Unraveling Proximity and Topology at Interfaces with Next Generation Neutron Reflectometry

Alexander Grutter

Topology, Magnetism, and Transport

Disclaimer: I am a neutron scatterer, not an expert on topology or electronic structure

Nontrivial topology in real space – **Skyrmions**

P. K. Sivakumar et al., ACS Nano 14, 13463 (2020)

Winding affords some degree of protection against skyrmion annihilation

Magnetic field-induced topology in electronic states - **Quantum Hall Effect**

Y. Wu et al., Nat. Electronics 3, 604 (2020)

Coherent conduction along edge channel

- Why does anyone care about magnetic proximity effects (MPEs) in topological insulators?
- Are there MPEs in topological insulators?
- How do we *currently* characterize and understand MPEs (with examples)?
- How *should* we characterize MPEs in topologically nontrivial systems?

Topological Insulators (Bi₂Se₃/Bi₂Te₃/(Bi,Sb)₂Te₃)

Conductive

- Conductive surface state extends 3 nm from surface
- If top and bottom touch, hybridization...
- Dirac cone = massless Dirac fermions
- Strong spin-orbit interactions yield spin-momentum locking *i.e.* Spin-dependent conduction channels

Chen, B., Fei, F., Zhang, D. *et al.* Intrinsic magnetic topological insulator phases in the Sb doped MnBi₂Te₄ bulks and thin flakes. *Nat Commun* **10**, 4469 (2019). https://doi.org/10.1038/s41467-019-12485-y

Topological Spintronics and Novel Quantum States

H_{c1}

 $V_g = V_g^0$

T=30mK

0.75

1.50

P. Li et al., Sci. Advances 5, eaaw3415 (2019) DOI: 10.1126/sciadv.aaw3415

Magnetic TIs & Quantum Anomalous Hall Effect

Adding magnetic impurities into the system opens a gap in the surface state

•

٠

Quantum Anomalous Hall Effect

L. Pan et al., Science Advances 6, eaaz3595 (2020) C. Z. Chang et al., Science 340, 167 (2013)

Homogeneity and Temperature Limitations

Doped (Bi,Sb)₂Te₃ structures

- has been limited to $\leq 2 \text{ K}$
- Possible explanations include
 - Dopant inhomogeneity (Cr, V, etc.) E. O. Lachman et al., Science Advances 1, e1500740 (2015)
 - TI crystal inhomogeneity (Bi, Sb) S. Qi et al., Phys. Rev. B 101, 241407(R) (2020)
 - Topologically trivial conduction pathways (defects)

M. Mogi et al., Appl. Phys. Lett. 107, 182401 (2015)

Intrinsically Magnetic TIs

MnBi₂Te₄: An antiferromagnetic TI

- Zero-field QAH effect at 1.4 K
- In high magnetic field, 6.5 K
- Why is the temperature still low?
 - Exchange gap expected to be large
 - Magnetic inhomogeneity/defects?
 - Trivial conduction pathways?

0

Progress and Temperature Limitations

Magnetic Proximity Effects

- CrSb/(Bi,Sb)_{2-x}Cr_xTe₃
- Q. L. He et al., Nat. Mat. 16, 94 (2017)

R. Watanabe et al., Applied Phys. Lett. 115, 102403 (2019)

Magnetic Proximity Effects

C. Tang et al., Science Advances 3, e1700307 (2017)

- $Y_3Fe_5O_{12}/Bi_2Se_3$
- EuS/Sb_{2-x}V_xTe₃
- EuS/Bi₂Se₃
- CrSb/(Bi,Sb)_{2-x}Cr_xTe₃
- M. Lang et al., Nano Lett. 14, 3459 (2014)
- M. Li et al., PRL 115, 087201 (2015)
- F. Katmis et al., Nature 533, 513 (2016)
 - Te₃ Q. L. He et al., Nat. Mat. 16, 94 (2017)

Still have dopant-related inhomogeneity?

