
Detecting, imprinting and switching
spin chirality in magnetic materials

Yuriy Mokrousov

Peter Grünberg Institute, Forschungszentrum Jülich, Germany

Institute of Physics, University of Mainz, Germany



Rich world of chiral states

Topological spin textures

Fert et al. Nat. Nano. 8, 152 (2013)

Frustrated Magnets

Canted Magnets

Smejkal et al., Nat. Phys. 14, 242 (2018)

Spirals, Domain walls

Yang et al. PRL 124, 137201 (2020)
Menzel et al. PRL 108, 197204 (2012)

Antiferromagnets
Ferromagnets

scalar spin chirality

vector spin chirality

“octupolar” chirality



Why chirality? 

➢ There is a zoo of chiral states out there!

You have to deal with them!

➢ We have to learn how to manipulate them

➢ Profound impact on: energetics, transport, dynamics

➢ Platform for “advanced” and/or topological concepts

Skyrmions

Teleportation & Entanglement 

Novel Topological States
Exotic States of Matter: 

chiral spin liquids 

Spin superfluidity

Superconductivity
Figure 4 

 

(Ultrafast) topological

robustness

Kerber et al., 
Nat. Comm. 11, 6304 (2020)



magnetic sample

Magnetization

Chirality?

How to read out chirality and chiral states?

How to switch chirality?

Chiral currents 

for chirality switching

“Hidden” and “driven” chirality out of equilibrium

Concept of chiral currents

Chiral Hall effect in canted systems

Chiral Hall effect in textures

Chiral spin currents

Chirality, Berry phase & spin torque

Driving chirality by laser excitations

Chirality by fluctuations

Magnon drag of chirality

Chirality and g-factor

black box



Read-Out: Anomalous Hall Effect

(images from) Smejkal et al.

Sci. Adv. 6, eaaz8809 (2020)

Taguchi et al., Science 291, 2573 (2001) (exp. Nd2Mo2O7)

Shindou, Nagaosa, PRL 87, 116801 (2001) (fcc 3Q)

Machida et al., Nature 463, 210 (2010) (exp. Pr2Ir2O7)

Machida et al. PRL 98, 057203 (2007) (exp. Pr2Ir2O7)

Tomizawa, Kontani, PRB 80, 100401 (2009) (theo. Nd2Mo2O7)

J. Kübler, C. Felser, EPL 108, 67001 (2014) (theo. Mn3X) 

Chen, Niu, MacDonald, PRL 112, 017205 (2014) (theo. Mn3Ir)

Nayak et al., Sci. Adv. 2, e1501870 (2016) (exp. Mn3Ge)

Sürgers et al., Nat. Comm. 5, 3400 (2014) (exp. Mn5Si3)

Zhou, Hanke, Feng, et al. PRB 2019, PRM 2020 (Mn3XN)

... goes on ...

➢ AHE vanishes in collinear AFMs

➢ Non-collinear AFMs offer a rich platform

➢ Coplanar AFMs + Spin-Orbit Interaction (SOI)

scalar spin chirality

Smejkal, YM, Yan, MacDonald, Nat. Phys. 14, 242 ‘18 

➢ Non-coplanar AFMs: SOI not needed
“topological” Hall effect

prominent e.g. in skyrmions

Ferromagnets

Mz



Probing Scalar Chirality by Magneto-Optics
Feng, Hanke, YM et al. Nature Comm. 11, 118 (2020)

large topological 
rotation angles! frustrated systems, helimagnets, skyrmions…

➢ Optical / electrical probe for spin structures (?)

Strong MO response

as scalar chirality marker!

g-FexMn1-x

No spin-orbit!
No net magnetization!

➢ Kerr and Faraday effects

Scalar spin chirality mediates topological

magneto-optical phenomena

chirality
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Sürgers et al., Nat. Comm. 5, 3400 (2014) (exp. Mn5Si3)

Zhou, Y.M., Hanke, Feng, et al. PRB 2019, PRM 2020 (Mn3XN)

... goes on ...

➢ AHE does not exist in collinear AFMs

when there is SOI 

and crystal 

symmetry is low...

➢ Non-collinear AFMs offer a rich platform

➢ Coplanar AFMs + Spin-Orbit Interaction (SOI)

scalar spin chirality

Crystal Hall Effect

Smejkal, YM, Yan, MacDonald, Nat. Phys. 14, 242 ‘18 

➢ Non-coplanar AFMs: SOI not needed
“topological” Hall effect…



Toy Model : 2 atoms per cell

hopping Rashba spin-orbit exchange

Point group symmetry

And let’s assume that everything is possible…



Hall effect : Effect of canting
Kipp, Samanta, Lux, Go, Merte, YM et al. Comm. Physics 4, 99 (2021)

Chiral Hall Effect

Crystal Hall Effect

Smejkal et al. Sci. Adv. 6, eaaz8809 
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FIG. 2. The emergence of chiral and crystal Hall effect of ferro- and antiferromagnets on a honeycomb lattice. (a) The definition of the

angles used to characterize the canted spin structure of spins SA and SB . The initial direction of collinear magnetization ŝ0 = (✓0 , ' 0) with
polar ✓0 and ' 0 is kept constant during canting, ŝ0 ⇠ SA + SB . The spins are canted in the plane of constant ' 0 by an angle✓for SA and

−✓for SB with respect to ŝ0 . (b-c) The changes in the bandstructure of the ferromagnetic (b) and antiferromagentic (c) spins initially along
ŝ0 = (100◦ , 10◦ ) upon canting by ± 10◦ . The thin grey line with circles marks the initial bandstucture while blue and red lines mark the

bandstructure for ✓= 10◦ and ✓= − 10◦ , respectively. (d-e) The corresponding AHC, σx y , as a function of the Fermi energy is shown for
the FM (d) and AFM (e) cases for positive (solid blue line) and negative (dashed red line) canting. The symmetric, σs

x y , and anti-symmetric,

σa
x y , parts of the AHC are shown with dark orange and dark blue lines. All values are in e2 / h. (f-k) While for the high-symmetry direction of

ŝ0 = (100◦ , 0◦ ) the symmetry properties of the Berry curvature of the first two bands in the FM case,⌦a (10◦ , k ), lead to vanishing overall

chiral Hall effect, (f), the breaking of symmetry for ŝ0 = (100◦ , 10◦ ) results in a net effect, (g). The complex structure of ⌦a (10◦ , k) of the
first band from (c) in k -space, (h), is clearly correlated with the separation between thefirst and second bands in energy, shown in (k).

state. This topological phase transition is the consequence of

the presence of a so-called mixed Weyl point in the electronic

structure at EF = 0eV for the in-plane magnetization [25],

theBerry phasenatureof which wediscuss later. Correspond-

ingly, energy-resolved calculations of the chiral Hall conduc-

tivity as a function of the angle✓0, presented in Fig. 3(a), re-

veal a pronounced and very complex structure of σa
x y next to

the mixed Weyl point, which stands in contrast to a relatively

smooth behavior of σs
x y in (✓0, EF )-space (not shown). On

the other hand, the chiral Hall effect exhibits a much stronger

response to thecanting angle✓, ascompared toσs
x y : asshown

in Fig. 3(b) for the case of half-filling, while σs
x y changes by

about 0.05e2/ h for thecanting angleof up to 10◦ , in thesame

range of ✓the corresponding change of σa
x y is larger by an or-

der of magnitude. In accordance to arguments from above, the

general trend of σa
x y andσs

x y with✓is linear and quadratic, re-

spectively, when the canting angle is sufficiently small.

In contrast to a ferromagnet, for the antiferromagnetic case

the magnitudes of the crystal and chiral Hall effects are large

and comparable, but they are manifest in different energy re-

gions, see Fig. 2(e). The AFM case presents another exam-

ple of a correlation between the antisymmetric Berry curva-

ture and the electronic structure: as visible in Fig. 2(h,k) the

emergenceof strong features in theBerry curvatureof thefirst

band of the model is consistent with thefirst and second band

coming close to each other in energy at specific points in the

BZ. In analogy to ferromagnet, this gives rise to monopoles

of special type which manifest in an enhanced antisymmetric

Berry curvature, as discussed below. In analogy to the FM

case considered above, the scaling of the chiral Hall effect

with the canting angle can beconfirmed to be linear for small

✓, see e.g. the inset of Fig. 3(b).

Overall, as we have shown above by explicit calculations,

the linear in spin chirality flavor of theHall effect − thechiral

Hall effect − exists and can be prominent both in FMs and

AFMs. In the next two sections we uncover the nature of the

Chiral Hall Effect of FMs

honeycomb Rashba ferromagnet

No change in magnetization
with sense of chirality!
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FIG. 4. Chiral and crystal Hall effect in monolayer of antiferromagnetic SrRuO3 (SRO). (a) Top view of the monolayer with staggered
magnetization along x . Green, blue and orange spheres mark Sr, Ru and O atoms, respectively, with arrows representing Ru spins. Visible is

the octahedral distortion of oxygen cage surrounding Ru atoms (rotation in the xy-plane and tilt with respect to the z-axis). (b) Band structure
of SRO monolayer with spins along x (black line, open circles), and in the canted state with canting angle of ✓= ± 5◦ in the xy-plane with

respect to thex-axis (green and red lines for positiveand negativechirality, respectively). (c) Top: Computed AHC asafunction of Fermi level
position in the collinear (along x) as well as in canted state considering the canting angle✓= ± 5◦ in the plane of the SRO film (xy-plane)

with respect to the x-axis. The corresponding geometrical setup is shown schematically. Shaded grey areas corresponds to the AHC in the
initially collinear state, σ0

x y , while blue and red lines mark the AHC for positive and negative chirality. Bottom: the symmetric, σs
x y (blue

line), and antisymmetric, σa
x y (orange line) parts of the AHC areshown on thebackground of the AHC of thecollinear state (shaded area). (d)

Same as in (c) for the xz-plane of canting (with geometrical setup shown schematically). While the crystal Hall effect (σs
x y ) of SRO displays

little variation with the canting plane, the chiral Hall effect (σa
x y ) is extremely sensitive to the interplay of crystal symmetries and canting.

the in-plane magnetization of the FM model, Fig. 3(a), which

underlines the staggered mixed nature of the band degener-

acy, goes hand in hand with large variation of the collinear

AHE and large mixed Berry curvature around the degeneracy

point, found in thepast [25]. Theemergenceof such staggered

mixed Weyl points in the electronic structure correspondingly

results in a large response of the AHE to canting, found for

instance in [16–18], large response in terms for the so-called

chiral orbital magnetization [15, 24], and a large chiral Hall

effect, in accordance to our calcualtions.

Mater ial example: SrRuO3. We now move on to a specific

material examplewhich, upon doping, hostspronounced crys-

tal and chiral Hall effects at the same time. Namely, we con-

sider amonolayer of SrO-terminated SrRuO3 (SRO) thin films

grown on SrTiO3, comprising two Ru spin moments which

are arranged antiferromagnetically in the collinear ground

state [12, 30–33], with ŝ0 along the x-axis in the plane of

the film (xy-plane), see Fig. 4(a). In the ground state, the

monolayer of SRO exhibits a symmetry breaking associated

with rotation and tilts of oxygen octahedra surrounding Ru

atoms [12]. The band structure of SRO monolayer around the

Fermi energy is dominated by Ru-t2g states. The combined

effect of octahedral distortion, SOI and AFM ordering on Ru-

t2g states leads to a formation of a 0.96eV gap at the Fermi

energy and breaking of degeneracies among thebandspresent

in a symmetric phase of this material, see Fig. 4(b) [12]. The

corresponding band splittings are found to bequite prominent

around the energies of − 0.60, − 0.21 and + 1.13eV, reflecting

the strong effect of SOI on the states there, Fig. 4(b).

