Modeling of magneto-thermo-dynamics

OKSANA CHUBYKALO-FESENKO, MATERIALS SCIENCE INSTITUTE OF MADRID, CSIC, SPAIN

Magneto- thermo- dynamics applications

OUTLINE

Introduction: some fundamentals for thermal modelling

- Stochastic atomistic dynamics and Landau-Lifshitz-Bloch (LLB) micromagnetics
- 2. Scaling of temperature-dependent parameters: Domain wall width and skyrmion radius increase with temperature

Reciprocal magneto-thermodynamics effects:

1. Spin-Seebeck effect.

Motion of domain walls and skyrmions in thermal gradients

2. Giant localized **spin-Peltier effect** for ultrafast domain wall motion in antiferromagnets

Introduction: Atomistic/micromagnetic approach:

•Atomistic spins (localized classical magnetic moments μ in the Heisenberg description with J and on-site anisotr. d), $\alpha(\lambda)$ defines coupling to thermal bath Characteristic timescale is determined by exchange (fs-ps)

•Micromagnetic units (averaged magnetisation, Ms(T)), A(T), K(T)

The temperature in this case is included twice:

The damping α contains already thermal averaging: $\alpha(T)$

Langevin dynamics defines different trajectories
 Characteristic timescale is determined by applied field /anisotropy (ps-

ns)

$$\vec{S}_{i} = -\frac{\gamma}{1+\alpha^{2}}\vec{S}_{i} \times H_{i}(t) - \frac{\alpha\gamma}{1+\alpha^{2}}\vec{S}_{i} \times (\vec{S}_{i} \times \vec{H}_{i}(t))$$

Stochastic fields are added

$$< h_j(t) >= 0$$
 $< h_i(0)h_j(t) >= \delta(t)\delta_{ij}\frac{2\alpha}{1+\alpha^2}k_bT/\gamma$

Role of thermal fluctuations in magnetism

At the microscopic (atomistic) level:

<u>Thermally excited spinwaves</u> are responsible for temperature-dependence of macroscopic properties and for thermal magnetisation reversal via the spinwave instabilities.

At more macroscopic (micromagnetic) level

- •Thermal fluctuations are responsible for dispersion of trajectories and a random walk in a complex energy landscape
- •Eventually <u>energy barriers</u> could be overcome with the help of thermal fluctuations leading to magnetisation decay.

Hierarchical multi-scale approach

N. Kazatseva et al Phys. Rev. B 77 (2008) 184428

Micromagnetics with the Landau-Lifshitz-Bloch (LLB) equation

For non-constant or high temperatures and though the phase transition

$$\mathbf{H}_{\text{eff}} = \mathbf{H} + \mathbf{H}_{A} + \begin{cases} \frac{1}{2\tilde{\chi}_{\parallel}} \left(1 - \frac{m^{2}}{m_{e}^{2}} \right) \mathbf{m} & T \lesssim T_{C} & \alpha_{\perp} = \lambda \left(1 - \frac{T}{3T_{C}} \right) \\ -\frac{J_{0}}{\mu_{0}} \left(\frac{T}{T_{C}} - 1 + \frac{3}{5}m^{2} \right) \mathbf{m} & T \gtrsim T_{C} & \alpha_{\parallel} = \frac{2}{3} \frac{T}{T_{C}} \lambda \end{cases}$$
emperature –dependent micromagnetic parameters M(T), K(T), A(T), D(T) & \alpha_{\parallel} = \frac{2}{3} \frac{T}{T_{C}} \lambda

Temperature – dependent micromagnetic parameters M(T), K(T), A(T), D(T)

D.Garanin PRB 55 (1997) 3050 classical derivation

D.Garanin Physica A 172 (1991) 470; P.Nieves, ...O.C.-F. PRB 90, 104428 (2014) Quantum derivation

From atomistic to micromagnetic approach: exchange stiffness

From atomistic to micromagnetic approach: Temperaturedependent spin wave spectrum

Due to the averaging over thermal fluctuations, the longwave length spinwaves are temperature-dependent

$$A(T) = A(0)m^{2-\varepsilon}$$

$$\mathsf{D}(T) = D(0)m^{2-\delta}$$

due to spin-spin correlations

U.Atxitia.... O.C.-F... PRB 82 (2010) 054415

Material-specific, depends on number of neighbors, crystal structure etc.