R. Watanabe et al., Applied Phys. Lett. 115, 102403 (2019)

InP

5 nm

Uniform Proximity Reservoirs and Transport Data

One Conductive Layer: Transport

- Uniform magnet/TI heterointerfaces have led to the highest-temperature proximity effects reported
- BUT have yet to realize the
- Cr₂Ge₂Te₆/(Bi,Sb)₂Te₃ might be **COSE** (*M. Mogi et al., Phys. Rev. Lett* 123, 016804)

ity

More direct probes?

X-ray spectroscopy or neutron reflectometry

X-ray Spectroscopy: Element-Specific Information

X-ray Spectroscopy: Element-Specific Information

XMCD: No proximity effect in EuS/Bi₂Se₃ (Previously reported at room temperature)

A. I. Figueroa et al., PRL 125, 226801 (2020)

Polarized Neutron Reflectometry

Polarized Neutron Reflectometry

Example: MgAl_{0.5}Fe_{1.5}O₄/Bi₂Se₃ Bilayer

<u>Stanford University</u> Lauren Riddiford, Yuri Suzuki

<u>Auburn University</u> Peng Li <u>Pennsylvania State University</u> Timothy Pillsbury, Max Stanley, Danielle Reifsnyder Hickey, Nasim Alem Nitin Samarth

<u>NIST</u> Alexander Grutter

Proximity-Induced Interfacial Magnetization

 $MgAl_{0.5}Fe_{1.5}O_4$ is a new and promising magnetic insulator with ultralow damping and little to no magnetic dead layer at the surface

Ideal candidate for introducing a MPE in adjacent TI, and for integration into low-power spintronics

First look at this PNR suggests there is a strong MPE

L. Riddiford et al., Phys. Rev. Lett. (In Press.)

Proximity-Induced Interfacial Magnetization

 $MgAl_{0.5}Fe_{1.5}O_4$ is a new and promising magnetic insulator with ultralow damping and little to no magnetic dead layer at the surface

Ideal candidate for introducing a MPE in adjacent TI, and for integration into low-power spintronics

First look at this PNR suggests there is a strong MPE

How Much Does the Proximity Effect Matter?

- Compare simulated curves from two different models
- Identical except that one (top) allows MPE in Bi₂Se₃ while the other (bottom) does not
- Model without a MPE misses in several key places

So what do we learn here?

- Expected MPE effects are **SUBTLE**
- Fits dominated by the ferrimagnetic layer
- Seems, to indicate a magnetic proximity effect

L. Riddiford et al., Phys. Rev. Lett. (In Press.)

Alternative Models

So what do we do about this?

We need to bring in other techniques that can separate the two competing models

L. Riddiford et al., Phys. Rev. Lett. (In Press.)

Alternative Models

What do we do about this?

- (A) Complementary measurements allowing model selection
- (B) Find systems with high sensitivity to the magnetic interface
- (C) Take higher-precision PNR measurements over a wider Q-range

How General is This?

 $(Bi,Sb)_2Te_3$ on $Y_3Fe_5O_{12}$

Yang Lv,¹ 🝺 James Kally,² Tao Liu,³ Patrick Quarterman,⁴ 🛅 Timothy Pillsbury,² Brian J. Kirby,⁴

This interface reconstruction appears to pop up in many different systems.

Pt on Dy₃Fe₅O₁₂ with and without vacuum break between layers

Jackson J. Bauer¹, ¹ Patrick Quarterman², ² Alexander J. Grutter², ² Bharat Khuran², ¹ Subhajit Kundu³, ³ K. Andre Mkhoyan³, ³ Julie A. Borchers², ² and Caroline A. Ross^{1,*}

Sputtered Bi₂Te₃/Permalloy Interfaces

- Even *in-situ* sputtered heterostructures of TI/Metal systems can be complicated
- Intermixing can lead to new phases, blamed in some EuS systems
- Emergent antiferromagnetic order and exchange bias
- Topological Antiferromagnet NiBi₂Te₄?