Starting from the collinear AFM ground state of the sys-

tem weconsider asmall canting of staggered spins away from

the x-axis by ✓= 5◦ (chirality “+ ”) and ✓= − 5◦ (chirality

“− ” ), both in the xy-plane (i.e. keeping the spins in-plane),

as well as in the xz-plane (as in Fig. 2(a)). This is directly

related to therearrangement of theelectronic bandswith cant-

ing of opposite chirality, shown for the xy canting plane in
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Kipp, Samanta, Lux, Go, Merte, YM et al. Comm. Physics 4, 99 (2021)

SrRuO3

Mn2Au

Samanta, Ležaić, YM, et al. JAP 127, 213904 (2020)

Colossal Chiral Hall Effect

DyPtBi: Zhang, GdPtBi: Suzuki, EuTiO3: Takahashi 

CaNaMnBi2: Yang et al. PRL 124, 137201 (2020)

Chiral and Crystal Hall : can be also 

distinguished by optical means
Zelezny et al. PRL 113, 157201 (2014)

Bodnar et al. Nat. Comm. 9, 348 (2018)

No crystal Hall effect in collinear state :

Chiral Hall Effect in AFMs

Chiral Hall

b)

a) c) d)b)

a) c) d)

crystal

b)

a) c) d)

chiral

b)

a) c) d)

b)

a) c) d)

b)

a) c) d)



Chiral Currents : Symmetry
Kipp, Samanta, Lux, Merte, Lezaic, YM et al. Comm. Physics 4, 99 (2021)

staggered / ferromagnetic:

AHE is odd under time-reversal

This suggests the following expansion :

After including the staggered nature of tensors into account: 



Chiral Hall Effect: Impact
Kipp, Samanta, Lux, Merte, YM et al. Comm. Physics 4, 99 (2021)
Bac, Koller, Lux, Assaf et al. arXiv:2103.15801 (2021)
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chiral Hall effect as a phenomenon which can be clearly dis-

tinguished from the “conventional” AHE, associated with the

change in the overall magnetization of the system. For FMs,

the conceptual difference between the two is very clear, as

both of the canted states, used to arrive at the chiral Hall ef-

fect, Fig. 1(a), share the same overall magnetization. How to

draw the distinction for AFMs is less obvious, as the change

in chirality in Fig. 3(b) is associated with the change in sign

and magnitude of the overall “ferromagnetic” magnetization

arising upon canting. Below, we formalize the classification

of chiral and crystal Hall effects consistently in canted ferro-

and antiferromagnets, referring to symmetry arguments.

Symmetry analysis. The magnetic order is fully character-

ized by thestaggered field n− and theferromagnetic field n+

which aredefinedaccording ton± = SA ± SB . TheHall con-

ductivity can thus be decomposed into terms which are even

and odd with respect to the interchange of n̂− ! − n̂− , i.e.,

σxy (n+ ; n− ) = σodd
xy (n+ ; n− ) + σeven

xy (n+ ; n− ). (3)

Theoff-diagonal componentsof theconductivity asthey arise

fromtheBerry curvaturecan beinterpreted asthecomponents

of an axial vector which is odd under time-reversal. Each of

these terms can thus be further expanded as a sum over all

termswhich areodd under magnetization reversal:

σodd
xy =

1X

k,l= 0

(codd
xy )i (n⌦2k+ 1

− ⌦n⌦2l
+ )i (4)

σeven
xy =

1X

k,l= 0

(ceven
xy )i (n⌦2k

− ⌦n⌦2l+ 1
+ )i , (5)

where i = (i1, . . . , i2(k+ l )+ 1) is a multi-index. This decom-

position into odd and even partsalso corresponds to theparity

under magnetic sublattice interchange, which would leaven̂+

invariant. Therefore, thesymmetry requirements for thesetwo

tensors are quite different. In order for σeven
xy to be finite, the

crystal symmetry needs to support axial tensorsof odd order.

In particular, the effect is then even under lattice inversion

and in our model it is thus necessarily even in the spin-orbit

coupling strength ↵R . The case is different for σodd
xy , whose

tensorial componentsaboveeither transform axial or polar de-

pending on whether or not thesymmetry under consideration

interchanges the lattice sites: since PSA / B = SB / A for the

inversion operation P , thestaggered magnetization would be-

havepolar for our lattice, i.e., Pn− = −n− , and not axial as

n+ . For small values of thespin-orbit strength, σodd
xy is there-

forelinear in↵R (generally odd in↵R), which isacorollary to

the general fact that polar tensors of odd rank are identically

zero in centrosymmetric crystal structures, seeTable I.

While the general expansion in Eqs. (4-5) is in principle

complete, a formulation in terms of the chirality χ offers a

deeper insight into the various effects which can appear in

ferro- and antiferromagnets. Based on the definitions above

thechirality itself can bereinterpreted as

χ = SA ⇥SB =
1

2
(n− ⇥n+ ), (6)

FIG. 3. Properties of the chiral Hall effect. (a) The behavior of the
σa

x y at 10◦ canting asafunction of theFermi energy and direction of

collinear FM magnetization s0 = (✓0, 10◦ ). While thefinestructure
of the chiral Hall effect correlates with the band structure dynamics

in response to canting and rotation of the initial magnetization, the
origin of the effect in the Weyl point at half filling for ✓0 = 90◦ ,

serving as a source of staggered mixed Berry curvature, is visible.
(b) Thescaling of thecrystal (orange line) and chiral (blue line) Hall

effects with the canting angle ✓at half-filling of the FM model at
s0 = (100◦ , 10◦ ). The inset displays the scaling of the chiral Hall

effect with✓for EF = − 1.5eV in theAFM casewith thesames0.

which is therefore odd in both n− and n+ , but even un-

der time-reversal. If n+ · n− = 0, one has χ ⇥ n± =

⌥kn± k
2n⌥/ 2. Hence, the leading order terms in the expan-

sion of σodd
xy and σeven

xy can bewritten in two equivalent ways

by either replacing all appearing n− or n+ factors in termsof

chirality, i.e.,

σodd
xy ⇠

X

i

↵FM
i (n̂+ )χ i =

X

i j

↵A FM
i j (n̂− )χ i χ j (7)

σeven
xy ⇠

X

i

βA FM
i (n̂− )χ i =

X

i j

βFM
i j (n̂+ )χ iχ j , (8)

where ↵FM
i , ↵A FM

i j and βFM
i , βA FM

i j are odd under time-

reversal. The choice of ↵ and β coefficients is a matter

of philosophy. In a weakly canted ferromagnet, for exam-

ple, it makes sense to formulate the change in conductivity

as response to the χ where the coefficients depend only on

the electronic structure of the unperturbed, collinear system,

which is solely determined by n̂+ . For a weakly canted anti-
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which aredefinedaccording to n± = SA ± SB . TheHall con-

ductivity can thus be decomposed into terms which are even

and odd with respect to the interchange of n̂− ! − n̂− , i.e.,

σxy (n+ ; n− ) = σodd
xy (n+ ; n− ) + σeven

xy (n+ ; n− ). (3)

Theoff-diagonal components of theconductivity asthey arise

from theBerry curvaturecan beinterpreted asthecomponents

of an axial vector which is odd under time-reversal. Each of

these terms can thus be further expanded as a sum over all

terms which areodd under magnetization reversal:

σodd
xy =

1X

k,l= 0

(codd
xy )i (n⌦2k+ 1

− ⌦n⌦2l
+ )i (4)

σeven
xy =

1X

k,l= 0

(ceven
xy ) i (n⌦2k

− ⌦n⌦2l + 1
+ )i , (5)

where i = (i1, . . . , i 2(k+ l )+ 1) is a multi-index. This decom-

position into odd and even partsalso corresponds to theparity

under magnetic sublattice interchange, which would leaven̂+

invariant. Therefore, thesymmetry requirements for thesetwo

tensors are quite different. In order for σeven
xy to be finite, the

crystal symmetry needs to support axial tensors of odd order.

In particular, the effect is then even under lattice inversion

and in our model it is thus necessarily even in the spin-orbit

coupling strength ↵R . The case is different for σodd
xy , whose

tensorial componentsaboveeither transform axial or polar de-

pending on whether or not the symmetry under consideration

interchanges the lattice sites: since PSA / B = SB / A for the

inversion operation P , thestaggered magnetization would be-

havepolar for our lattice, i.e., Pn− = −n− , and not axial as

n+ . For small values of thespin-orbit strength, σodd
xy is there-

forelinear in↵R (generally odd in↵R ), which isacorollary to

the general fact that polar tensors of odd rank are identically

zero in centrosymmetric crystal structures, seeTable I.

While the general expansion in Eqs. (4-5) is in principle

complete, a formulation in terms of the chirality χ offers a

deeper insight into the various effects which can appear in

ferro- and antiferromagnets. Based on the definitions above

thechirality itself can bereinterpreted as

χ = SA ⇥SB =
1

2
(n− ⇥n+ ), (6)

FIG. 3. Properties of the chiral Hall effect. (a) The behavior of the
σa

x y at 10◦ canting asafunction of theFermi energy and direction of

collinear FM magnetization s0 = (✓0, 10◦ ). While thefinestructure
of the chiral Hall effect correlates with the band structure dynamics

in response to canting and rotation of the initial magnetization, the
origin of the effect in the Weyl point at half filling for ✓0 = 90◦ ,

serving as a source of staggered mixed Berry curvature, is visible.
(b) Thescaling of thecrystal (orange line) and chiral (blue line) Hall

effects with the canting angle ✓at half-filling of the FM model at
s0 = (100◦ , 10◦ ). The inset displays the scaling of the chiral Hall

effect with✓for EF = − 1.5eV in theAFM casewith thesames0 .

which is therefore odd in both n− and n+ , but even un-

der time-reversal. If n+ · n− = 0, one has χ ⇥ n± =

⌥kn± k
2n⌥/ 2. Hence, the leading order terms in the expan-

sion of σodd
xy and σeven

xy can bewritten in two equivalent ways

by either replacing all appearing n− or n+ factors in termsof

chirality, i.e.,

σodd
xy ⇠

X

i

↵FM
i (n̂+ )χ i =

X

i j

↵A FM
i j (n̂− )χ i χ j (7)

σeven
xy ⇠

X

i

βA FM
i (n̂− )χ i =

X

i j

βFM
i j (n̂+ )χ i χ j , (8)

where ↵FM
i , ↵A FM

i j and βFM
i , βA FM

i j are odd under time-

reversal. The choice of ↵ and β coefficients is a matter

of philosophy. In a weakly canted ferromagnet, for exam-

ple, it makes sense to formulate the change in conductivity

as response to the χ where the coefficients depend only on

the electronic structure of the unperturbed, collinear system,

which is solely determined by n̂+ . For a weakly canted anti-

Tesla

MnBi2Te4

8 Tesla                                4 Tesla

➢ Prediction of symmetry analysis:

“features” in B-field behavior

scaling law with magnetization

Will help you read out chirality

o
d

d
e
v
e
n

AFM chirality (FM chirality)2



Chiral Hall Effect: Origins
Kipp, Samanta, Lux, Go, Lezaic, YM et al. Comm. Physics 4, 99 (2021)

Complex geometric nature: quantum 
metric tensor

mixed curvature 
tensor

k-curvature 
tensor

Staggered tilt

staggered SOT

Chiral Hall

Mn2Au

“staggered” mixed Berry curvature

“staggered” spin-orbit torques ➙

Non-linear in E contributions 

to the Hall effect

➢ Reference state + small admixture of needed chirality

apply perturbation theory ➙ obtain expressions

2-spin chiral Hall effect: 



Chiral Currents : Mn3X 
Zhou, Hanke, Feng, Blügel, Yao, Y.M. + Lux (2019, 2022)

vector chirality

“octupolar” chirality

Suzuki et al. PRB 95, 094406 (2017)

Magnetic state:

Projector onto 

relevant subspace:

Good fit to ab-initio data:

enables read-out via AHE



Chiral Spin Currents
Go, Sallermann, Lux, Blügel, Gomonay, Y.M., arXiv:2201.11476 (2022)
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We propose a way to electrically switch the spin chirality of non-collinear antiferromagnets in the absence
of an external magnetic field in a deterministic manner by using the spin current whose spin polarization is

inhomogeneous in space, which we denote non-collinear spin current. While it is commonly assumed that the
spin polarization of the spin Hall current is uniform, asymmetric local environment generally allows the spin

polarization to be non-collinear in space. As an example, we demonstrate from a tight-binding model for a
layered Kagome magnet such as Mn3Sn that the spin Hall current flowing perpendicular to the Kagome layer

has non-collinear polarization. In particular, if the non-collinear polarization of the spin current possesses a
“chiral” component, it can couple to the chiral magnetic texture and switch the chirality, which is illustrated by

theatomistic spin simulation. Our theoretical prediction can be readily tested in experiments, which will open a
novel route toward electric control of complex spin structures in non-collinear antiferromagnets.

In recent years, it has been realized that antiferromagnets

(AFMs) can take the role of ferromagnets in spintronics for

their promising features. Owing to the high frequency na-

ture of eigenmodes in AFMs, it offers a unique opportunity

to study ultrafast phenomena in nonequilibrium, which might

open a route to achieving AFM devices operating within ps

times scale. Another unique feature of the AFMs is its re-

silience to an external magnetic field and absence of a stray

field. While it is advantageous for increasing the memory

density, it makes manipulating magnetic orders in AFMs ex-

tremely difficult. One of the major breakthroughs was a re-

alization that magnetic moments in the AFM can be electri-

cally controlled in an atomic scale due to “ locally” asymmet-

ric environment of each sublattice sites although the inver-

sion symmetry is globally present, which opened an era of

antiferromagnetic spintronics. While early studies have fo-

cused on collinear AFMs such as Mn2Au and CuMnAs, re-

cent discoveries of frustrated Kagome AFMs such as Mn3X

(X=Sn, Ge) attracted great deal of attention owing to their

unique properties such as large anomalous Hall and Nernst

effects and magneto-optical Kerr effect despite vanishingly

small net magnetic moemnt, which is in clear contrast to a

common wisdom known for ordinary ferromagnets. These ef-

fects are driven by momentum-space Berry curvature origi-

nating from the chiral spin texture in real space. In particular,

Mn3Sn is identified asa magnetic Weyl semimetal, which ex-

hibit magnetotransport phenomena of topological origin, e.g.

chiral anomaly.

However, controlling magnetic moments is even more

challenging in noncollinear AFMs than in collinear AFMs.

Nonetheless, Tsai et al. succeeded in switching magnetic

configurations in polycrystalline Mn3Sn/Pt heterostructures

by using the spin Hall effect (SHE) of Pt under an external

magnetic field. Meanwhile, Takeuchi et al. investigated epi-

taxial Mn3Sn/Pt heterostructures and discovered a coherent

rotation of the chiral spin texture when the spin polarization

of the SHE is perpendicular to the Kagome plane. Unfortu-

nately, this cannot be used to deterministically switch the chi-

ral spin texture because the chiral rotation depends on the du-

ration and magnitude of the current pulse. We note that both

of thesestudies utilized aconventional spin Hall current to in-

duce magnetic excitations in Mn3Sn, which is analogous to a

heavy metal/ferromagnet bilayer.

However, a unique feature of AFMs is the sublattice de-

gree of freedom. Not only the equilibrium magnetic moment

but also their excitations are expected to be dependent on the

sublattice. With this motivation, we explore the possibility

of sublattice-dependent spin current excitation and investigate

how it affects the dynamics of the magnetic texture in non-

collinear AFMs. Our main finding is that thespin polarization

of the spin current excitation can be non-collinear in space.

In cubic crystals, the polarization of the spin current exci-

tation is identical in every atomic sites [Fig. 1(a)], which is

well known for the SHE in transition metals. However, crys-

tals with inequivalent sublattices may exhibit a NCSC due to

asymmetric potential in each sites. Layered metallic Kagome

magnets such as Mn3X is an example, where the spin Hall

current can havenon-collinear configuration of thespin polar-

ization [Fig. 1(b)].

In this Letter, we show that the NCSC is a general con-

(a) (b)

FIG. 1. Schematic illustration of the (a) conventional versus (b) non-
collinear spin Hall currents. The red arrows represent the direction
of the spin polarization and the blue arrows indicate the electron’s

propagation direction in average. NICE!!!
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We propose a way to electrically switch the spin chirality of non-collinear antiferromagnets in the absence
of an external magnetic field in a deterministic manner by using the spin current whose spin polarization is

inhomogeneous in space, which we denote non-collinear spin current. While it is commonly assumed that the
spin polarization of the spin Hall current is uniform, asymmetric local environment generally allows the spin

polarization to be non-collinear in space. As an example, we demonstrate from a tight-binding model for a
layered Kagome magnet such as Mn3Sn that the spin Hall current flowing perpendicular to the Kagome layer

has non-collinear polarization. In particular, if the non-collinear polarization of the spin current possesses a
“chiral” component, it can couple to the chiral magnetic texture and switch the chirality, which is illustrated by

theatomistic spin simulation. Our theoretical prediction can bereadily tested in experiments, which will open a
novel route toward electric control of complex spin structures in non-collinear antiferromagnets.

In recent years, it has been realized that antiferromagnets

(AFMs) can take the role of ferromagnets in spintronics for

their promising features. Owing to the high frequency na-

ture of eigenmodes in AFMs, it offers a unique opportunity

to study ultrafast phenomena in nonequilibrium, which might

open a route to achieving AFM devices operating within ps

times scale. Another unique feature of the AFMs is its re-

silience to an external magnetic field and absence of a stray

field. While it is advantageous for increasing the memory

density, it makes manipulating magnetic orders in AFMs ex-

tremely difficult. One of the major breakthroughs was a re-

alization that magnetic moments in the AFM can be electri-

cally controlled in an atomic scale due to “ locally” asymmet-

ric environment of each sublattice sites although the inver-

sion symmetry is globally present, which opened an era of

antiferromagnetic spintronics. While early studies have fo-

cused on collinear AFMs such as Mn2Au and CuMnAs, re-

cent discoveries of frustrated Kagome AFMs such as Mn3X

(X=Sn, Ge) attracted great deal of attention owing to their

unique properties such as large anomalous Hall and Nernst

effects and magneto-optical Kerr effect despite vanishingly

small net magnetic moemnt, which is in clear contrast to a

common wisdom known for ordinary ferromagnets. Theseef-

fects are driven by momentum-space Berry curvature origi-

nating from the chiral spin texture in real space. In particular,

Mn3Sn is identified as a magnetic Weyl semimetal, which ex-

hibit magnetotransport phenomena of topological origin, e.g.

chiral anomaly.

However, controlling magnetic moments is even more

challenging in noncollinear AFMs than in collinear AFMs.

Nonetheless, Tsai et al. succeeded in switching magnetic

configurations in polycrystalline Mn3Sn/Pt heterostructures

by using the spin Hall effect (SHE) of Pt under an external

magnetic field. Meanwhile, Takeuchi et al. investigated epi-

taxial Mn3Sn/Pt heterostructures and discovered a coherent

rotation of the chiral spin texture when the spin polarization

of the SHE is perpendicular to the Kagome plane. Unfortu-

nately, this cannot be used to deterministically switch the chi-

ral spin texture because the chiral rotation depends on the du-

ration and magnitude of the current pulse. We note that both

of these studies utilized aconventional spin Hall current to in-

duce magnetic excitations in Mn3Sn, which is analogous to a

heavy metal/ferromagnet bilayer.

However, a unique feature of AFMs is the sublattice de-

gree of freedom. Not only the equilibrium magnetic moment

but also their excitations are expected to be dependent on the

sublattice. With this motivation, we explore the possibility

of sublattice-dependent spin current excitation and investigate

how it affects the dynamics of the magnetic texture in non-

collinear AFMs. Our main finding is that thespin polarization

of the spin current excitation can be non-collinear in space.

In cubic crystals, the polarization of the spin current exci-

tation is identical in every atomic sites [Fig. 1(a)], which is

well known for the SHE in transition metals. However, crys-

tals with inequivalent sublattices may exhibit a NCSC due to

asymmetric potential in each sites. Layered metallic Kagome

magnets such as Mn3X is an example, where the spin Hall

current can havenon-collinear configuration of thespin polar-

ization [Fig. 1(b)].

In this Letter, we show that the NCSC is a general con-

(a) (b)

FIG. 1. Schematic illustration of the (a) conventional versus (b) non-

collinear spin Hall currents. The red arrows represent the direction
of the spin polarization and the blue arrows indicate the electron’s

propagation direction in average. NICE!!!

in spirit: spin-decomposition of AHE
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We propose a way to electrically switch the spin chirality of non-collinear antiferromagnets in the absence
of an external magnetic field in a deterministic manner by using the spin current whose spin polarization is

inhomogeneous in space, which we denote non-collinear spin current. While it is commonly assumed that the
spin polarization of the spin Hall current is uniform, asymmetric local environment generally allows the spin

polarization to be non-collinear in space. As an example, we demonstrate from a tight-binding model for a
layered Kagome magnet such as Mn3Sn that the spin Hall current flowing perpendicular to the Kagome layer

has non-collinear polarization. In particular, if the non-collinear polarization of the spin current possesses a
“chiral” component, it can couple to the chiral magnetic texture and switch the chirality, which is illustrated by

theatomistic spin simulation. Our theoretical prediction can bereadily tested in experiments, which will open a
novel route toward electric control of complex spin structures in non-collinear antiferromagnets.

