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Orbital Hall effect vs Spin Hall effect

Experimental method: Magneto-optical Kerr effect

Outline

Orbital accumulation on Ti surface

Orbital torque in Ti/FM structure
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Spin Hall effect: exist at heavy metals, which has a strong spin-orbit coupling (SOC). 

Orbital Hall effect: exist at wide range materials, even without SOC.

Spin Hall effect Orbital Hall effect

Orbital Hall effect and spin Hall effect



E-field → k-vector shift → interband superposition → ቚ ۧ𝑝𝑥 ± 𝑖ห ൿ𝑝𝑦 = ȁ ۧ𝐿𝑧 = ±ℏ

Dynamically induced interband superposition can lead to non-zero orbital (L).

Go et al., PRL, 121, 086602 (2018)
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The orbital character varies with k and from bands to bands.

Orbital Hall effect from orbital texture
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Electronic band structure Orbital texture Orbital Hall conductivity

𝜎𝑂𝐻(𝑆𝐻) =
𝑖𝑒ℏ

𝑁𝒌𝑉cell


𝒌


𝑛≠𝑚
𝑓𝑛𝒌 − 𝑓𝑚𝒌

𝑢𝑛𝒌 𝑗𝑧
൯𝐿𝑦(𝑆𝑦 𝑢𝑚𝒌 𝑢𝑚𝒌 𝑣𝑥 𝑢𝑛𝒌

(𝐸𝑛𝒌 − 𝐸𝑚𝒌 + 𝑖Γ)
𝟐

𝜎OH, 3800
ℏ

𝑒
Ω ∙ cm −1, is ~100 times larger than 𝜎SH, −40

ℏ

𝑒
Ω ∙ cm −1.

Orbital Hall conductivity of Ti



Orbital accumulation
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Optical detection: Magneto-optical Kerr effect (MOKE)

Sensitive detection: light is much more sensitive on orbital than spin.
Vector detection: light can distinguish My and Mz components.

Orbital torque

Experimental methods
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GaAs

Pt W

Polar MOKE Longitudinal MOKE

Kato et al., Science, 306, 1910 (2004) Stamm et al., PRL, 119, 087203 (2017)

Magneto-optical Kerr effect (MOKE) has been used to detect SHE-induced spin accumulation 
on edge or surface of semiconductors and metals.

MOKE from spin Hall effect
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Kerr rotation resolution: <10 nrad

Experimental setup



Orbital accumulation

Part 1: orbital accumulation

Experiment

Young-Gwan Choi at SKKU

Theory

Daegeun Jo at Postech

10



11

30 60 90
0.0

0.2

0.4

0.6

0.8

1.0

r
T

i (
m
W
m

)
tTi (nm)

30 35 40 45 50

In
te

n
s
it
y
 (

a
.u

.)

2q (degree)

 Ti (27 nm)

 Ti (45 nm)

 Ti (63 nm)

 Ti (90 nm)

(111)

(200)

Properties of Ti films

Crystal structure (XRD) Electrical resistivity

✓ Crystal structure: FCC structure with a dominant texture of (111)

✓ Resistivity: nearly thickness independent value of 0.6 μm·Ω.
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Channel position dependence
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Current density dependence

→Mz

→My

Distinction between Mz and My

𝜃𝐾
𝐿 =

cos𝜙0 tan𝜙1
cos 𝜙0 − 𝜙1

𝑖𝑛0𝑛1𝑄

𝑛1
2 − 𝑛0

2LMOKE:

LMOKE changes its sign with the opposite incidence angle, whereas PMOKE does not.
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Reference sample for the Oersted field
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✓ PMOKE comes from the Oersted field.

✓ LMOKE does not come from the Oersted field.

Reference sample for the Oersted field
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The spatial profile of hOe_z matches to PMOKE.

At the channel edge,

ℎ𝑂𝑒_𝑧 = 15 Oe 𝜃𝐾
𝑃 = 15 nrad

Estimation of the Oersted field
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∆𝑀 = 𝜒 𝐻ext , χ is magnetic susceptibility from orbital and spin.