Nirjhar Bhattacharjee¹, Prishnamurthy Mahalingam³, Adrian Fedorko², Valeria Lauter⁴, Matthew Matzelle²,

Bahadur Singh⁶, Alexander Grutter⁵, Alexandria Will-Cole¹, Michael Page³, Michael McConney³, Robert

Markiewicz², Arun Bansil², Donald Heiman², Nian Xiang Sun^{1*}

Advanced Materials, Just Accepted: https://doi.org/10.1002/adma.202108790

Clean Oxide/TI Interfaces are Possible

Cr-(Bi,Sb)₂Te₃/SnTe: Topological Insulator and Topological Crystalline Insulator

A simple case of "No detectable MPE"

UCLANISTPeng Deng, Peng Zhang, Shuaihang Pan,Megan Holtz, Patrick QuartermanKang K. WangKang K. Wang

Topological Insulator/Topological Crystalline Insulator Interface

SnTe and Cr-doped (Bi,Sb)₂Te₃

- Epitaxial
- Excellent Crystallinity
- Extremely Sharp Interfaces
- 2 nm Cr:BST / SnTe yields an anomalous Hall effect
- 2 nm Cr:BST should be insulating
- Cr:BST induces proximity magnetism in SnTe?

P. Deng et al., Under Review (2021)

Modeling *without* a Proximity Effect

- Combining STEM imagine with PNR allows us to compare the structural thickness with the magnetic thickness, overcoming the weak nuclear contrast between the CBST and SnTe layers
- Magnetic thickness < CBST Thickness

Modeling with a Proximity Effect

Forcing a magnetic proximity effect in the SnTe clearly fails to fit the data. No proximity effect (that we can detect)

CrSe/(Bi,Sb)₂Te₃: A Proximity Effect Dependent on Interface Symmetry

The clearest MPE I've personally seen

<u>UCLA</u>

<u>NIST</u>

Chao-Yao Yang, Lei Pan, Xiaoyu Che, Qing Lin Dustin Gilbert (*Now at UT Knoxville*), Julie He, Yingying Wu, Hao Wu, Gen Yin, Peng Borchers, William Ratcliff II Deng, Kang K. Wang

<u>Henan Normal University</u> Haiyang Wang <u>Advanced Light Source</u> Padraic Shafer, Elke Arenholz

PNR: CrSe and TI

Transport: CrSe/BST vs. BST/CrSe

C.-Y. Yang et al., Science Advances 6, eaaz8463 (2020)

XMCD: Element Specific Magnetism

C.-Y. Yang et al., Science Advances 6, eaaz8463 (2020)

CrSb/(Bi,Sb)₂Te₃

Qing Lin He,^{1,2,*} Gen Yin,¹ Luyan Yu,¹ Alexander J. Grutter,³ Lei Pan,¹ Chui-Zhen Chen,⁴ Xiaoyu Che,¹ Guoqiang Yu,¹ Bin Zhang,⁵ Qiming Shao,¹ Alexander L. Stern,⁶ Brian Casas,⁶ Jing Xia,⁶ Xiaodong Han,⁵ Brian J. Kirby,³ Roger K. Lake,⁷ K. T. Law,⁴ and Kang L. Wang^{1,†}

Reduce the confounding effects of the magnetization from the magnetically ordered reservoir layer

Pushing the limits of what we can detect

CrSb/(Bi,Sb)₂Te₃: Electrical Transport

- Bilayers and trilayers show indications of switchable magnetization
- Unusual emergent lineshapes in the magnetoresistance of trilayers
- Consistent with theory showing a topological phase transition induced by magnetic proximity

Physical Review Letters 121, 096802 (2018)

CrSb/(Bi,Sb)₂Te₃: Neutron Reflectometry

- PNR from a CrSb/(Bi,Sb)₂Te₃ superlattice shows extremely weak magnetism
- Most consistent with interface magnetism
 - Proximity?
 - Intermixing?