In recent years, it has been realized that antiferromagnets

(AFMs) can take the role of ferromagnets in spintronics for

their promising features. Owing to the high frequency na-

ture of eigenmodes in AFMs, it offers a unique opportunity

to study ultrafast phenomena in nonequilibrium, which might

open a route to achieving AFM devices operating within ps

times scale. Another unique feature of the AFMs is its re-

silience to an external magnetic field and absence of a stray

field. While it is advantageous for increasing the memory

density, it makes manipulating magnetic orders in AFMs ex-

tremely difficult. One of the major breakthroughs was a re-

alization that magnetic moments in the AFM can be electri-

cally controlled in an atomic scale due to “ locally” asymmet-

ric environment of each sublattice sites although the inver-

sion symmetry is globally present, which opened an era of

antiferromagnetic spintronics. While early studies have fo-

cused on collinear AFMs such as Mn2Au and CuMnAs, re-

cent discoveries of frustrated Kagome AFMs such as Mn3X

(X=Sn, Ge) attracted great deal of attention owing to their

unique properties such as large anomalous Hall and Nernst

effects and magneto-optical Kerr effect despite vanishingly

small net magnetic moemnt, which is in clear contrast to a

common wisdom known for ordinary ferromagnets. Theseef-

fects are driven by momentum-space Berry curvature origi-

nating from the chiral spin texture in real space. In particular,

Mn3Sn is identified as a magnetic Weyl semimetal, which ex-

hibit magnetotransport phenomena of topological origin, e.g.

chiral anomaly.

However, controlling magnetic moments is even more

challenging in noncollinear AFMs than in collinear AFMs.

Nonetheless, Tsai et al. succeeded in switching magnetic

configurations in polycrystalline Mn3Sn/Pt heterostructures

by using the spin Hall effect (SHE) of Pt under an external

magnetic field. Meanwhile, Takeuchi et al. investigated epi-

taxial Mn3Sn/Pt heterostructures and discovered a coherent

rotation of the chiral spin texture when the spin polarization

of the SHE is perpendicular to the Kagome plane. Unfortu-

nately, this cannot be used to deterministically switch the chi-

ral spin texture because the chiral rotation depends on the du-

ration and magnitude of the current pulse. We note that both

of these studies utilized aconventional spin Hall current to in-

duce magnetic excitations in Mn3Sn, which is analogous to a

heavy metal/ferromagnet bilayer.

However, a unique feature of AFMs is the sublattice de-

gree of freedom. Not only the equilibrium magnetic moment

but also their excitations are expected to be dependent on the

sublattice. With this motivation, we explore the possibility

of sublattice-dependent spin current excitation and investigate

how it affects the dynamics of the magnetic texture in non-

collinear AFMs. Our main finding is that thespin polarization

of the spin current excitation can be non-collinear in space.

In cubic crystals, the polarization of the spin current exci-

tation is identical in every atomic sites [Fig. 1(a)], which is

well known for the SHE in transition metals. However, crys-

tals with inequivalent sublattices may exhibit a NCSC due to

asymmetric potential in each sites. Layered metallic Kagome

magnets such as Mn3X is an example, where the spin Hall

current can havenon-collinear configuration of thespin polar-

ization [Fig. 1(b)].

In this Letter, we show that the NCSC is a general con-

(a) (b)

FIG. 1. Schematic illustration of the (a) conventional versus (b) non-

collinear spin Hall currents. The red arrows represent the direction
of the spin polarization and the blue arrows indicate the electron’s

propagation direction in average. NICE!!!
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FIG. 3. (a) Electronic band structure of the TB model. (b) Com-
parison of the SHC for the chiral component Sch (orange solid line)

and a uniform component Sx (blue dashed line) as a function of the
Fermi energy. (c) Spin-projected Berry curvature for the chiral spin

component indicated on top of the band structure in color.

isspin-projected Berry curvature. Here, e > 0 istheelectron’s

charge, h̄ is the reduced Planck constant, un k is periodic part

of theBloch state, and En k and f n k arecorresponding energy

eigenvalueand Fermi-Dirac distribution, respectively. Theve-

locity operator is given by

v =
1

h̄

@H el

@k
+

1

h̄
[δr , H el ], (5)

whereδr is adiagonal matrix whose elements contain the po-

sitions of the Wannier centers within the unit cell. The spin

current operator is defined as

j S↵
z =

1

2
(S↵ vz + vzS↵ ) . (6)

Evaluation of theNCSC requires replacing S↵ in Eq. (6) for

aspin operator projected onto each sublattice atoms. To char-

acterize the chirality of theNCSC, wedefine “chiral” compo-

nent by

Sch = SA · ⇠̂A + SB · ⇠̂B + SC · ⇠̂C , (7)

where Sk (k = A , B, C) is the spin operator projected on site

k and k0, and ⇠̂k ’s are defined such that are chiral:

⇠̂A = x̂ , (8a)

⇠̂B = − (1/ 2)x̂ − (
p

3/ 2)ŷ , (8b)

⇠̂C = − (1/ 2)x̂ + (
p

3/ 2)ŷ . (8c)

Figure 3(b) compares the SHCs for the chiral (Schiral ) and

a uniform (Sx ) components as a function of the Fermi en-

ergy EF . While theuniform component havelargevaluesover

wide rangeof theFermi energy, thechiral component tends to

exhibit spiky behavior. This can be understood as it requires

mixing of thespin characters in theelectronic structure. How-

ever, it is remarkable that thechrial component can beas large

as the uniform component, especially near EF ⇡ − 2 eV and

EF ⇡ 3 eV, where various bands cross each other. To em-

phasize the role of band crossings, in Fig. 3(c), we plot the

spin-projected Berry curvature for the chiral component on

top of theband structure near E ⇡ 3 eV, which ispronounced

near crossings. Wefind that hotspots for thechiral component

of the spin-projected Berry curvature are more localized than

that for the uniform component, in general. This supports the

idea that the chiral component of the NCSC requires mixing

of the spin characters. Meanwhile, both chiral and uniform

components rely on theSOC, which vanish in the limit λ = 0.

In a Mn3X film grown along (0002) direction, the chiral

component of the NCSC induced by an external electric field

leads to spin accumulations at surfaces and exert torqueon lo-

cal moments. This is analogous to the anomalous spin-orbit

torque or self-induced torque in a single ferromagnet. While

the self-induced torque cancels to zero for a stand-alone film,

interaction of the Mn3X film and the substrate cause asym-

metry between the top and bottom surfaces, leading to finite

self-induced torque in a “chiral” manner. We propose an idea

that the self-induced torque caused by the NCSC can be used

to switch the chirality of the magnetic texture in Mn3X as il-

lustrated in Fig. 4(a).

In order to demonstrate thechirality switching, weconsider

a classical spin model and perform the atomistic spin simula-

tion. For simplicity, we consider a single layer Kagome plane

with three spins in the unit cell. The Hamiltonian for the spin

system is given by

H mag = J
X

hi j i

m̂ i · m̂ j −
K

2

X

i

⇣
K̂ i · m̂ i

⌘2

+ D
X

hi j i

⇣
d̂ i j ⇥ F̂ i j

⌘
· (m̂ i ⇥ m̂ j ) (9)

where m̂ i is the direction of the magnetic moment at site i ,

J > 0 is the strength of the exchange interaction (antiferro-

magnetic), K > 0 is the strength of the in-plane anisotropy

whose direction depends on the sublattice such that K̂ A = x̂ ,

K̂ B = − (1/ 2)x̂ − (
p

3/ 2)ŷ , K̂ C = − (1/ 2)x̂ + (
p

3/ 2)ŷ ,

and D is the strength of the Dyzaloshinskii-Moriya interac-

tion. The definitions of d̂ i j and F̂ i j are identical to those in

Eq. (2).

From Eq. (9), the Landau-Lifshitz-Gilbert (LLG) equation

can be written as:

dm̂ i

dt
= − |γ|m̂ i ⇥ B e↵

i + B fl
i + ↵m̂ i ⇥

dm̂ i

dt
+ ⌧chi ral

i ,

(10)

where |γ| is the magnitude of the gyromagnetic ratio for an

electron, B e↵
i is the effective magnetic field, B fl

i is a ran-

dom field induced by thermal fluctuation of the system, and
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FIG. 3. (a) Electronic band structure of the TB model. (b) Com-
parison of the SHC for the chiral component Sch (orange solid line)
and a uniform component Sx (blue dashed line) as a function of the

Fermi energy. (c) Spin-projected Berry curvature for the chiral spin
component indicated on top of the band structure in color.

isspin-projected Berry curvature. Here, e > 0 istheelectron’s

charge, h̄ is the reduced Planck constant, un k is periodic part

of theBloch state, and En k and f n k arecorresponding energy

eigenvalueand Fermi-Dirac distribution, respectively. Theve-

locity operator is given by

v =
1

h̄

@H el

@k
+

1

h̄
[δr , H el ], (5)

whereδr is adiagonal matrix whose elements contain the po-

sitions of the Wannier centers within the unit cell. The spin

current operator is defined as

j S↵
z =

1

2
(S↵ vz + vzS↵ ) . (6)

Evaluation of theNCSC requiresreplacing S↵ in Eq. (6) for

aspin operator projected onto each sublattice atoms. To char-

acterize the chirality of theNCSC, wedefine “chiral” compo-

nent by

Sch = SA · ⇠̂A + SB · ⇠̂B + SC · ⇠̂C , (7)

where Sk (k = A , B, C) is the spin operator projected on site

k and k0, and ⇠̂k ’s aredefined such that are chiral:

⇠̂A = x̂ , (8a)

⇠̂B = − (1/ 2)x̂ − (
p

3/ 2)ŷ , (8b)

⇠̂C = − (1/ 2)x̂ + (
p

3/ 2)ŷ . (8c)

Figure 3(b) compares the SHCs for the chiral (Schiral ) and

a uniform (Sx ) components as a function of the Fermi en-

ergy EF . While theuniform component havelargevaluesover

wide rangeof theFermi energy, thechiral component tends to

exhibit spiky behavior. This can be understood as it requires

mixing of thespin characters in theelectronic structure. How-

ever, it is remarkable that thechrial component can beaslarge

as the uniform component, especially near EF ⇡ − 2 eV and

EF ⇡ 3 eV, where various bands cross each other. To em-

phasize the role of band crossings, in Fig. 3(c), we plot the

spin-projected Berry curvature for the chiral component on

top of theband structure near E ⇡ 3 eV, which ispronounced

near crossings. Wefind that hotspots for thechiral component

of the spin-projected Berry curvature are more localized than

that for the uniform component, in general. This supports the

idea that the chiral component of the NCSC requires mixing

of the spin characters. Meanwhile, both chiral and uniform

components rely on theSOC, which vanish in the limit λ = 0.

In a Mn3X film grown along (0002) direction, the chiral

component of the NCSC induced by an external electric field

leads to spin accumulations at surfacesand exert torqueon lo-

cal moments. This is analogous to the anomalous spin-orbit

torque or self-induced torque in a single ferromagnet. While

the self-induced torque cancels to zero for a stand-alone film,

interaction of the Mn3X film and the substrate cause asym-

metry between the top and bottom surfaces, leading to finite

self-induced torque in a “chiral” manner. We propose an idea

that the self-induced torque caused by the NCSC can be used

to switch the chirality of the magnetic texture in Mn3X as il-

lustrated in Fig. 4(a).