Orbital contribution: van Vleck paramagnetism 

𝜒orb =
𝜇0𝜇𝐵

2

𝑁𝒌Vcellℏ
2

𝒌


𝑛,𝑚
𝑓𝑚𝒌 − 𝑓𝑛𝒌

𝑢𝑛𝒌 𝐿𝑧 𝑢𝑚𝒌 𝑢𝑚𝒌 𝐿𝑧 𝑢𝑛𝒌
𝐸𝑛𝒌 − 𝐸𝑚𝒌 + 𝑖Γ

= 8.7 × 10−6 emu/cc

→ Consistent with a previous report: Grechnev, Low Temp. Phys. 35, 638 (2009) 

𝑄unit = −0.25 + 𝑖0.44
𝜇B

atom

−1
for orbital magnetization

→ 𝑄unit well explains the measured PMOKE by Oersted field.

→ 𝑄unit is 100 times larger for orbital than spin.

Magneto-optic constant from 𝜽𝑲
𝑷



LMOKE of Ti as function of Ti thickness

෨𝜃𝐾
𝐿 = 𝜃𝐾

𝐿 + 𝜀𝐾
𝐿

real imaginary

✓ Imaginary part is larger than real part.

✓ Real part changes its sign at dTi~45 nm.
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✓ Magnitude of LMOKE on Pt is comparable to that on Ti.

✓ It is known that LMOKE on Pt is driven by SHE because of the strong SOC.

✓ LMOKE saturates at Pt thickness ~30 nm.

Position dependenceCurrent dependence Thickness dependence

Reference: Stamm, PRL (2017)

Comparison to Kerr rotation of Pt



𝜃𝐾 𝑡 = 𝜃𝐾
0 0

𝑡
𝑀𝑦 𝑧 ⋅ 𝜅𝑒𝜅𝑧 𝑑𝑧

𝛼 (𝑡)

Kerr rotation from uniform magnetization (μB per atom)

: Effect of non-uniform distribution
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𝜃𝐾
0 =

cos𝜙0 tan𝜙1
cos 𝜙0 − 𝜙1

𝑖𝑛0𝑛1𝑄
unit

𝑛1
2 − 𝑛0

2

orbital profile Light penetration
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atom

−1 Theory: Tight-binding calculation

Experiment: Oersted field

Consideration of orbital profile



𝑀𝑦 𝑡 = 𝑀0

sinh
𝑡 − 2𝑧
2𝑙𝐿

cosh
𝑡
2𝑙𝐿
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Orbital profile
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𝜕𝐿𝑦

𝜕𝑡
+ ∇ ∙ 𝐉𝐿𝑦 = −

𝐿𝑦

𝜏𝐿

𝐽
𝑖

𝐿𝑗
= −𝐷𝐿∇𝑖𝐿𝑗 + 𝜎OH𝜀𝑖𝑗𝑘𝐸𝑘

𝜕2𝐿𝑦

𝜕𝑧2
=
𝐿𝑦

𝑙𝐿
2
, where 𝑙𝐿 = 𝐷𝐿𝜏𝐿

Τ1 2

Boundary condition, 𝐽𝑧
𝐿𝑦(z) = 0 at the top (z=0) and the bottom (z=t) surfaces

Orbital continuity equation

At steady state,

𝑀0 = 𝛾𝐿𝜎𝑂𝐻𝜏𝐿𝑗𝑐𝜌

Orbital profile through thickness
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Orbital diffusion length →
Magnitude of orbital accumulation

Strong thickness dependence
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𝛼 (𝑡) = න
0

𝑡

𝑀𝑦 𝑧 ⋅ 𝜅𝑒𝜅𝑧 𝑑𝑧

Effect of orbital diffusion length



𝜃𝐾 𝑡 = 𝜃𝐾
0𝛼(𝑡)

Experiment 

Calculation: 

𝜎SH = −40 ℏ/𝑒 Ω ∙ cm −1 𝑅 × 𝜎OH = +40 ℏ/𝑒 Ω ∙ cm −1

𝑙𝐿 = 74 nm

Spin Hall effect Orbital Hall effect
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Thickness dependence of MOKE is explained by 𝑙𝐿 of 74 nm.

