Towards coupling coherent femtosecond charge and spin dynamics **D.** Bossini

Department of Physics, University of Konstanz, Germany

Universität Konstanz

Dielectric antiferromagnet

No free electrons Majority of ordered materials Intrinsically faster spin dynamics

Dielectric antiferromagnet

No free electrons Majority of ordered materials Intrinsically faster spin dynamics

 $\overline{L}\equiv\overline{S^{\Uparrow}}-S^{\Downarrow}$

Magnon generation

SPICE Seminar, 2nd March 2022

Magnon generation

Magnon generation: Spin-flip process, $\Delta S = 1$

SPICE Seminar, 2nd March 2022

Magnon generation

Magnon generation: Spin-flip process, $\Delta S = 1$ Spin-flip:

Magnetic field

Spin-orbit coupling

SPICE Seminar, 2nd March 2022

Magnon dispersion

SPICE Seminar, 2nd March 2022

Magnon dispersion

SPICE Seminar, 2nd March 2022

Resonant pump

T. Kampfrath et al. Nat. Phot 5, 31 (2011)

SPICE Seminar, 2nd March 2022

Resonant pump

T. Kampfrath et al. Nat. Phot 5, 31 (2011)

SPICE Seminar, 2nd March 2022

Resonant pump

SPICE Seminar, 2nd March 2022

Magnetoelastic coupling

Y. Hashimoto, **DB** et al. Nat. Comm. 8, 15859 (2017)

SPICE Seminar, 2nd March 2022

Magnetoelastic coupling

D. Bossini

Magnon dispersion

SPICE Seminar, 2nd March 2022

A. Kimel *et al*. Nature **435,** 655 (2005)

D. Bossini

Impulsive stimulated Raman scattering (ISRS)

SPICE Seminar, 2nd March 2022

D. Bossini

A. Kimel et al. Nature 435, 655 (2005)

SPICE Seminar, 2nd March 2022

Spin-flip driven by L-S coupling in the excited state

Magnon dispersion

SPICE Seminar, 2nd March 2022

Two-magnon mode

SPICE Seminar, 2nd March 2022

13

D. Bossini et al. Nat. Comm. 7, 10645 (2016)
D. Bossini et al. PRB 100, 024428 (2019)

Quantum magnonics @ extreme scales ?

D. Bossini et al. Nat. Comm. 7, 10645 (2016)
D. Bossini et al. PRB 100, 024428 (2019)

Quantum magnonics @ extreme scales ? Resonant Pumping??

SPICE Seminar, 2nd March 2022

Multidomain

Magnon generation and propagation in multi-domain states?

SPICE Seminar, 2nd March 2022

SPICE Seminar, 2nd March 2022

Coupling to charges

- Spin-to-charge coherence/energy transfer
- Single systems / heterostructures
- Manipulation of the coupling

D. Bossini

antiferromagnetic semiconductor

optics magnetism

C. Ferrer-Roca et al. PRB **61**, 13679 (2000)

SPICE Seminar, 2nd March 2022

antiferromagnetic semiconductor

optics magnetism

C. Ferrer-Roca et al. PRB **61**, 13679 (2000)

D. Bossini et al. *New J. Phys.* **22**, 083029 (2020)

SPICE Seminar, 2nd March 2022

antiferromagnetic semiconductor

optics magnetism

D. Bossini et al. *New J. Phys.* **22**, 083029 (2020) M. Thorbati, **DB** et al. *Phys. Rev. Res. 3*, 043232 (2021)

Dynamics in MnTe

Dynamics in MnTe K. Deltenre, **DB** et al. PRB **104**, 184419 (2021)

D. Bossini et al. PRB **104**, 224424 (2021)

Exciton-magnon transition

Exciton-magnon transition

N. Mironova-Ulmane et al. Proceedings of SPIE 5946 (2012)

SPICE Seminar, 2nd March 2022

Exciton-magnon transition

N. Mironova-Ulmane et al. Proceedings of SPIE 5946 (2012)

Absorption spectrum AF dielectrics

Below gap

- Side-band structure
- Spin-forbidden transition

Moriya et al. PRL 15, 1023 (1965)Tanabe et al. Excitons in Magnetic Insulators (1982)Spin-forbidden transition+Magnon $\Delta S = 1$ $\Delta S = -1$