In order to demonstrate thechirality switching, weconsider

a classical spin model and perform the atomistic spin simula-

tion. For simplicity, we consider asingle layer Kagome plane

with three spins in the unit cell. The Hamiltonian for the spin

system is given by

H mag = J
X

hi j i

m̂ i · m̂ j −
K

2

X

i

⇣
K̂ i · m̂ i

⌘2

+ D
X

hi j i

⇣
d̂ i j ⇥ F̂ i j

⌘
· (m̂ i ⇥ m̂ j ) (9)

where m̂ i is the direction of the magnetic moment at site i ,

J > 0 is the strength of the exchange interaction (antiferro-

magnetic), K > 0 is the strength of the in-plane anisotropy

whose direction depends on the sublattice such that K̂ A = x̂,

K̂ B = − (1/ 2)x̂ − (
p

3/ 2)ŷ , K̂ C = − (1/ 2)x̂ + (
p

3/ 2)ŷ ,

and D is the strength of the Dyzaloshinskii-Moriya interac-

tion. The definitions of d̂ i j and F̂ i j are identical to those in

Eq. (2).

From Eq. (9), the Landau-Lifshitz-Gilbert (LLG) equation

can be written as:

dm̂ i

dt
= − |γ|m̂ i ⇥ B e↵

i + B fl
i + ↵m̂ i ⇥

dm̂ i

dt
+ ⌧chiral

i ,

(10)

where |γ| is the magnitude of the gyromagnetic ratio for an

electron, B e↵
i is the effective magnetic field, B fl

i is a ran-

dom field induced by thermal fluctuation of the system, and
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and a uniform component Sx (blue dashed line) as a function of the
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component indicated on top of the band structure in color.

isspin-projected Berry curvature. Here, e > 0 istheelectron’s

charge, h̄ is the reduced Planck constant, un k is periodic part

of theBloch state, and En k and f n k arecorresponding energy

eigenvalueand Fermi-Dirac distribution, respectively. Theve-
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whereδr is adiagonal matrix whose elements contain the po-

sitions of the Wannier centers within the unit cell. The spin

current operator is defined as

j S↵
z =
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(S↵ vz + vzS↵ ) . (6)

Evaluation of theNCSC requires replacing S↵ in Eq. (6) for

a spin operator projected onto each sublattice atoms. To char-

acterize the chirality of the NCSC, wedefine “chiral” compo-

nent by

Sch = SA · ⇠̂A + SB · ⇠̂B + SC · ⇠̂C , (7)

where Sk (k = A , B, C) is the spin operator projected on site

k and k0, and ⇠̂k ’s are defined such that are chiral:

⇠̂A = x̂ , (8a)

⇠̂B = − (1/ 2)x̂ − (
p

3/ 2)ŷ , (8b)

⇠̂C = − (1/ 2)x̂ + (
p
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Figure 3(b) compares the SHCs for the chiral (Schi ral ) and

a uniform (Sx ) components as a function of the Fermi en-

ergy EF . While theuniform component havelargevaluesover

wide rangeof theFermi energy, thechiral component tends to

exhibit spiky behavior. This can be understood as it requires

mixing of thespin characters in theelectronic structure. How-

ever, it is remarkable that thechrial component can beas large

as the uniform component, especially near EF ⇡ − 2 eV and

EF ⇡ 3 eV, where various bands cross each other. To em-

phasize the role of band crossings, in Fig. 3(c), we plot the

spin-projected Berry curvature for the chiral component on

top of theband structure near E ⇡ 3 eV, which ispronounced

near crossings. Wefind that hotspots for thechiral component

of the spin-projected Berry curvature are more localized than

that for the uniform component, in general. This supports the

idea that the chiral component of the NCSC requires mixing

of the spin characters. Meanwhile, both chiral and uniform

components rely on theSOC, which vanish in the limit λ = 0.

In a Mn3X film grown along (0002) direction, the chiral

component of the NCSC induced by an external electric field

leads to spin accumulations at surfacesand exert torqueon lo-

cal moments. This is analogous to the anomalous spin-orbit

torque or self-induced torque in a single ferromagnet. While

the self-induced torque cancels to zero for a stand-alone film,

interaction of the Mn3X film and the substrate cause asym-

metry between the top and bottom surfaces, leading to finite

self-induced torque in a “chiral” manner. We propose an idea

that the self-induced torque caused by the NCSC can be used

to switch the chirality of the magnetic texture in Mn3X as il-

lustrated in Fig. 4(a).

In order to demonstrate thechirality switching, weconsider

a classical spin model and perform the atomistic spin simula-

tion. For simplicity, we consider a single layer Kagome plane

with three spins in the unit cell. The Hamiltonian for the spin

system is given by

H mag = J
X

hi j i

m̂ i · m̂ j −
K

2

X

i

⇣
K̂ i · m̂ i

⌘2

+ D
X

hi j i

⇣
d̂ i j ⇥ F̂ i j

⌘
· (m̂ i ⇥ m̂ j ) (9)

where m̂ i is the direction of the magnetic moment at site i ,

J > 0 is the strength of the exchange interaction (antiferro-

magnetic), K > 0 is the strength of the in-plane anisotropy

whose direction depends on the sublattice such that K̂ A = x̂ ,

K̂ B = − (1/ 2)x̂ − (
p

3/ 2)ŷ , K̂ C = − (1/ 2)x̂ + (
p

3/ 2)ŷ ,

and D is the strength of the Dyzaloshinskii-Moriya interac-

tion. The definitions of d̂ i j and F̂ i j are identical to those in

Eq. (2).

From Eq. (9), the Landau-Lifshitz-Gilbert (LLG) equation

can be written as:

dm̂ i

dt
= − |γ|m̂ i ⇥ B e↵

i + B fl
i + ↵m̂ i ⇥

dm̂ i

dt
+ ⌧chi ral

i ,

(10)

where |γ| is the magnitude of the gyromagnetic ratio for an

electron, B e↵
i is the effective magnetic field, B fl

i is a ran-

dom field induced by thermal fluctuation of the system, and
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FIG. 4. (a) Chirality switching induced by the NCSC, where black

arrows represent local moments of Mn atoms in Mn3X. An external
electric field E is indicated by a green arrow. Time series of (b) the

average octupole moments and (c) the energy per unit cell obtained
by the atomistic spin simulation. The chiral self-induced torque is

applied during t = 400 − 600 ps.

↵ is Gilbert damping constant. The effective field is given

by B e↵
i = − (1/ m0)(δH mag / δm i ), where m0 is the magni-

tudeof themagnetic moment. Thefluctuating field isgiven as

a Gaussian noise such that hB fl
i ,↵ (t)B fl

j ,β (t0)i = 2δi j δ↵ βδ(t −

t0)↵kB T/ m0|γ| for ↵ , β = x, y, z, wherekB istheBoltzmann

constant and T is the temperature. Weapply the torque that is

induced by theinjection of theNCSC for thechiral component

only because the uniform torque cannot switch the magnetic

texture. It has a form⌧chiral
i = (⌧0|γ|/ µB )m̂ i ⇥ (m̂ i ⇥⇠̂i ),

where⌧0 is the magnitude of the torque and µB is the Bohr

magneton. Thedirection of the torque depends on the site (A,

B, C) such that ⇠̂i ’sare given by Eq. (8).

For the atomistic spin simulation, we choose J = 10,

K = 0.1, D = 0.7 in units of meV, m0 = 3µB , and

T = 10 K. Themagnitudeof thetorqueisset⌧0 = 0.01 meV.

We consider a 10⇥ 10 supercell with the periodic boundary

condition and solvetheLLG equation [Eq. (10)] for 300 spins.

For the analysis, wedefinean order parameter of Mn3X by

O =
1

3
m̂ A + Rm̂ B + R2m̂ C , (11)

where R isaclockwise rotation by 2⇡ / 3 around the z axis. In

the ground state configurations shown in Fig. 4, for example,

O = m̂ A when T = 0. We note that O is often referred to as

the octupole magnetic moment in other literature.

Figure 4(b) shows time series of O averaged over the su-

percell. The torque is applied from t = 400 ps till t = 600 ps

(marked by grey color shade). A plot for Ox (blue line) clearly

shows that the chirality of the magnetic texture is switched

by the torque within ⇠ 100 ps interval. Meanwhile we ob-

serve fluctuation of the other components. Overall, Oy ex-

hibits stronger fluctuation than Oz , which is attributed to the

in-plane anisotropy of the system. It is interesting to notice

that the fluctuation becomes enhanced during the switching

(t ⇡ 450 ps). Evaluation of the energy in each time step

by Eq. (9) is shown in Fig. 4(c). It reveals the activation en-

ergy required for the switching is∆ E ⇡ 8 meV per unit cell.

While the overall background fluctuation of ∆ E ⇡ 2.5 meV

is due to thermal effect, the energy fluctuations becomes sup-

pressed when the torque is still applied after the switching at

t ⇡ 500 ps.

Our spin dynamics simulation clearly demonstrates that the

spin chirality of Mn3X can be switched by the torque which

varies for each sublattice in a chiral way. One mechanism

that allows for the chiral torque is the self-induced torque in-

duced by theSHE with non-collinear spin polarization, which

isalready discussed above. Another possible mechanism isan

interfacial origin. Similar to theNCSC, since not all magnetic

atoms are located on top of the mirror plane (Fig. 2), the spin

accumulation induced by theRashba-Edelstein effect can also

besublattice-dependent. In such acase, engineering the built-

in electric field at the interfacemay beaway to tune thechiral

torque. We believe that excitation of the “chiral rotation” in-

duced by an external electric field (either by the self-induced

torque or interfacial torque) can be readily tested in experi-

ments if the Mn3X film is sufficiently thin.

In conclusion, we propose a concept of NCSC, which can

be excited by the SHE in crystals with low symmetries such

as Mn3X. A major consequence of the NCSC results from

its coupling with the chiral magnetic texture in non-collinear

AFMs. For example, in a thin film of Mn3X grown on a

substrate, the NCSC may result in a self-induced torque and

switch the chirality of the magnetic texture. Our finding is an

important manifestation of the interaction of the microscopic

chiral spin current with non-collinear magnetic texture. This

opens a novel route toward electric control of non-collinear

AFMs, which has been one of the most challenging problems

in antiferromagnetic spintronics.
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FIG. 3. (a) Electronic band structure of the TB model. (b) Com-
parison of theSHC for thechiral component Sch (orange solid line)

and auniform component Sx (blue dashed line) asa function of the
Fermi energy. (c) Spin-projected Berry curvature for the chiral spin

component indicated on top of theband structure in color.

isspin-projected Berry curvature. Here, e > 0istheelectron’s

charge, h̄ is the reduced Planck constant, unk isperiodic part

of theBloch state, andEnk and f nk arecorresponding energy

eigenvalueandFermi-Dirac distribution, respectively. Theve-

locity operator isgiven by

v =
1

h̄

@Hel

@k
+

1

h̄
[δr , Hel ], (5)

whereδr isadiagonal matrix whoseelementscontain thepo-

sitions of the Wannier centers within the unit cell. The spin

current operator isdefined as

j S↵
z =

1

2
(S↵vz + vzS↵ ) . (6)

Evaluation of theNCSCrequiresreplacing S↵ inEq. (6) for

aspin operator projected onto each sublattice atoms. To char-

acterize thechirality of theNCSC, wedefine“chiral” compo-

nent by

Sch = SA · ⇠̂A + SB · ⇠̂B + SC · ⇠̂C , (7)

whereSk (k = A, B, C) is thespin operator projected on site

k and k0, and ⇠̂k ’saredefined such that arechiral:

⇠̂A = x̂, (8a)

⇠̂B = − (1/ 2)x̂ − (
p

3/ 2)ŷ , (8b)

⇠̂C = − (1/ 2)x̂ + (
p

3/ 2)ŷ . (8c)

Figure 3(b) compares the SHCs for thechiral (Schiral ) and

a uniform (Sx ) components as a function of the Fermi en-

ergy EF . Whiletheuniformcomponent havelargevaluesover

widerangeof theFermi energy, thechiral component tendsto

exhibit spiky behavior. This can be understood as it requires

mixing of thespin characters in theelectronic structure. How-

ever, it isremarkablethat thechrial component canbeaslarge

as the uniform component, especially near EF ⇡ −2 eV and

EF ⇡ 3 eV, where various bands cross each other. To em-

phasize the role of band crossings, in Fig. 3(c), we plot the

spin-projected Berry curvature for the chiral component on

topof thebandstructurenear E ⇡ 3eV, which ispronounced

near crossings. Wefind that hotspots for thechiral component

of thespin-projected Berry curvature aremore localized than

that for theuniform component, in general. Thissupports the

idea that the chiral component of the NCSC requires mixing

of the spin characters. Meanwhile, both chiral and uniform

componentsrely on theSOC, which vanish in thelimit λ = 0.