CrSb/(Bi,Sb)₂Te₃: Neutron Reflectometry

CANDOR: Using More Neutrons

- We already have a ton of unused neutrons!
- Traditional continuous beam (reactor) reflectometers have a monochromator to select a single wavelength
- What if we instead took all the wavelengths and sorted them out on the other side?

Polychromatic Detector Array

- Each detector array consists of 54 graphite crystals directing neutrons into detectors
- Arranged in two banks of 54 detectors each (eventually more than 20 banks)
- Cryocooled to reduce thermal diffuse scattering and improve background

N. Maliszewskyj et al. 2018, Nucl. Inst. Meth. Phys. Res. A, 907, 90

First Measurements: Beam Intensity

First Measurements: Magnetic Materials

- Beam polarization essentially perfect, with *uncorrected* CANDOR data matching corrected PBR data
- Fitting data gives the same answer
- Much wider useful Q-range

Quantitative comparison of the magnetic proximity effect in Pt detected by XRMR and XMCD

Dominik Graulich,^{1,a)} D Jan Krieft,¹ Anastasiia Moskaltsova,¹ Johannes Demir,¹ Tobias Peters,¹ Tobias Pohlmann,^{2,3} Florian Bertram,³ D Joachim Wollschläger,² Jose R. L. Mardegan,³ Sonia Francoual,³ and Timo Kuschel¹

Appl. Phys. Lett. 118, 012407 (2021); doi: 10.1063/5.0032584

- XRMR has, in principle, everything one needs to characterize magnetic proximity effects and interface coupling with phenomenal precision
- Huge strides in analysis recently
- Relatively underutilized technique in topologically nontrivial matter

Conclusions

- Depth and element resolved probes are critical components for probing magnetic proximity effects
- Extreme care must be taken about interpretation, in particular when confounding structural effects may be present
- Combine as many independent techniques as possible
- Looking forward to new instrumentation and techniques like multiplexing neutron reflectometers and the application of X-ray resonant magnetic reflectivity

Further Reading:

- S. Bhattacharyya et al., Adv. Mater. 33, 2007795 (2021)
- J. Liu and T. Hesjedal, Adv. Mater. 2102427 (2021)
- A. J. Grutter and Q. L. He, Phys. Rev. Mater. 5, 090301 (2021)

Acknowledgements

Wang Group, UCLA

- Qing Lin He
- Lei Pan
- Chao-Yao Yang
- Peng Deng
- Qiming Shao
- Yingying Wu
- Peng Zhang
- Gen Yin
- Hao Wu
- Xufeng Kou
- Kang L. Wang

Suzuki Group, Stanford

- Lauren Riddiford
- Peng Li
- Yuri Suzuki

Samarth Group, Penn State

- Timothy Pillsbury
- Wilson Yanez
- Arpita Mitra
- Max Stanley
- Anthony Richardella
- Nitin Samarth

Samarth Group, Penn State

- Timothy Pillsbury
- Wilson Yanez
- Arpita Mitra
- Max Stanley
- Anthony Richardella
- Nitin Samarth

Spallation Neutron Source

- Mike Fitzsimmons
- Tim Charlton
- Valeria Lauter

Advanced Light Source

- Padraic Shafer
- Elke Arenholz

Ross Group, MIT

- Jackson Bauer
- Caroline Ross

Wang Group, U. of Minnesota

- Yang Lv
- Jian-Ping Wang

Sun Group, Northeastern

- Nirjhar Bhattacharjee
- Nian X. Sun

NCNR, NIST

- Dustin Gilbert
- Patrick Quarterman
- Purnima Balakrishnan
- William Ratcliff II
- Steve Disseler
- Megan Holtz
- Brian Maranville
- Brian Kirby
- Julie Borchers

alexander.grutter@nist.gov ncnr.nist.gov