SPICE Seminar, 2nd March 2022

SPICE Seminar, 2nd March 2022

20

SPICE Seminar, 2nd March 2022

CuB₂O₄ phase diagram

CuB₂O₄ phase diagram

SPICE Seminar, 2nd March 2022

CuB₂O₄ phase diagram

Optical ME detection

Optical ME detection

S. Toyoda et al., Phys. Rev. Lett 115, 267207 (2015)

Non-reciprocal directional dichroism (NDD)

Optical ME detection

S. Toyoda et al., Phys. Rev. Lett 115, 267207 (2015)

Non-reciprocal directional dichroism (NDD)

Detection: ΔT/T

Photo-induce PT

D. Bossini et al. Nature Phys. 14, 370 (2018)

T. Satoh et al PRL **105**, 077402 (2010) C. Tzschaschel et al PRB **95**, 174407 (2017)

SPICE Seminar, 2nd March 2022

T. Satoh et al PRL **105**, 077402 (2010) C. Tzschaschel et al PRB **95**, 174407 (2017)

2 modes induced: 110 GHz, 1 THz

SPICE Seminar, 2nd March 2022

T. Satoh et al PRL **105**, 077402 (2010) C. Tzschaschel et al PRB **95**, 174407 (2017) 2 modes induced: 110 GHz, 1 THz

Selective mode amplification ?

X-M: 1 THz mode

Spin dynamics

SPICE Seminar, 2nd March 2022

Spin dynamics

SPICE Seminar, 2nd March 2022

Not purely dissipative mechanism

Not purely dissipative mechanism

Not purely dissipative mechanism

Unexpected If-magnons trend

Literature

D.Bossini et al PRB. 89 (R), 060405 (2014)

SPICE Seminar, 2nd March 2022

Literature

D.Bossini et al PRB. 89 (R), 060405 (2014)

No spectral dependence amplitude magnons

Lf-mode involved in X-M as well

Lf-mode involved in X-M as well

Hf-mode: A mode Lf-mode: B mode

C. Tzschaschel et al PRB 95, 174407

Exciton: A- symmetry

Tsuboi and W Kleemann 1994 J. Phys.: Condens. Matter 6 8625

Lf-mode involved in X-M as well

Hf-mode: A mode Lf-mode: B mode

C. Tzschaschel et al PRB 95, 174407

Exciton: A- symmetry

Tsuboi and W Kleemann 1994 J. Phys.: Condens. Matter 6 8625

Spin-lattice coupling

Lf-mode involved in X-M as well

Hf-mode: A mode Lf-mode: B mode

C. Tzschaschel et al PRB 95, 174407

Exciton: A- symmetry

Tsuboi and W Kleemann 1994 J. Phys.: Condens. Matter 6 8625

Spin-lattice coupling No proper lattice modes

Reichardt, et al. Journal of Physics C: Solid State Physics 8, 3955–3962 (1975).

Domain walls

Our NiO sample: multi-domain state

S-domains: negligible

C. Tzschaschel et al PRB **95**, 174407

T-Domains

SPICE Seminar, 2nd March 2022

SPICE Seminar, 2nd March 2022

D. Bossini

$\mathbf{n} = a\mathbf{e}_{\rm hf}(T1)\exp\left(i\omega_{\rm hf}t\right)$

 $\mathbf{n} = a\mathbf{e}_{\rm hf}(T1)\exp\left(i\omega_{\rm hf}t\right)$

I.V. Baryakhtar and B.A. Ivanov Solid State Communications 34, 545 (1980).

$$\mathbf{n} \times \left(\ddot{\mathbf{n}} - c^2 \Delta \mathbf{n} + \gamma^2 H_{\text{ex}} \mathbf{H}_{\text{an}} \right) = \omega_{\text{hf}}^2 a \mathbf{n} \times \mathbf{e}_{\text{hf}} (\text{T1}) \exp \left(i \omega_{\text{hf}} t \right) \delta(\xi)$$