In a Mn3X film grown along (0002) direction, the chiral

component of theNCSC induced by an external electric field

leadstospin accumulations at surfacesand exert torqueon lo-

cal moments. This is analogous to the anomalous spin-orbit

torque or self-induced torque in a single ferromagnet. While

theself-induced torquecancels to zero for astand-alone film,

interaction of the Mn3X film and the substrate cause asym-

metry between the top and bottom surfaces, leading to finite

self-induced torque in a“chiral” manner. Weproposean idea

that theself-induced torquecaused by theNCSC can beused

to switch the chirality of the magnetic texture in Mn3X as il-

lustrated in Fig. 4(a).

Inorder todemonstrate thechirality switching, weconsider

aclassical spin model and perform theatomistic spin simula-

tion. For simplicity, weconsider asingle layer Kagomeplane

with threespins in theunit cell. TheHamiltonian for thespin

system isgiven by

Hmag = J
X

hi j i

m̂ i · m̂ j −
K

2

X

i

⇣
K̂ i · m̂ i

⌘2

+ D
X

hi j i

⇣
d̂ i j ⇥F̂ i j

⌘
· (m̂ i ⇥m̂ j ) (9)

where m̂ i is the direction of the magnetic moment at site i ,

J > 0 is the strength of the exchange interaction (antiferro-

magnetic), K > 0 is the strength of the in-plane anisotropy

whosedirection dependson thesublattice such that K̂ A = x̂,

K̂ B = − (1/ 2)x̂ − (
p

3/ 2)ŷ, K̂ C = − (1/ 2)x̂ + (
p

3/ 2)ŷ,

and D is the strength of the Dyzaloshinskii-Moriya interac-

tion. Thedefinitions of d̂ i j and F̂ i j are identical to those in

Eq. (2).

From Eq. (9), the Landau-Lifshitz-Gilbert (LLG) equation

can bewritten as:

dm̂ i

dt
= − |γ|m̂ i ⇥ Be↵

i + B fl
i + ↵m̂ i ⇥

dm̂ i

dt
+ ⌧chiral

i ,

(10)

where |γ| is the magnitude of the gyromagnetic ratio for an

electron, Be↵
i is the effective magnetic field, Bfl

i is a ran-

dom field induced by thermal fluctuation of the system, and

Non-magnetic Mn3X lattice:

electric field along y

spin current along z

tight-binding model for Mn3X structure

chiral spin Hall effect

Chiral spin operator

chiral spin Berry curvature

Chiral current operator:

Kubo formalism for response

Can couple to the spin texture!
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FIG. 4. (a) Chirality switching induced by the NCSC, where black
arrows represent local moments of Mn atoms in Mn3X. An external

electric field E is indicated by a green arrow. Time series of (b) the
average octupole moments and (c) the energy per unit cell obtained

by the atomistic spin simulation. The chiral self-induced torque is
applied during t = 400 − 600 ps.

↵ is Gilbert damping constant. The effective field is given

by B e↵
i = − (1/ m0)(δH mag/ δm i ), where m0 is the magni-

tudeof themagnetic moment. Thefluctuating field isgiven as

aGaussian noise such that hB fl
i ,↵ (t)B fl

j ,β (t0)i = 2δi j δ↵ βδ(t −

t0)↵kB T/ m0|γ| for ↵, β = x, y, z, wherekB istheBoltzmann

constant and T is the temperature. Weapply the torque that is

induced by theinjection of theNCSC for thechiral component

only because the uniform torque cannot switch the magnetic

texture. It has a form⌧chiral
i = (⌧0|γ|/ µB )m̂ i ⇥ (m̂ i ⇥⇠̂i ),

where⌧0 is the magnitude of the torque and µB is the Bohr

magneton. The direction of the torque depends on the site (A,

B, C) such that ⇠̂i ’s are given by Eq. (8).

For the atomistic spin simulation, we choose J = 10,

K = 0.1, D = 0.7 in units of meV, m0 = 3µB , and

T = 10 K. Themagnitudeof thetorqueisset⌧0 = 0.01 meV.

We consider a 10⇥ 10 supercell with the periodic boundary

condition and solvetheLLG equation [Eq. (10)] for 300 spins.

For the analysis, wedefinean order parameter of Mn3X by

O =
1

3
m̂ A + Rm̂ B + R2m̂ C , (11)

whereR isaclockwise rotation by 2⇡ / 3 around thez axis. In

the ground state configurations shown in Fig. 4, for example,

O = m̂ A when T = 0. We note that O is often referred to as

the octupole magnetic moment in other literature.

Figure 4(b) shows time series of O averaged over the su-

percell. The torque is applied from t = 400 ps till t = 600 ps

(marked by grey color shade). A plot for Ox (blueline) clearly

shows that the chirality of the magnetic texture is switched

by the torque within ⇠ 100 ps interval. Meanwhile we ob-

serve fluctuation of the other components. Overall, Oy ex-

hibits stronger fluctuation than Oz , which is attributed to the

in-plane anisotropy of the system. It is interesting to notice

that the fluctuation becomes enhanced during the switching

(t ⇡ 450 ps). Evaluation of the energy in each time step

by Eq. (9) is shown in Fig. 4(c). It reveals the activation en-

ergy required for the switching is ∆ E ⇡ 8 meV per unit cell.

While the overall background fluctuation of ∆ E ⇡ 2.5 meV

is due to thermal effect, the energy fluctuations becomes sup-

pressed when the torque is still applied after the switching at

t ⇡ 500 ps.

Our spin dynamics simulation clearly demonstrates that the

spin chirality of Mn3X can be switched by the torque which

varies for each sublattice in a chiral way. One mechanism

that allows for the chiral torque is the self-induced torque in-

duced by theSHE with non-collinear spin polarization, which

isalready discussed above. Another possible mechanism isan

interfacial origin. Similar to theNCSC, since not all magnetic

atoms are located on top of the mirror plane (Fig. 2), the spin

accumulation induced by theRashba-Edelstein effect can also

besublattice-dependent. In such acase, engineering thebuilt-

in electric field at the interfacemay beaway to tune thechiral

torque. We believe that excitation of the “chiral rotation” in-

duced by an external electric field (either by the self-induced

torque or interfacial torque) can be readily tested in experi-

ments if the Mn3X film is sufficiently thin.

In conclusion, we propose a concept of NCSC, which can

be excited by the SHE in crystals with low symmetries such

as Mn3X. A major consequence of the NCSC results from

its coupling with the chiral magnetic texture in non-collinear

AFMs. For example, in a thin film of Mn3X grown on a

substrate, the NCSC may result in a self-induced torque and

switch the chirality of the magnetic texture. Our finding is an

important manifestation of the interaction of the microscopic

chiral spin current with non-collinear magnetic texture. This

opens a novel route toward electric control of non-collinear

AFMs, which has been one of the most challenging problems

in antiferromagnetic spintronics.
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arrows represent local moments of Mn atoms in Mn3X. An external

electric field E is indicated by a green arrow. Time series of (b) the
average octupole moments and (c) the energy per unit cell obtained

by the atomistic spin simulation. The chiral self-induced torque is
applied during t = 400 − 600 ps.

↵ is Gilbert damping constant. The effective field is given

by B e↵
i = − (1/ m0)(δH mag / δm i ), where m0 is the magni-

tudeof themagnetic moment. Thefluctuating field isgiven as

a Gaussian noise such that hB fl
i ,↵ (t)B fl

j ,β (t0)i = 2δi j δ↵ βδ(t −

t0)↵kB T/ m0|γ| for ↵ , β = x, y, z, wherekB istheBoltzmann

constant and T is the temperature. Weapply the torque that is

induced by theinjection of theNCSC for thechiral component

only because the uniform torque cannot switch the magnetic

texture. It has a form⌧chiral
i = (⌧0|γ|/ µB )m̂ i ⇥ (m̂ i ⇥⇠̂i ),

where⌧0 is the magnitude of the torque and µB is the Bohr

magneton. The direction of the torque depends on the site (A,

B, C) such that ⇠̂i ’s are given by Eq. (8).

For the atomistic spin simulation, we choose J = 10,

K = 0.1, D = 0.7 in units of meV, m0 = 3µB , and

T = 10 K. Themagnitudeof thetorqueisset⌧0 = 0.01 meV.

We consider a 10⇥ 10 supercell with the periodic boundary

condition and solvetheLLG equation [Eq. (10)] for 300 spins.

For the analysis, wedefinean order parameter of Mn3X by

O =
1

3
m̂ A + Rm̂ B + R2m̂ C , (11)

where R isaclockwise rotation by 2⇡ / 3 around thez axis. In

the ground state configurations shown in Fig. 4, for example,

O = m̂ A when T = 0. Wenote that O is often referred to as

the octupole magnetic moment in other literature.

Figure 4(b) shows time series of O averaged over the su-

percell. The torque is applied from t = 400 ps till t = 600 ps

(marked by grey color shade). A plot for Ox (blue line) clearly

shows that the chirality of the magnetic texture is switched

by the torque within ⇠ 100 ps interval. Meanwhile we ob-

serve fluctuation of the other components. Overall, Oy ex-

hibits stronger fluctuation than Oz , which is attributed to the

in-plane anisotropy of the system. It is interesting to notice

that the fluctuation becomes enhanced during the switching

(t ⇡ 450 ps). Evaluation of the energy in each time step

by Eq. (9) is shown in Fig. 4(c). It reveals the activation en-

ergy required for the switching is∆ E ⇡ 8 meV per unit cell.

While the overall background fluctuation of ∆ E ⇡ 2.5 meV

is due to thermal effect, the energy fluctuations becomes sup-

pressed when the torque is still applied after the switching at

t ⇡ 500 ps.

Our spin dynamics simulation clearly demonstrates that the

spin chirality of Mn3X can be switched by the torque which

varies for each sublattice in a chiral way. One mechanism

that allows for the chiral torque is the self-induced torque in-

duced by theSHE with non-collinear spin polarization, which

isalready discussed above. Another possible mechanism isan

interfacial origin. Similar to theNCSC, since not all magnetic

atoms are located on top of the mirror plane (Fig. 2), the spin

accumulation induced by theRashba-Edelstein effect can also

besublattice-dependent. In such acase, engineering the built-

in electric field at the interfacemay beaway to tune thechiral

torque. We believe that excitation of the “chiral rotation” in-

duced by an external electric field (either by the self-induced

torque or interfacial torque) can be readily tested in experi-

ments if the Mn3X film is sufficiently thin.

