coherence How to quantify quantum uncertainty of basis D?

- Projectors of basis $D: P_d = |d\rangle \langle d|$
- Relative entropy of coherence:

$$C(\rho, D) = S\left(\sum_{d} P_{d}\rho P_{d}\right) - S(\rho)$$

Coherence = Entropy of diagonal elements – entropy of quantum states = Uncertainty of basis states - uncertainty about which pure state

1) Baumgratz, Cramer, Pleno PRL 2014

Answered with resource theory!"

Similar to relative entropy of entanglement

Coherence Single bit example

• Example state $\alpha |0\rangle + \sqrt{1 - \alpha^2} |1\rangle$

$$\rho = \begin{bmatrix} \alpha^2 & \alpha \sqrt{1 - \alpha^2} \\ \alpha \sqrt{1 - \alpha^2} & 1 - \alpha^2 \end{bmatrix} \qquad C(\rho, X) = S$$

• Incoherent density matrix $C(\rho, X) = 0$

•
$$\rho = \sum_{d} P_{d} \rho P_{d} = \rho_{d} = \begin{bmatrix} \alpha^{2} & 0 \\ 0 & 1 - \alpha^{2} \end{bmatrix}$$

 $C(\rho, D) = S\left(\sum_{d} P_{d}\rho P_{d}\right) - S(\rho)$

 $\left(\sum_{d} P_{d} \rho P_{d}\right) = H(\alpha^{2})$

 $H(\alpha^2)$ 0.5 0.5 0

What is quantum coherence? For multi qubit state state

$$C(\rho, D) = S$$

- Take product state which is

 - Eigenstate of Z_i for

 $S\left(\sum_{l}P_{d}\rho P_{d}\right) - S(\rho)$

• $M = L - N_x - N_z$ mixed bits • Eigenstate of X_i for $i = 1...N_x$ $S\left(\sum_{z} P_z \rho P_z\right) = N_x + M$ $C_z = N_x$ Eigenstate of Z_i for $i = (N_x + 1) \dots N_x + N_z + 1$ $S\left(\sum_x P_x \rho P_x\right) = N_z + M$ $C_x = N_z$

CNOTs can't generate coherence in X or Z basis

CNOTs don't generate coherence

- CNOT gate:

Unitary only dynamics **Volume law v.s. area law depends on coherence!**

Coherence bounds entanglement

Of full state

between any partition of bits

$$\min(C_x, C_z) > S(\rho_R)$$

1) Straightforward to prove for pure state, similar results in Mekala and Sen PRA (2021)

Coherence free circuits

Coherence free dynamics Evolution in classical computational basis *X*

- Random CNOTs $|x_1, x_2\rangle \rightarrow |x_1, x_2 \otimes x_1\rangle$
- Bit eraser $|x_1\rangle \rightarrow |0\rangle$

Circuit maps X basis states to X basis states

 $C_{r}(t) = 0$ ls $f_t(x)$ invertible? **Can Alice recover a classical diary?**

Similar: 1) Lyons, Choi, Altman APS 2022 2) Knolle group arXiv:2203.11303 2022

Purification transition Can Alice protect a classical diary?

Similar: 1) Lyons, Choi, Altman APS 2022 2) Knolle group arXiv:2203.11303 2022

Can this classical channel protect quantum info?

Coherence non-generating dynamics Same dynamics-different initial state/observable

- Encode a quantum state $|\psi_0(x)|^2 = |\mathscr{C}|^{-1/2}$ $|\psi_0\rangle = \sum_{x \in \mathscr{C}} \psi_0(x) |x\rangle$
- State is coherent

 $C_x(|\psi_0\rangle) = \log(|\mathscr{C}|) = 10$

• Can Alice recover phase of $\psi_0(x)$?

Transition in quantum channel capacity Can Alice protect a quantum diary?

Bit eraser mus Bob mus

Quantum channel capacity

Bob must only measure Z

How to turn a classical communication channel quantum?