 $\mathbf{n} = a\mathbf{e}_{\rm hf}(T1)\exp\left(i\omega_{\rm hf}t\right)$

I.V. Baryakhtar and B.A. Ivanov Solid State Communications **34**, 545 (1980). $\mathbf{n} \times \left(\mathbf{\ddot{n}} - c^{2}\Delta\mathbf{n} + \gamma^{2}H_{\mathrm{ex}}\mathbf{H}_{\mathrm{an}}\right) = \omega_{\mathrm{hf}}^{2}a\mathbf{n} \times \mathbf{e}_{\mathrm{hf}}(\mathrm{T1})\exp\left(i\omega_{\mathrm{hf}}t\right)\delta(\xi)$ $\ddot{b}_{\mathrm{DW}} + \frac{1}{\tau}\dot{b}_{\mathrm{DW}} + \omega_{\mathrm{DW}}^{2}b_{\mathrm{DW}} = \omega_{\mathrm{hf}}^{2}a\exp\left(i\omega_{\mathrm{hf}}t\right),$ $\ddot{b}_{\mathrm{hf}} + \frac{1}{\tau}\dot{b}_{\mathrm{hf}} + \omega_{\mathrm{hf}}^{2}b_{\mathrm{hf}} = \frac{1}{3}\omega_{\mathrm{hf}}^{2}a\exp\left(i\omega_{\mathrm{hf}}t\right),$ $\ddot{b}_{\mathrm{lf}} + \frac{1}{\tau}\dot{b}_{\mathrm{lf}} + \omega_{\mathrm{lf}}^{2}\left(1 - 4b_{\mathrm{DW}}\right)b_{\mathrm{lf}} = \frac{1}{3}\omega_{\mathrm{hf}}^{2}a\exp\left(i\omega_{\mathrm{hf}}t\right)$

SPICE Seminar, 2nd March 2022

 $\mathbf{n} = a\mathbf{e}_{\rm hf}(T1)\exp\left(i\omega_{\rm hf}t\right)$

I.V. Baryakhtar and B.A. Ivanov Solid State Communications **34**, 545 (1980). $\mathbf{n} \times \left(\mathbf{\ddot{n}} - c^{2}\Delta\mathbf{n} + \gamma^{2}H_{\mathrm{ex}}\mathbf{H}_{\mathrm{an}}\right) = \omega_{\mathrm{hf}}^{2}a\mathbf{n} \times \mathbf{e}_{\mathrm{hf}}(\mathrm{T1})\exp\left(i\omega_{\mathrm{hf}}t\right)\delta(\xi)$ $\ddot{b}_{\mathrm{DW}} + \frac{1}{\tau}\dot{b}_{\mathrm{DW}} + \omega_{\mathrm{DW}}^{2}b_{\mathrm{DW}} = \omega_{\mathrm{hf}}^{2}a\exp\left(i\omega_{\mathrm{hf}}t\right),$ $\ddot{b}_{\mathrm{hf}} + \frac{1}{\tau}\dot{b}_{\mathrm{hf}} + \omega_{\mathrm{hf}}^{2}b_{\mathrm{hf}} = \frac{1}{3}\omega_{\mathrm{hf}}^{2}a\exp\left(i\omega_{\mathrm{hf}}t\right),$ $\ddot{b}_{\mathrm{lf}} + \frac{1}{\tau}\dot{b}_{\mathrm{lf}} + \omega_{\mathrm{lf}}^{2}\left(1 - 4b_{\mathrm{DW}}\right)b_{\mathrm{lf}} = \frac{1}{3}\omega_{\mathrm{hf}}^{2}a\exp\left(i\omega_{\mathrm{hf}}t\right)$

 $\mathbf{n} = a\mathbf{e}_{\rm hf}(T1)\exp\left(i\omega_{\rm hf}t\right)$

I.V. Baryakhtar and B.A. Ivanov Solid State Communications 34, 545 (1980).