In conclusion, we propose a concept of NCSC, which can

be excited by the SHE in crystals with low symmetries such

as Mn3X. A major consequence of the NCSC results from

its coupling with the chiral magnetic texture in non-collinear

AFMs. For example, in a thin film of Mn3X grown on a

substrate, the NCSC may result in a self-induced torque and

switch the chirality of the magnetic texture. Our finding is an

important manifestation of the interaction of the microscopic

chiral spin current with non-collinear magnetic texture. This

opens a novel route toward electric control of non-collinear

AFMs, which has been one of the most challenging problems

in antiferromagnetic spintronics.
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FIG. 4. (a) Chirality switching induced by the NCSC, where black

arrows represent local moments of Mn atoms in Mn3X. An external
electric field E is indicated by a green arrow. Time series of (b) the

average octupole moments and (c) the energy per unit cell obtained
by the atomistic spin simulation. The chiral self-induced torque is

applied during t = 400 − 600 ps.

↵ is Gilbert damping constant. The effective field is given

by B e↵
i = − (1/ m0)(δH mag / δm i ), where m0 is the magni-

tudeof themagnetic moment. Thefluctuating field isgiven as

a Gaussian noise such that hB fl
i ,↵ (t)B fl

j ,β (t0)i = 2δi j δ↵ βδ(t −

t0)↵kB T/ m0|γ| for ↵, β = x, y, z, wherekB istheBoltzmann

constant and T is the temperature. Weapply the torque that is

induced by theinjection of theNCSC for thechiral component

only because the uniform torque cannot switch the magnetic

texture. It has a form⌧chiral
i = (⌧0|γ|/ µB )m̂ i ⇥ (m̂ i ⇥⇠̂i ),

where⌧0 is the magnitude of the torque and µB is the Bohr

magneton. The direction of the torque depends on the site (A,

B, C) such that ⇠̂i ’s are given by Eq. (8).

For the atomistic spin simulation, we choose J = 10,

K = 0.1, D = 0.7 in units of meV, m0 = 3µB , and

T = 10 K. Themagnitudeof thetorqueisset⌧0 = 0.01 meV.

We consider a 10⇥ 10 supercell with the periodic boundary

condition and solvetheLLG equation [Eq. (10)] for 300 spins.

For the analysis, wedefine an order parameter of Mn3X by

O =
1

3
m̂ A + Rm̂ B + R2m̂ C , (11)

where R isaclockwise rotation by 2⇡ / 3 around thez axis. In

the ground state configurations shown in Fig. 4, for example,

O = m̂ A when T = 0. We note that O is often referred to as

the octupole magnetic moment in other literature.

Figure 4(b) shows time series of O averaged over the su-

percell. The torque is applied from t = 400 ps till t = 600 ps

(marked by grey color shade). A plot for Ox (blueline) clearly

shows that the chirality of the magnetic texture is switched

by the torque within ⇠ 100 ps interval. Meanwhile we ob-

serve fluctuation of the other components. Overall, Oy ex-

hibits stronger fluctuation than Oz , which is attributed to the

in-plane anisotropy of the system. It is interesting to notice

that the fluctuation becomes enhanced during the switching

(t ⇡ 450 ps). Evaluation of the energy in each time step

by Eq. (9) is shown in Fig. 4(c). It reveals the activation en-

ergy required for the switching is∆ E ⇡ 8 meV per unit cell.

While the overall background fluctuation of ∆ E ⇡ 2.5 meV

is due to thermal effect, the energy fluctuations becomes sup-

pressed when the torque is still applied after the switching at

t ⇡ 500 ps.

Our spin dynamics simulation clearly demonstrates that the

spin chirality of Mn3X can be switched by the torque which

varies for each sublattice in a chiral way. One mechanism

that allows for the chiral torque is the self-induced torque in-

duced by the SHE with non-collinear spin polarization, which

isalready discussed above. Another possible mechanism isan

interfacial origin. Similar to theNCSC, since not all magnetic

atoms are located on top of the mirror plane (Fig. 2), the spin

accumulation induced by theRashba-Edelstein effect can also

besublattice-dependent. In such acase, engineering the built-

in electric field at the interfacemay beaway to tune thechiral

torque. We believe that excitation of the “chiral rotation” in-

duced by an external electric field (either by the self-induced

torque or interfacial torque) can be readily tested in experi-

ments if the Mn3X film is sufficiently thin.

In conclusion, we propose a concept of NCSC, which can

be excited by the SHE in crystals with low symmetries such

as Mn3X. A major consequence of the NCSC results from

its coupling with the chiral magnetic texture in non-collinear

AFMs. For example, in a thin film of Mn3X grown on a

substrate, the NCSC may result in a self-induced torque and

switch the chirality of the magnetic texture. Our finding is an

important manifestation of the interaction of the microscopic

chiral spin current with non-collinear magnetic texture. This

opens a novel route toward electric control of non-collinear

AFMs, which has been one of the most challenging problems

in antiferromagnetic spintronics.

⇤ d.go@fz-juelich.de

Spin-dependent contributions: higher-order

complex anatomy of

spin currents possible!

Chiral spin currents : accumulate at the surface

anomalous torque
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FIG. 3. (a) Electronic band structure of the TB model. (b) Com-

parison of the SHC for the chiral component Sch (orange solid line)
and a uniform component Sx (blue dashed line) as a function of the

Fermi energy. (c) Spin-projected Berry curvature for the chiral spin
component indicated on top of theband structure in color.

isspin-projected Berry curvature. Here, e > 0 istheelectron’s

charge, h̄ is the reduced Planck constant, un k is periodic part

of theBloch state, and Enk and f n k arecorresponding energy

eigenvalueand Fermi-Dirac distribution, respectively. Theve-

locity operator isgiven by

v =
1

h̄

@Hel

@k
+

1

h̄
[δr , Hel ], (5)

whereδr isadiagonal matrix whoseelements contain thepo-

sitions of the Wannier centers within the unit cell. The spin

current operator isdefined as

j S↵
z =

1

2
(S↵ vz + vzS↵ ) . (6)

Evaluation of theNCSC requiresreplacing S↵ in Eq. (6) for

aspin operator projected onto each sublattice atoms. To char-

acterize thechirality of theNCSC, wedefine “chiral” compo-

nent by

Sch = SA · ⇠̂A + SB · ⇠̂B + SC · ⇠̂C , (7)

where Sk (k = A, B, C) is the spin operator projected on site

k and k0, and ⇠̂k ’saredefined such that arechiral:

⇠̂A = x̂ , (8a)

⇠̂B = − (1/ 2)x̂ − (
p

3/ 2)ŷ , (8b)

⇠̂C = − (1/ 2)x̂ + (
p

3/ 2)ŷ . (8c)

Figure 3(b) compares the SHCs for the chiral (Schi ral ) and

a uniform (Sx ) components as a function of the Fermi en-

ergy EF . Whiletheuniform component havelargevaluesover

widerangeof theFermi energy, thechiral component tends to

exhibit spiky behavior. This can be understood as it requires

mixing of thespin characters in theelectronic structure. How-

ever, it is remarkable that thechrial component can beaslarge

as the uniform component, especially near EF ⇡ − 2 eV and

EF ⇡ 3 eV, where various bands cross each other. To em-

phasize the role of band crossings, in Fig. 3(c), we plot the

spin-projected Berry curvature for the chiral component on

top of theband structurenear E ⇡ 3 eV, which ispronounced

near crossings. Wefind that hotspots for thechiral component

of the spin-projected Berry curvature are more localized than

that for the uniform component, in general. This supports the

idea that the chiral component of the NCSC requires mixing

of the spin characters. Meanwhile, both chiral and uniform

components rely on theSOC, which vanish in the limit λ = 0.

In a Mn3X film grown along (0002) direction, the chiral

component of the NCSC induced by an external electric field

leads to spin accumulations at surfacesand exert torqueon lo-

cal moments. This is analogous to the anomalous spin-orbit

torque or self-induced torque in a single ferromagnet. While

the self-induced torque cancels to zero for astand-alone film,

interaction of the Mn3X film and the substrate cause asym-

metry between the top and bottom surfaces, leading to finite

self-induced torque in a “chiral” manner. We propose an idea

that the self-induced torque caused by the NCSC can be used

to switch the chirality of the magnetic texture in Mn3X as il-

lustrated in Fig. 4(a).

In order to demonstrate thechirality switching, weconsider

a classical spin model and perform the atomistic spin simula-

tion. For simplicity, weconsider asingle layer Kagome plane

with three spins in theunit cell. The Hamiltonian for the spin

system isgiven by

Hmag = J
X

hi j i

m̂ i · m̂ j −
K

2

X

i

⇣
K̂ i · m̂ i

⌘2

+ D
X

hi j i

⇣
d̂ i j ⇥ F̂ i j

⌘
· (m̂ i ⇥m̂ j ) (9)

where m̂ i is the direction of the magnetic moment at site i ,

J > 0 is the strength of the exchange interaction (antiferro-

magnetic), K > 0 is the strength of the in-plane anisotropy

whose direction depends on the sublattice such that K̂ A = x̂,

K̂ B = − (1/ 2)x̂ − (
p

3/ 2)ŷ , K̂ C = − (1/ 2)x̂ + (
p

3/ 2)ŷ ,

and D is the strength of the Dyzaloshinskii-Moriya interac-

tion. The definitions of d̂ i j and F̂ i j are identical to those in

Eq. (2).

From Eq. (9), the Landau-Lifshitz-Gilbert (LLG) equation

can bewritten as:

dm̂ i

dt
= − |γ|m̂ i ⇥ B e↵

i + B fl
i + ↵m̂ i ⇥

dm̂ i

dt
+ ⌧chiral

i ,

(10)

where |γ| is the magnitude of the gyromagnetic ratio for an

electron, B e↵
i is the effective magnetic field, B fl

i is a ran-

dom field induced by thermal fluctuation of the system, and

LLG dynamics:

Predicts switching of 

octupolar chirality on 100 ps scale

Different from: 
Tsai et al., Nature 580, 608 (2020)
Takeuchi et al., Nature Mat. 20, 1364 (2021)



Gradient expansion : (very) smooth textures
Kipp, Lux, YM, Phys. Rev. Research 3, 043155 (2021)

Onsager relations

Chiral termsCollinear terms

➢ Given a texture, the spirit of gradient expansion dictates:

➢ Conductivity in terms of irreducible representations of the symmetry group:

Point group symmetry

magnetoconductivity planar Hall effect

anomalous Hall effect



Gradient expansion : Predictions
Kipp, Lux, YM, Phys. Rev. Research 3, 043155 (2021)
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FIG. 2. Electronic structure of Néel, Bloch and cone-type spirals. Bandstructures of Néel (a) and Bloch (b) spin-spirals in the energy

interval [− 1, 1] eV for q = ± 0.31a− 1
0 ·x̂ (blueand red). (c-d) Bandstructures of acone-type spiral with theconeangle↵ = 0.6rad ⇡ 34.38°

in the energy range of [− 1, 1] eV for opposite orientations of the wavevector q = ± 0.31a− 1
0 · x̂ , reflecting the changes in the electronic

structure due to opposite sense of chirality. The color of the bands in (c-d) indicates the value of the band-resolved Berry curvature⌦x y (k ).
(e-h) The real-space magnetic texture corresponding to band structures in the respectivecolumns. For moredetails seemain text.

where↵ and β are the Cartesian indices and EF is the Fermi
energy. We refer to σI

↵ β as the Fermi-surface term, since it
only picks up contributions from the Fermi surface. The term
σI I
↵β collects terms from all occupied states up to the Fermi

level and is therefore referred to as the Fermi-sea term. The
symmetric part of the conductivity tensor is given by [42]

σ(↵ β ) =
1

⇡

Z
d3k

(2⇡ )3

X

m n

<{ v↵m n (k)vβnm (k)} (37)

⇥
Γ2

((EF −✏m k )2 + Γ2)((EF −✏n k )2 + Γ2)
.