Magnitude of MOKE is explained by 𝑅 × 𝜎OH.
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Determination of orbital diffusion length

orbital quenching by crystal field
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Kerr rotation from spin Hall effect

Kerr rotation from orbital Hall effect

𝜎SH = −40 ℏ/𝑒 Ω ∙ cm −1

𝜎OH = +3800 ℏ/𝑒 Ω ∙ cm −1

𝑄spin
unit = 0.002 − 𝑖0.006

𝑄spin
unit = −0.25 + 𝑖0.44

Spin Hall conductivity Magneto-optic constant for spin

Orbital Hall conductivity Magneto-optic constant for orbital

→ Confirmed by the Oersted-field-induced 𝜃𝐾
𝑃

𝜃𝐾
𝐿 of ~1 nrad, too small

+orbital quenching

𝑅 × 𝜎OH = +40 ℏ/𝑒 Ω ∙ cm −1

𝜃𝐾
𝐿 of ~100 nrad

Magnitude of MOKE: SHE vs OHE



Part 2: orbital torque

Orbital torque
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Experiment

Kyung-Hun Ko at SKKU

Theory

Daegeun Jo at Postech
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Ti (30~120 nm)

FM 3~5 nm

Ti (30~120 nm)

FM 3~5 nm

Pt 3 nm

Sample structure for torque measurement

Ti/FM bilayer Ti/Pt/FM bilayer

Ni, Co, CoFeB
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✓ Significant reduction of magnetization in Ti/FM structure.

✓ Magnetization of FM recovers its bulk value with Pt insertion.

Magnetic properties of FM
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Ni-Ti phase diagram

Ni-Pt phase diagram

10%

5%

Doping effect on exchange stiffness of permalloy

Intermixing effect on magnetization

PRB 100, 024435 (2019)

Some element degrades ferromagnetic order quickly.
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Ti (d)

FM Mx

𝜓

∆𝜃𝐾 = 𝛼MOΔ𝑀𝑧 + 𝛽MO cos 2𝜓 Δ𝑀𝑦

light

x
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z

ℎDL + ℎOe
z ℎFL + ℎOe

y

Light polarization angle

Kerr rotation from ferromagnet

Damping-like torque

z-part of Oersted field

Field-like torque

y-part of Oersted field

Linear magneto-optic coefficient

quadratic magneto-optic coefficient
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✓ Mz and My can be distinguished from the polarization angle dependence.



∆𝑀𝑧 =
ℎDL + ℎOe

z

ℎext +𝑀eff
≈
ℎDL + ℎOe

z

𝑀eff
, ∆𝑀𝑦 =
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y
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y

ℎext
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ℎext
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→ nearly independent on hext → 1/hext dependence

External field dependence

✓ Mz and My can be distinguished from the magnetic field dependence.
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Ti thickness dependence of DLT
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Torque efficiency vs Ti thickness

Ti thickness dependence of FLT
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Summary

Orbital accumulation

Orbital torque

Strong LMOKE on Ti, comparable to that on Pt
→ cannot be explained with SHE

Ti thickness dependence
→ 𝑙𝐿 of 74 nm

LMOKE magnitude
→ 𝑅 × 𝜎OH = +40 ℏ/𝑒 Ω ∙ cm −1

Significant DLT and FLT from Ti
→ cannot be explained with spin torque
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DLT magnitude 
→ 𝜃OH of 0.13 (𝜎OH of 1100 ℏ/𝑒 Ω ∙ cm −1

Ti thickness dependence.
→ 𝑙𝐿 of 70~80 nm.

0 20 40 60 80 100

-50

0

50

100

150

q
K

L
/j

c
 (

n
ra

d
/1

0
7
 A

 c
m

-2
)

Ti thickness (nm)

OHE

SHE

 real

 imaginary

0 30 60 90 120

-0.2

-0.1

0.0

0.1

0.2

0.3

x
D

L
,F

L

Ti thickness (nm)

DLT of Ti/Pt/Ni

DLT of Ti/Ni

FLT of Ti/Pt/Ni