 $\mathbf{n} \times \left(\mathbf{\ddot{n}} - c^2 \Delta \mathbf{n} + \gamma^2 H_{\text{ex}} \mathbf{H}_{\text{an}} \right) = \omega_{\text{hf}}^2 a \mathbf{n} \times \mathbf{e}_{\text{hf}} (\text{T1}) \exp \left(i \omega_{\text{hf}} t \right) \delta(\xi)$

$$\ddot{b}_{\mathrm{D}} \quad b_{\mathrm{lf}} = \frac{a^2 e^{\lambda t}}{3} \exp\left(i\omega_{\mathrm{lf}}t\right) \overset{t}{}_{\mathrm{hf}}t,$$
$$\ddot{b}_{\mathrm{lf}} + \frac{1}{\tau}\dot{b}_{\mathrm{lf}} + \omega_{\mathrm{lf}}^2\left(1 - 4b_{\mathrm{DW}}\right) b_{\mathrm{lf}} = \frac{1}{3}\omega_{\mathrm{hf}}^2 a \exp\left(i\omega_{\mathrm{hf}}t\right)$$

 $\mathbf{n} = a\mathbf{e}_{\rm hf}(T1)\exp\left(i\omega_{\rm hf}t\right)$

I.V. Baryakhtar and B.A. Ivanov Solid State Communications 34, 545 (1980).

 $\mathbf{n} \times \left(\ddot{\mathbf{n}} - c^2 \Delta \mathbf{n} + \gamma^2 H_{\text{ex}} \mathbf{H}_{\text{an}} \right) = \omega_{\text{hf}}^2 a \mathbf{n} \times \mathbf{e}_{\text{hf}} (\text{T1}) \exp \left(i \omega_{\text{hf}} t \right) \delta(\xi)$

$$\ddot{b}_{\mathrm{D}} \qquad b_{\mathrm{lf}} = \frac{a^2 e^{\lambda t}}{3} \exp\left(i\omega_{\mathrm{lf}}t\right) \qquad t),$$
$$\dot{b}_{\mathrm{lf}} + \frac{1}{\tau} \dot{b}_{\mathrm{lf}} + \omega_{\mathrm{lf}}^2 \left(1 - 4b_{\mathrm{DW}}\right) \\ \dot{b}_{\mathrm{lf}} = \frac{1}{3} \omega_{\mathrm{hf}}^2 a \exp\left(i\omega_{\mathrm{hf}}t\right)$$

H. Gomonay and **D. Bossini** J. Phys. D App. Phys 54, 374004 (2021)

Repeat the experiment in a single-domain

Repeat the experiment in a single-domain

T. Satoh et al J. Opt. Soc. Am. B **7**, 1421 (2010)

SPICE Seminar, 2nd March 2022

Repeat the experiment in a single-domain
Ar-O environment annealing (1400 °C)
Domains > 100 micron

T. Satoh et al J. Opt. Soc. Am. B **7**, 1421 (2010)

SPICE Seminar, 2nd March 2022

D. Bossini

SPICE Seminar, 2nd March 2022

D. Bossini

Conclusion

Walls-enabled nonlinear spin dynamics

D. Bossini

Conclusion

Conclusion

Hybrid charge-spin excitation (X-M)

Photoinduced phase transition (600 fs)

Amplification magnon modes

SPICE Seminar, 2nd March 2022

Acknowledgements

Tokyo University K. Konishi T. Arima S. Toyoda M. Kuwata-Gonokami E. Saitoh

Stockholm University S. Bonetti M. Pancaldi M. Basini L. Soumah

Mainz University H. Gomonay J. Sinova

TU Dortmund F. Mertens M. Cinchetti G. Uhrig M. Torbati K. Deltenre

Politecnico of Milano S. Dal Conte G. Cerullo

Tokyo Institute of Technology T. Satoh Emmy Noether-Programm

Deutsche

SPICE Seminar, 2nd March 2022

Forschungsgemeinschaft

#StandwithUkraine

SPICE Seminar, 2nd March 2022