Classical to quantum channels Lessons from quantum error correction codes

- Classical code:
 - Can correct bit flip errors (coherence preserving errors)
 - Can't correct phase flips (coherence destroying errors)
- CSS quantum stabiliser codes
 - Code constructed from 2 "compatible" classical codes
 - In asymptotic code performance: all stabiliser codes \sim CSS codes
 - Difficult: producing good CSS codes

destroying errors) But first, we will focus on entanglement and coherence dynamics

Volume v.s. area law depends on coherence

 $\min(C_x, C_z) > S(\rho_r)$

1) Straight forward to prove for pure state, similar results in *Mekala and Sen PRA (2021)*

Measurements generate coherence dynamics *X* and *Z* measurements (errors)

- Total rate of measurements p_m
- Measure Z rate $p_m(1 p_x)$
 - Generate C_x , destroy C_z
- Measure X at rate $p_m p_x$:
 - Generate C_z , destroy C_x
- Coherence evolves to some steady state determined by p_m and p_x

Measurements generate coherence dynamics *X* and *Z* measurements (errors)

- Total rate of measurements p_m
- Measure Z rate $p_m(1 p_x)$
- Measure X at rate $p_m p_x$:
- Small p_m coherence dynamics: Markovian

•
$$\partial_t \langle C_x \rangle \approx p_z - p_x$$

• $min(C_x, C_z) \to 0$

Interpretation using evolving code spaces **Competing Classical Codes**

 $p_z > p_x$ $\partial_t \left\langle C_z \right\rangle \approx p_x - p_z \quad \underbrace{\bigcirc}_{\searrow}^{10} 10 \quad p_m = 0.01$ $\langle C_{7} \rangle \rightarrow 0$ 0 -1.0-0.5

Classical in Z

Number of logical qubits in CSS code:

$$k_z \rightarrow 0 \text{ and } k_x \rightarrow L$$

"can't protect bit errors"

Generalisation from CSS code won't work for Alice

 $k = k_x + k_z - L$

Classical in X

 $k_x \rightarrow 0 \text{ and } k_z \rightarrow L$

"can't protect phase errors"

Coherence controlled entanglement transitions What if we add *Y* measurements?

Controlling entanglement transition with coherence

Entanglement:

Coherence:

 $\partial_t \langle C_x \rangle \approx p_y + p_z - p_x > 0$

That's entanglement, what about channel capacity? What if Alice can only preform unitaries?

- Y measurement \rightarrow volume law phase What unitaries does Alice require to protect any light Bob could shine?
 - Possible for Alice to protect diary
 - Requires Bob to be limited in light he shines (only Y measurements)

• Phase gate
$$U_i = e^{i\frac{\pi}{2}(Z_i+1)}$$

• Generically increases C_{χ}

How to protect Alice's quantum diary? Coherence generating element

• Phase gate
$$U_i = e^{i\frac{\pi}{2}(Z_i+1)}$$

Fixed measurement rate p_m

Protecting Alices diaries The role of coherence

Coherence free circuits -Alice protects classical diary

Coherence bounds entanglement

Alice must dynamically regenerate coherence

Alice can't use CSS code approach

Coherence requirements for error correction

Coherence requirement for error correction Code distance bound by coherence

- [n, k, d] stabiliser code
- Take any single qubit subspace of the code
- Coherence in any local Pauli basis *D* bounds code distance:

d < ma ψ_1, ψ_1

Applied to CSS code

 $\max C(|\psi\rangle, X) = m$ ψ_1, ψ_2

• Similar for C_{z} : $L - k_{x} + 1 > d$

$$|\psi\rangle = \psi_1 |c_1\rangle + \psi_2 |c_2\rangle$$

$$\max_{\psi_2} C(|\psi\rangle, D)$$

$$ax C_x = L - k_z + 1 > d$$

Classical Singleton bound code space defined by H^z

The role of coherence Conclusions

d < ma $|\psi\rangle\in$

We quantify coherence requirement for quantum error correction

$$\underset{\Xi}{\operatorname{\mathscr{C}}} C(|\psi\rangle, D)$$