From atomistic to micromagnetic approach: temperature-dependent domain wall width, skyrmion size etc. $A(T) \propto m^{1.8}, K(T) \propto m^3$ $X \propto m^{1.5}, D \propto m^{1.5}$

DW width increases with temperature R. Moreno, ..O.C.-F. et al PRB 94 (2016) 104433

Temperature-dependent skyrmion radius

R.Tomasello, --O.C.F. et al PRB 97 (2018) 0604402

Motion in thermal gradient (spin-Seebeck effect)

• Energy minimization due to scaling of magnetic parameters:

(Exchange and anisotropy energies are minimized in the hot region, magnetostatic and DMI energy –typically in the cold region $R = \frac{1}{\sqrt{4K}} = \frac{1}{\sqrt{4K}$

e.g.
$$E_{DW} = 4\sqrt{AK} - \pi D$$
 $K_{eff} = K - \frac{1}{2}\mu_0 M_s^2$

- Entropy (free energy) S is maximum in the hot region
- Spin currents move from hot to cold
- Other effects: (spinwave emision by DW and interaction, changing of DW character (Bloch->Neel), going from in-plane to out-of plane etc.)

Skyrmions in thermal gradients

Pt/FeCo/Ir Multilayeres (5 repetitions)

Competition between magnetostatic energy and all other energies

Neél domain wall in thermal gradient (Entropic motion, FeCoB parameters, perpend anisotropy) $A(T) \propto m^{1.75}$ 50-5K 150-5K

Neél domain wall in thermal gradient (Magnonic motion)

300-5K

Neél domain wall in thermal gradient (Full calculations)

Domain wall is bent and is attracted by the heat spot

Self-consistent magnetisation and temperature dynamics

 $\Delta T \Rightarrow dM/dt$ (e.g. magnetisation dynamics under spin-Seebeck)

Reciprocity? self-consistent treatment?

 $dM/dt \Rightarrow \Delta T$ –(e.g.hysteresis heating)

Self-consistent magnetisation and temperature dynamics

 $\Delta T \Rightarrow dM/dt$ (e.g. magnetisation dynamics under spin-Seebeck)

Reciprocity? self-consistent treatment?

 $dM/dt \Rightarrow \Delta T$ –(e.g.hysteresis heating)

Self-consistent magnetisation and temperature dynamics

 $\Delta T \implies dM/dt$ (e.g. magnetisation dynamics under spin-Seebeck)

Reciprocity? self-consistent treatment?

 $dM/dt \Rightarrow \Delta T$ –(e.g.hysteresis heating, magnetocalorics)

$$\begin{aligned} \text{LLB+} \quad \frac{dT}{dt} &= \tilde{\alpha}_{||} (\mathbf{m} \cdot \mathbf{H}_{\text{eff}}) + \tilde{\alpha}_{\perp} \frac{\mathbf{m} \times (\mathbf{m} \times \mathbf{H}_{\text{eff}})}{\mathbf{m}^2} \\ \tilde{\alpha}_{||} &= \frac{\gamma \alpha_{||} M_s J_0}{C \mu}, \qquad \tilde{\alpha}_{\perp} = \frac{\gamma \alpha_{\perp} M_s}{C} \end{aligned}$$

The heat (Q) dynamics occurs in the same timescale as the magnetisation dynamics fs-ps for longitudinal changes and ps-ns for transverse changes Two derivations: quantum (denstity matrix) or repciprocity principle Electron (Metals) or phonon (insulators) bath P. Nieves,.. O.C.-F. PRB 94 (2016) 04409

The change of the temperature occurs for:

- Irreversible processes
- Ultra-fast processes

20 nm Magnetite nanoparticle under ac-field-

around 10 mK heat per switch

'Self-consistent description of spin-phonon dynamics in ferromagnets', P. Nieves, D. Serantes, O. Chubykalo-Fesenko, Phys. Rev. B, 2016, 94, 014409

