Ferrimagnetic Spintronics

Kyung-Jin Lee

Department of Physics

Korea Advanced Institute of Science and Technology (KAIST)

Email: <u>kjlee@kaist.ac.kr</u>

Web: https://sites.google.com/site/kyungjinlee1/

Outline

- Introduction
- Compensated ferrimagnets @ angular momentum compensation point T_A
 - (1) Net angular momentum ~ 0 → antiferromagnet-like
 - (2) Net magnetic moment ≠ 0 → ferromagnet-like
 - Fast ferrimagnetic domain wall (DW) motion
 - Enhanced nonadiabaticity of spin current for DW motion
 - Vanishing skyrmion Hall effect
 - Relativistic kinematics of a magnetic DW
 - Enhanced magnon-photon coupling in ferrimagnets
 - Summary

Antiferromagnetic spintronics

physics

Volume 14 Issue 3, March 2018

Comment

Comment | 02 March 2018

The multiple directions of antiferromagnetic spintronics

New developments in spintronics based on antiferromagnetic materials show promise for improved fundamental understanding and applications in technology.

T. Jungwirth, J. Sinova [...] & C. Felser

Antiferromagnetic spintronics

V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak Rev. Mod. Phys. **90**, 015005 – Published 15 February 2018

Perspectives

Perspective | 02 March 2018

Antiferromagnetic spin textures and dynamics

As part of a Focus on antiferromagnetic spintronics, this Perspective looks at the complex and often faster dynamics of antiferromagnetic spin textures.

O. Gomonay, V. Baltz [...] & Y. Tserkovnyak

Focus: Antiferromagnetic spintronics

Perspective | 02 March 2018

Synthetic antiferromagnetic spintronics

As part of a Focus on antiferromagnetic spintronics, this Perspective examines the opportunities afforded by synthetic, as opposed to crystalline, antiferromagnets.

R. A. Duine, Kyung-Jin Lee [...] & M. D. Stiles

Focus: Antiferromagnetic spintronics

Review Articles

Review Article | 02 March 2018

Spin transport and spin torque in antiferromagnetic devices

As part of a focus on antiferromagnetic spintronics, this Review considers the role of spin transport and spin torque in potential antiferromagnetic memory devices.

J. Železný, P. Wadley [...] & H. Ohno

Focus: Antiferromagnetic spintronics

Review Article | 02 March 2018

Antiferromagnetic opto-spintronics

An overview of how electromagnetic radiation can be used for probing and modification of the magnetic order in antiferromagnets, and possible future research directions.

P. Němec, M. Fiebig [...] & A. V. Kimel Focus: Antiferromagnetic spintronics

Review Article | 02 March 2018

Topological antiferromagnetic spintronics

Topological states of various kinds may find application in spintronic devices. The authors review recent progress in this area.

Rare-earth (RE)-transition metal (TM) Ferrimagnet

- S = Angular momentum M = Magnetic moment γ = Gyromagnetic ratio $S = -\frac{M}{\gamma} = -\frac{\hbar}{g_L \mu_B} M$
- Lande-g factor (g_L)

→ 2.2 for Co, 2.0 for Gd

For RE-TM ferrimagnets, T_M ($M_{tot} = 0$ but $S_{tot} \neq 0$) is different from T_A ($S_{tot} = 0$ but $M_{tot} \neq 0$)

 T_M : Magnetic moment compensation point T_A : Angular moment compensation point \rightarrow Spin dynamics is antiferromagnetic at T_A + finite Zeeman coupling

Antiferromagnet vs Ferrimagnet

$$\frac{dS}{dt} = \frac{1}{i\hbar} [S, \mathcal{H}] \qquad \blacksquare \qquad \frac{d\mathbf{M}}{dt} = -\gamma \mathbf{M} \times \mathbf{B}$$

Time evolution of the state of a magnet is governed by the commutation relation of the angular momentum **S**, not of the magnetic moment **M**.

