Light-driven antiferromagnetic magnonics

Dmytro Afanasiev

Radboud University Nijmegen

Electron as a data carrier

Particle-like transport

• mass, charge, velocity

• collisions

Wave-like transport

- Wavelength, frequency, dispersion
- Group and phase velocity
- Interference, diffraction

Low coherence of electrons

Limited manifestation of the wave-like nature of electron

- Typical momentum scattering time: τ_k =10-20 fs
- Short-range electron mean free propagation path: $l_c \sim 10$ nm
- Enhanced dissipation/heating

Quasiparticles zoo

Highly coherent quasiparticles

C. Beenakker Science, 353 539(2016)

Wave-based transport and data processing with magnons

Spin wave

Waves of spin angular momentum

- Long coherence times: > 1 ms
- Low dissipative: maintain spatial coherence > 1 mm
- Highly nonlinear

Wave-based transport and data processing with magnons

Spin wave

Waves of spin angular momentum

- Long coherence times: > 1 ms
- Low dissipative: maintain spatial coherence > 1 mm
- Highly nonlinear

Barman et al J. Phys.: Condens. Matter **33**, 413001 (2021)

Present and future of magnonics

Spin insulatoronics

A. Brataas, et al. Physics Reports, 885 (2020)

Pure spin-based information and communication technologies

Ferromagnetic magnonics

Magnetic insulators

Antiferromagnetic magnonics

AFM vs. FMs

- Higher operational frequencies $\omega_{AFM} > \omega_{FM}$
- Higher spin-wave group velocities $v_{AFM} > v_{FM}$
- Non-dispersive propagation (Linear "light-like" dispersion at large k)

Traditional sources of spin wave emission

 $\Delta v < 50 \text{ GHz}$ (radiative losses, etc.)

Not well applicable to antiferromagnets ($v \sim 1 THz$)

Universal way to excite spin waves

R. Lebrun et al., *Nature* 561, 222 (2018)
J. Li et al., *Nature* 578, 70 (2020)
P. Vaidya et al., *Science* 368, 160 (2020)

Diffusive (incoherent) spin-wave transport

 $l_c > 10 \,\mu m$

Light-driven excitation of coherent spin wave dynamics

Antiferromagnetic optospintronics *Nat. Phys.* **14**, 229–241 (2018)

Limitations of light

• No propagation

Localization of the optical excitation by focusing

Inhomogeneous excitation

Source of finite *k*-vectors

Subwavelength localization of the spin excitation

Inhomogeneous excitation

Ultrafast optomagnetism in antiferromagnetic DyFeO3

 $T_N = 650 \text{ K}$

Optical absorption in DyFeO₃

Experimental geometry

Ultrashort light pulse @3.1 eV, δ =50 nm

Magneto-optical Faraday effect (bulk sensitive)

Magneto-optical Kerr effect (MOKE) (surface sensitive)

Excitation of coherent spin dynamics

Excitation of coherent spin dynamics

 $\Theta_{\rm F}$ and $\Theta_{\rm K}$ probe different dynamics of spins

Excitation of coherent spin dynamics

 $\Theta_{\rm F}$ and $\Theta_{\rm K}$ show different sensitivity to the uniformity of the light excitation

What do we probe with MOKE ?

 $\Theta_{\rm F}$ and $\Theta_{\rm K}$ probe different dynamics of spins

Momentum conservation

$$k_i - k_r = \pm k_{sw},$$

$$k_{i,r} = \frac{2\pi n_0}{\lambda_{probe}} \cos \gamma$$

Varying probe wavelength you get sensitivity to different spectral components

Mapping components of the broadband spin-wave packet

(THz)

Fourier image of the spin excitation

The light-induced spin-wave packet is broadband. Its components can be mapped out by changing probe wavelength

Supersonic long-propagating waves

Coherence length:

$$l_c = v_g \tau > 1 \, \mu m$$

Frequency:

f = 0.23 THz

Spin-wave propagation in other orthoferrites

FFT (a.u.) *k*≠0 *k*=0 MOKE, θ_{k} (arb.units) 0.5 0.2 0.3 0.1 Frequency (THz) 0 -0.5 15 30 0 45 60 Time Delay (ps)

HoFeO₃, (Sm,Tb)FeO₃

Mapping wavepacket of coherent spin-waves in HoFeO₃ with a bandwidth of > 0.2 THz

Excitation mechanism

Although excitation is in the region of strong absorption It is non-thermal as the phase can be controlled

Inverse Cotton-Mouton effect (ICME)

Light-induced broadband spin-wave packets

Spin-Wave Packet $(\Delta v > 0.2 \text{ THz})$

Can the spin-waves interact within the wavepacket?

Anomalous damping of the zone-center magnon in DyFeO3

Damping of finite *k*-mode is significantly smaller than *k*=0

Enhancement of the damping in the region of strong absorption

Upon entering in the absorption region damping of *k*=0 mode goes up by nearly 2 orders of magnitude

Origin of the spin-wave damping

P. Pirro et. al. Nat. Rev. Mater. 6, 1114–1135 (2021)

Simultaneous excitation of a phonon wavepacket

No direct coupling is allowed (no hybridization)

Simultaneous excitation of a phonon wavepacket

Magnon (fast mode)

Ultrashort optical excitation in the absorption region creates not only wavepacket of spin waves but also a wavepacket of acoustic phonons

Possible mechanism

Damping of finite *k*-mode is significantly smaller than *k*=0 Magnon-phonon coupling:

Merging of a phonon $\boldsymbol{\omega}_{\mathrm{ph}}$ and magnon $\boldsymbol{\omega}_{1}$ into another magnon $\boldsymbol{\omega}_{2}$

Why k=0 mode?

Energy and momentum constrains

Magnon-phonon coupling:

$$\omega_{\rm ph}$$

Conservation of momentum and energy:

 $\omega_1 + \omega_{\rm ph} = \omega_2$ $k_1 + k_{\rm ph} = k_2$

Fulfilled only if $k_1 < k_{\rm cr} = 2 \cdot 10^2 \,\mu m$ $\omega_1 < \omega_{\rm cr} \approx \omega_0$

Energy and momentum exchange are allowed only for magnons close to the zone-center

Outlook

(Propagation velocity does not depend on w)

Summary

- All-optical excitation of a broadband (>0.2 THz) wavepacket of coherent propagating AFM magnons
- Mechanism is verified in a broad class of rare-earth orthoferrites
- Fingerprints of many-body interactions within the light-driven magnon wavepacket

All-optical platform for coherent antiferromagnetic magnonics

Acknowledgments

Jorrit Hortensius Mattias Matthiesen

Andrea Caviglia

Boris Ivanov

Roberta Citro

Alexey Kimel

Rostislav Mikhaylovskiy **Ruben Leenders**

Thank you for your attention!