20 nm Magnetite nanoparticle under ac-field-

around 20 mK heat per switch

- Diffusion (or conduction)
- The interface heat transfer $dT/dt = (T-T0)/\tau$

'Self-consistent description of spin-phonon dynamics in ferromagnets', P. Nieves, D. Serantes, O. Chubykalo-Fesenko, Phys. Rev. B, 2016, 94, 014409

Two interacting nanoparticles

- Nanoparticles release heat in intrawell and interwell processes
- The intrawell heat release may be even higher
- Importance of dynamics and precession

C. Muñoz-Mendez, ...O.C.-F. PRB 102, 214412 (2020)

Domain wall motion by spin-Seebeck effect

The opposite effect:

moving domain wall (vortex, skyrmion etc.) produces heat dynamics?

The answer is YES! How much?

The effect is GIANT, ULTRAFAST and LOCALIZED in AFM

Spin-Peltier effect for moving magnetic structures

The approach is equivalent to Rayleigh function for m(t)

$$\frac{dQ}{dt} \approx \int \frac{\alpha M_S}{\gamma} \left(\frac{dm}{dt}\right)^2 \mathrm{dV}$$

Spin-Peltier effect for moving magnetic structures

The approach is equivalent to Rayleigh function for m(t)

$$\frac{dQ}{dt} \approx \int \frac{\alpha M_s}{\gamma} \left(\frac{dm}{dt}\right)^2 \mathrm{dV}$$

- Any moving object should produce a change of temperature
- The effect is cuadratic in magnetisation (AFM)

1D stationary moving domain wall

Estimations:
Permalloy
Ms=1T
C =10⁶J/Km³
V=500 m/s

$$\Delta$$
=50nm
 α =0.01

 $\theta(x,t) = 2 \tan^{-1} \left(exp \left[\frac{x + vt}{\Delta} \right] \right)$ Temperature (energy) profile accompanying moving domain wall

 $\Delta T = 0.4 \text{ mK}$

$$T(x,t) = T_0 + \frac{\alpha M_s v}{\gamma C \Delta} \tanh\left(\frac{x + vt}{\Delta}\right)$$

1D stationary moving domain wall

$$\theta(x,t) = 2 \tan^{-1}\left(exp\left[\frac{x+vt}{\Delta}\right]\right)$$

Temperature (energy) profile accompanying moving domain wall

$$T(x,t) = T_0 + \frac{\alpha M_s v}{\gamma C \Delta} \tanh\left(\frac{x + vt}{\Delta}\right)$$

Estimations:

Permalloy

Ms=1T $C = 10^{6} J/Km^{3}$ V=500 m/s Λ =50nm **α=0.01**

With thermal diffusion:

$$\frac{\partial T}{\partial t} = D \frac{\partial^2 T}{\partial x^2} + \frac{\alpha M_s v^2}{\gamma C \Delta^2} \frac{1}{\cosh^2 \left[\frac{x + vt}{\Delta}\right]}$$

$$T(x,t) = \frac{2\alpha M_s v^2}{C\gamma D\Delta} (x + vt)$$

$\Delta T = 0.4 \text{ mK}$

 $D=10^{-4} \text{ m}^2/\text{s}$

 η =0.01 <<1 diffusion-dominated motion, heat is Is rapidlly delocalized.

$$\eta = \frac{v\Delta}{D}$$

1D stationary moving domain wall

$$\theta(x,t) = 2 \tan^{-1}\left(exp\left[\frac{x+vt}{\Delta}\right]\right)$$

Temperature (energy) profile accompanying moving domain wall

$$T(x,t) = T_0 + \frac{\alpha M_s v}{\gamma C \Delta} \tanh\left(\frac{x + vt}{\Delta}\right)$$

Estimations:

Permalloy

Ms=1T $C = 10^{6} J/Km^{3}$ V=500 m/s Λ =50nm **α=0.01**

With thermal diffusion:

$$\frac{\partial T}{\partial t} = D \frac{\partial^2 T}{\partial x^2} + \frac{\alpha M_s v^2}{\gamma C \Delta^2} \frac{1}{\cosh^2 \left[\frac{x + vt}{\Delta}\right]}$$

$$T(x,t) = \frac{2\alpha M_s v^2}{C\gamma D\Delta} (x + vt)$$

$\Delta T = 0.4 \text{ mK}$

 $D=10^{-4} \text{ m}^2/\text{s}$

 η =0.01 <<1 diffusion-dominated motion, heat is Is rapidlly delocalized.

$$\eta = \frac{v\Delta}{D}$$

Atomistic model of Mn₂Au antiferromagnet

One biaxial (basal plane) Anisotropy

Two perpendicular anisotropies (uniaxial and cubic) The uniaxial anisotropy >>others 180 Neel domain wall moved by current (SOT field)

Atomistic dynamics

$$\vec{S}_{i} = -\frac{\gamma}{1+\alpha^{2}}\vec{S}_{i} \times H_{i}(t) - \frac{\alpha\gamma}{1+\alpha^{2}}\vec{S}_{i} \times (\vec{S}_{i} \times \vec{H}_{i}(t))$$

Domain wall velocity and width in MnAu

✓ Velocity increases up to 40 km/s (limited by spinwave emission)

✓ Domain width decreases down to 4 nm (relativistic effect)

Domain wall velocity and width in MnAu

✓ Velocity increases up to 40 km/s (limited by spinwave emission)

✓ Domain width decreases down to 4 nm (relativistic effect)

for FM DW

40 nm/ps (ultrafast timescale)

Two temperature model

$$C_{\rm e}\frac{dT_{\rm e}}{dt} = g_{\rm e-ph}(T_{\rm e} - T_{\rm ph}) + k_e\frac{\partial^2 T}{\partial x^2} + \dot{Q}_{\rm s-e}(x,t)$$
$$C_{\rm ph}\frac{dT_{\rm ph}}{dt} = -g_{\rm e-ph}(T_{\rm e} - T_{\rm ph}) + \frac{T_{\rm ph} - T_0}{\tau_d}$$

Distribution of heat along the track

AFM DWs "charge" and "discharge" during the collision

R.Otxoa, ...O.C.-F. Comm.Phys. 3, 31 (2020)

Topology-selected AFM domain walls annihilation

R.Otxoa, ...O.C.-F. Phys. Rev. Research **3**, 043069 (2021)

Only if Q1+Q2=0 domain walls can annihilate

AFM domain walls collision

R.Otxoa, ...O.C.-F. Phys. Rev. Research 3, 043069 (2021)

Energy release during AFM DWs collision

Messages

Magneto-thermo-dynamics: reciprocal phenomena

Change of temperature -> magnetization dynamics Change of magnetization -> temperature dynamics

This manifests in many magneto-thermo-dynamical phenomena: which use one or the other part (spincaloritronics vs. magnetocalorics etc)

Spin Seebeck effect: domain wall is moved towards hot region, Skyrmions –it depends.

Spin Peltier effect: ultrafast ultrathin domain wall dynamics is accompanied by a localized heat wave

Thanks to all contributors!

Current and ex PhD students and postdocs

Elias Saugar

Unai Atxitia (now Freie University, Berlin) Pablo Nieves (now University of Ostrava, Czech Republic) Roberto Moreno (now University of Edinburg, UK) David Serantes (now University of Santiago de Compostela, Spain)

York	University	UK
	Chantrall	

Roy Chantrell Richard Evans <u>Hitachi Cambridge, UK</u> **R.Otxoa** P.Roy

Sheffield Hallam University, UK Tom Ostler Sergiu Ruta

J.Barker – U.of Leeds, UK Atomistic evaluation of parameters U.of Messina and Politech. Bari (Italy) G.Finnochio **R.Tomasello** V.Puliafito A.Giordano **E.Raimondo** M.Carpentieri D.Rodrigues

Magnetic hyperthermia:

K.Livesely New Castle, Australia D.Baldomir Santiago de Compostela **C.Méndez-Muñoz**