At T_A ($S_{tot} = 0$ but $M_{tot} \neq 0$), the spin dynamics of ferrimagnets is antiferromagnetic, but a magnetic field works

Equations of Motion with two collective coordinates: DW position X and DW angle ϕ

$$M\ddot{X} + G\phi + \frac{M}{\tau}\dot{X} = F$$
$$I\ddot{\phi} - G\ddot{X} + \frac{I}{\tau}\dot{\phi} = -\kappa\sin\phi\cos\phi$$

- $G = 2(S_1 S_2) \times Area$
- At T = $T_A \rightarrow S_1 S_2 = \delta_s = 0 \rightarrow G = 0$

 \rightarrow X and ϕ are decoupled

Field-driven ferrimagnetic DW motion: Theory (2)

In the precessional regime

DW speed
$$v_{DW} = \frac{\alpha s}{(\alpha s)^2 + \delta_s^2} (M_1 - M_2) \lambda H_2$$

Walker breakdown field $H_{WB} = \frac{K_d \alpha s}{2\delta_s (M_1 - M_2) \lambda}$

 $\sim \sim$

• At T =
$$T_M \rightarrow M_1 - M_2 = 0$$

 \rightarrow v_{DW} = 0

& DW motion changes its direction at T_M

• At T = $T_A \rightarrow \delta_s = 0 \& M_1 - M_2 \neq 0$

→ v_{DW} = maximum & $H_{WB} \rightarrow \infty$

$$\alpha S = \alpha_1 S_1 + \alpha_2 S_2$$

- $\boldsymbol{\alpha}$: damping constant
- λ : DW width
- H : external field
- K_d : DW hard-axis anisotropy

Field-driven DW Experiment: FeCoGd

Kim et al., Nat. Mater. 16, 1187 (2017)

Determination of T_M

T_M is found to be 220 K

DW velocity: Experiment

Field-driven DW Experiment: FeCoGd

Kim et al., Nat. Mater. 16, 1187 (2017)

• Solid lines : $v_{DW} = \frac{\alpha s}{(\alpha s)^2 + \delta_s^2} (M_1 - M_2) \lambda H$

•
$$T_A \rightarrow \delta_s = 0$$

Field-driven DW motion assisted by ±current J

T. Okuno et al. Nat. Electron. 2, 389 (2019)

P = spin polarization, α = damping, β = non-adiabaticity

Expected v_{STT} as a function of temperature (or δ_s)

The signs of P and β do not change at T_A (i.e., spin transport is dominated by TM elements)

Adiabatic STT $v_{A-STT} = -\frac{\delta_s}{\delta_s^2 + (\alpha s)^2} PJ$ - P > 0 - P < 0 v_{A-STT} (arb. unit) 2 -6+ -1.0 -0.5 0.5 0.0 1.0 net spin density, δ_{s} (arb. unit) Anti-symmetric & $v_{A-STT} = 0 @ T_A$

→ No DW tilting → No adiabatic contribution

Non-adiabatic STT

 \rightarrow Equivalent with a magnetic field

Field-driven DW motion assisted by ±current J

 $\beta \mathbf{P} < \mathbf{0} \Rightarrow \beta < \mathbf{0}$

Fitting results

Fitting Parameters

$$\begin{aligned} \alpha &= 0.00317 \pm 0.00009 \\ \beta &= -0.529 \pm 0.016 \\ P &= 0.092 \pm 0.001 \end{aligned}$$

- Small damping → also observed in another set of experiment (PRL 122, 127203 (2019))
- Negative β → Garate et al. PRB 79, 104416 (2009); β can be negative in systems with both holelike and electronlike carriers.
- Large |β| & small P → possibly due to antiferromagnetic coupling

Enhanced non-adiabaticity for AF-DWs

H.-J. Park et al. Phys. Rev. B 101, 144431 (2020)

• Linear response theory in a tight-binding model

Larger non-adiabatic torque at shorter AF-DW

Enhanced non-adiabaticity for AF-DWs H.-J. Park et al. Phys. Rev. B 101, 144431 (2020)

• Spatial profile of non-adiabatic torque for AF-DW

- Oscillatory behavior → Enhanced non-adiabaticity due to spin mistracking [J. Xiao et al. PRB 73, 054428 (2006); K.-J. Lee et al. Phys. Rep. 531, 89 (2013)]
- Similar conclusion for SOT on single domain ferrimagnet [Yu et al., Nat. Mater. 18, 29 (2019)]

Skyrmion Hall effect

W. Jiang et al., Nat. Phys. (2017); K. Litzius et al., Nat. Phys. (2017)

• Transverse deflection of skyrmion ~ the Hall effect

Charge Hall effect vs Skyrmion Hall effect

Charge Hall effect

Vanishing skyrmion Hall effect for antiferromagnet ($s_{net} = \delta_s = 0$) Barker & Tretiakov, PRL **116**, 147203; Zhang, Zhou, & Ezawa, NCOMM **7**, 10293 (16)

Current-driven bubble elongation in GdFeCo/Pt

Hirata et al., Nat. Nanotechnol. 14, 232 (2019)

DMI field = 63 mT >> DW hardaxis anisotropy field = 0.9 mT → Well-defined topological charge Q

ANDI

в

10 µm

Bubble elongation ~ half skyrmion motion

Current-driven bubble elongation in GdFeCo/Pt

Hirata et al., Nat. Nanotechnol. 14, 232 (2019)

Elongation angle \approx 0 at T_A \rightarrow Vanishing skyrmion Hall effect for s_{net} = 0

AF-DW motion by spin-orbit torque Shiino et al. PRL 117, 087203 (2016)

See also Gomonay, Jungwirth, Sinova, PRL 117, 017202 (2016)

Antiferromagnetic spin-wave dynamics Shiino et al. PRL 117, 087203 (2016)

$$\frac{\partial^2 n_x}{\partial t^2} = a\gamma^2 \tilde{A} \frac{\partial^2 n_x}{\partial x^2} - a\gamma^2 K n_x$$

- n = Neel order parameter
- a = homogeneous exchange
- A = inhomogeneous exchange
- K = magnetic anisotropy

$$\boldsymbol{\nabla}^2 \boldsymbol{\phi} - \frac{\partial^2 \boldsymbol{\phi}}{\partial t^2} = -4\pi\rho$$

From Maxwell's equations, the wave equations:

$$\nabla^2 \mathbf{A} - \frac{\partial^2 \mathbf{A}}{\partial t^2} = -4\pi \mathbf{J}.$$

Lorentz invariance

No particle can exceed the speed of light (special relativity) Lorentz contraction: $\sqrt{1 - (v/c)^2}$

Lorentz contraction of antiferromagnetic DW Shiino et al. PRL 117, 087203 (2016)

v_{max} = maximum spin-wave velocity

Experiment on relativistic kinematics of AF DW Caretta et al. Science 370, 1438 (2020)

Bi-YIG/Pt (almost compensated and very small damping)

Experiment (G. S. D. Beach group)

Theory/Modeling

Lines (non-relativistic)

$$v_0 = \frac{\pi}{2} \gamma \Delta \mu_0 H_x$$

Curves (Relativistic)

$$v = v_g^{max} / \sqrt{1 + \left(v_g^{max} / v_0 \right)^2}$$

Experiment on relativistic kinematics of AF DW

Caretta et al. Science 370, 1438 (2020)

Quantum storage and transduction

Cavity spintronics

Harder and Hu, Solid State Phys. 69, 47 (2018)

- Coupling between microwaves and magnons in a cavity
- In quantum information processing, photons in a cavity mediate qubits from one physical constituent to another.
- Spin ensemble for storage and transduction of qubits
- Coupling strength $\Omega \propto \sqrt{(\# of spins)} \rightarrow$ Ferromagnet
- How about ferrimagnets?

Enhanced magnon-photon coupling at T_A J. Shim et al., Phys. Rev. Lett. 125, 027205 (2020)

Coupling efficiency =
$$\Omega/\omega = \zeta \approx K \sqrt{\mu_0 M_l^2} \left[\frac{s^2}{K_u (a\delta_s^2 + K_u s^2)} \right]^{1/4}$$
.

where M_l = net moment, s = total spin density, and δ_s = net spin density

• At T_A ($\delta_s = 0$), the magnon-photon coupling is enhanced by a concerted action between the antiferromagnetic dynamics and finite Zeeman coupling

Enhanced magnon-photon coupling at T_A

- Comparison of excitation frequency (ω) and coupling strength (Ω) among ferrimagnet (FIM), antiferromagnet (AFM), and ferromagnet (FM)
- Strong coupling at high excitation frequency is realized at T_A

Summary

Antiferromagnetic spin dynamics at the angular momentum compensation point (T_A) in a ferrimagnet

1. Maximum field-driven DW speed → Zeeman energy is used only

- 4. Skyrmion Hall effect \rightarrow No rotational motion at T_A due to zero net spin density \rightarrow Skyrmion Hall effect vanishes at T_A
- 5. Enhanced magnon-photon coupling at high frequency at T_A
- 6. Change of spin-wave handedness at T_A [Nat. Mater. **19**, 980 (2020)]

Acknowledgements

Teruo Ono (Kyoto Univ.)

Geoffrey S. B. Beach (MIT)

Duck-Ho Kim (KIST)

Yaroslav Tserkovnyak (UCLA)

H. Awano (Toyota Tech. Inst.)

Caroline Ross (MIT)

Hyungsoo Yang (NUS)

Kab-Jin Kim (KAIST)

Se-Kwon Kim (KAIST)

A. Tsukamoto (Nihon Univ.)

Sug-Bong Choe (Seoul Nat'l Univ.)

X. Qiu (Tongji Univ.)

Theo Rasing (Radboud Univ)

Thank you!