In evaluating the Kubo expressions for the conductivity of
spin-spiral states we have considered systems treated in a
super-cell with up to 1600 atoms in the unit cell, using up
to 2 ·105 k-points for performing Brillouin zone integrations.

I I I . CHIRAL TRANSPORT PROPERTIES OF

SPIN-SPIRALS

Below we compare the results of the gradient expansion
performed up to linear order for the considered model to the
explicit tight-binding calculations of the conductivity tensor
by using the Kubo formalism. From explicit calculations of
theconductivity for thesystem in aspin-spiral state n̂cone (de-
fined in Eq. (3) and Eq. (4)), we extract the contributions to
theconductivity tensor even (non-chiral, σnc) and odd (chiral,
σc) in spiral wave-vector q by performing the corresponding
decomposition:

σ
c(nc)

↵β =
σ↵ β (q)⌥σ↵ β (−q)

2
. (38)

Using this definition, we can make a connection to the gradi-
ent expansion in the long-wavelength limit. Here, one finds

the asymptotic relationships

σnc
↵β ⇠hσcol

↵ β (n̂)i , for q ! 0, (39)

σc
↵β ⇠hσ

χ
↵ βγδ(n̂)@γnδi , for q ! 0. (40)

We thus scrutinize the existence of chiral contributions to
the magnetoconductivity, σc

(↵ ↵ ) (q-chiral part of the diago-

nal components of the conductivity tensor σ↵ ↵ ), chiral pla-
nar Hall effect, σc

(↵β ) (q-chiral part of the ↵ $ β symmet-

ric off-diagonal components of the conductivity tensor σ↵β )
and chiral Hall effect, σc

[↵ β ] (q-chiral part of the↵ $ β anti-

symmetric off-diagonal componentsof theconductivity tensor
σ↵ β ). The predictions of the explicit calculations concerning
the existence of MC and CMC, PHE and CPHE, AHE and
CHE, are presented in Table IV. They are entirely consistent
with thesymmetry analysis of thegradient expansion also be-
yond the long-wavelength limit: whenever an empty instance
is met in the table, the gradient expansion predicts a vanish-
ing contribution for agiven direction of thespin-spiral and its
type, while explicit calculations provide negligible values of
the conductivity. Below, we discuss in detail the emergence
of chiral contributions to the MC, PHE and AHE.

A. Longitudinal chiral conductivity

The discussion of chiral effects in the longitudinal con-
ductivity falls into two categories: the isotropic contributions
(σ(xx ) + σ(yy ) )/ 2 from the totally symmetric irrep A1 which
we defined as CMC and anisotropic contributions (σ(xx ) −
σ(yy ) )/ 2 from irrep E2, which we referred to as CLPHE. For

➙ Kubo formalism

➙ Up to 2000 atoms

➙ Variable disorder

➙



Chiral Transport of Spirals
Kipp, Lux, YM, Phys. Rev. Research 3, 043155 (2021)

non-chiral

chiral

non-chiral

chiral

prominent Berry phase signal

chiral magnetoconductivity chiral planar Hall effect chiral Hall effect

Néel Bloch Cone

Redies, Lux, YM, et al. PRB 102, 184407

“swiss-knife” skyrmion “swiss-knife” skyrmion



Anomalous Hall effect Chiral Hall Effect

topological Hall effect
also beyond emergent field…

0.57 T 2.53 T

Emerges in complex textures, 

e.g. skyrmions, vortices, bobbers…

Redies, Lux, YM, et al. PRB 102, 184407
Meynell, Monchesky et al. PRB 90, 224419
Bouaziz, Blügel et al. PRL 126, 147203 (2021)

➢ Possibly observed in many systems:

can tell you more than you’d think!

Chiral Hall Effect of Textures
Lux, Freimuth, Praß, Blügel, Y.M., arXiv:2005.12629; PRL 124, 096602 (2020)

Gradient expansion technique



E. WittenN. Seiberg

J. High Energy Phys.
1998, 003 (1998).

J. High Energy Phys.
1999, 032 (1999)

L. Susskind

arXiv (2001)
A. Connes

J. Bellissard

J. Math. Phys. ’94

noncommutative
geometry

noncommutative
gauge theory

nuclear physics
string theory

integer & fractional 
quantum Hall effect

Non-commutative 

phase-space picture

Non-commutative 

Berry phase

Fabian Lux, Freimuth, Praß, Blügel, Y.M., 
arXiv:2005.12629

PRL 124, 096602 (2020)
arXiv:2103.01047

gauge theory of skyrmions

~ string theory!



Chirality and Magnons
Zhang, Lux, Go, Y.M. et al. Comm. Phys. 3, 227 (2020)

➢ Scalar chirality of magnonic bands:

➢ Chirality in “non-chiral” systems 

at finite temperature

“Topological / Chiral” electronic effects

in fluctuating “non-chiral” magnets

Makes chirality relevant even if you don’t know it

➙ ferromagnetic

kagome lattice

➙ Mn3Ge

non-collinear

coplanar



Orbital magnetism of magnons
Zhang, Lux, Go, Y.M. et al. Comm. Phys. 3, 227 (2020)

ferromagnetic kagome lattice

Topological Orbital Magnetism

giant effective fields

Hanke, YM et al. Sci. Rep. 7, 41078; Dias et al. Nat. Commun. 7, 13613 
Lux, Freimuth, Blügel, YM et al. Commun. Phys. 1, 60 (2018) 
Redies, Lux, Hanke, YM et al. PRB 99, 140407(R) (2020)

Taguchi et al. Science 291, 2573 (2001)

Shindou, Nagaosa, PRL 87, 116801 (2001)

Magnon-driven orbital moment:



Chirality and g-factor
Alahmed, Wen, Zhang, Lux, Y.M., Zhang, Lee, Li et al. (2021) Cu(1,3-bdc)

OOP IP

Orbital moment is correlated with the 

(spectroscopic) g-factor as:

Kittel Phys. Rev. 76, 743 (1949)

Kläui, Weiler, Mokrousov, Physik Journal Feb 2022

Magnons mediate OOP orbital
moment with increasing T

Chisnell et al.
PRL 115, 147201 ‘15

Expectation:

➢ OOP g-factor increases with T

➢ IP g-factor decreases with T

Demishev et al. EPL 63, 446 (2003), CuGeO3

Farle, Rep. Prog. Phys. 1998

Orbital magnetization (mB)



Transport of chirality by magnons
Zhang, Lux, Go, Y.M. et al. Comm. Phys. 3, 227 (2020)

Drag of electronic orbital 
momentum by magnons

Orbital Nernst Effect:

Magnonic transport of 

orbital angular momentum

Go, Jo, Lee, Kläui, Y.M. EPL 135 (2021)

➢ Competitor to 

magnon Nernst effect

ferromagnetic kagome lattice

orbital

spin

inject 

chirality

sensitive to topology



Optical chirality engineering
Ghosh, Freimuth, Gomonay, Blügel, YM, in press (arXiv:2011.01670)

Strength of laser field

Change of energy occurs due to the change of occupation and

change of magnetisation.

8 / 11

Strength of laser field

Change of energy occurs due to the change of occupation and

change of magnetisation.

8 / 11

Strength of laser field

Change of energy occurs due to the change of occupation and

change of magnetisation.

8 / 11

Engineer chirality at will!

hopping

„Chiral“ coherent electronic excitations

Not an effect of 

thermal repopulation

chiral interactions out of equilibrium

Karnad, Freimuth, Y.M., Kläui, et al. PRL 121, 147203 ’18
Freimuth, Blügel, Y.M., Phys. Rev. B 102, 245411 (2020)



TRANSPORT

Chirality by Excitations 

Chirality Switching

Chiral currents

EXCITATIONSDYNAMICS

Non-Collinear Spin Currents for Chirality Switching of Magnetic Textures

Dongwook Go,1, 2,⇤Moritz Sallermann,1 Fabian R. Lux,2 Stefan Blügel,1 Olena Gomonay,2 and Yuriy Mokrousov1, 2

1Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
2Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany

(Dated: January 4, 2022)

We propose a way to electrically switch the spin chirality of non-collinear antiferromagnets in the absence
of an external magnetic field in a deterministic manner by using the spin current whose spin polarization is

inhomogeneous in space, which we denote non-collinear spin current. While it is commonly assumed that the
spin polarization of the spin Hall current is uniform, asymmetric local environment generally allows the spin

polarization to be non-collinear in space. As an example, we demonstrate from a tight-binding model for a
layered Kagome magnet such as Mn3Sn that the spin Hall current flowing perpendicular to the Kagome layer

has non-collinear polarization. In particular, if the non-collinear polarization of the spin current possesses a
“chiral” component, it can couple to the chiral magnetic texture and switch the chirality, which is illustrated by

theatomistic spin simulation. Our theoretical prediction can bereadily tested in experiments, which will open a
novel route toward electric control of complex spin structures in non-collinear antiferromagnets.

In recent years, it has been realized that antiferromagnets

(AFMs) can take the role of ferromagnets in spintronics for

their promising features. Owing to the high frequency na-

ture of eigenmodes in AFMs, it offers a unique opportunity

to study ultrafast phenomena in nonequilibrium, which might

open a route to achieving AFM devices operating within ps

times scale. Another unique feature of the AFMs is its re-

silience to an external magnetic field and absence of a stray

field. While it is advantageous for increasing the memory

density, it makes manipulating magnetic orders in AFMs ex-

tremely difficult. One of the major breakthroughs was a re-

alization that magnetic moments in the AFM can be electri-

cally controlled in an atomic scale due to “ locally” asymmet-

ric environment of each sublattice sites although the inver-

sion symmetry is globally present, which opened an era of

antiferromagnetic spintronics. While early studies have fo-

cused on collinear AFMs such as Mn2Au and CuMnAs, re-

cent discoveries of frustrated Kagome AFMs such as Mn3X

(X=Sn, Ge) attracted great deal of attention owing to their

unique properties such as large anomalous Hall and Nernst

effects and magneto-optical Kerr effect despite vanishingly

small net magnetic moemnt, which is in clear contrast to a

common wisdom known for ordinary ferromagnets. Theseef-

fects are driven by momentum-space Berry curvature origi-

nating from the chiral spin texture in real space. In particular,

Mn3Sn is identified as a magnetic Weyl semimetal, which ex-

hibit magnetotransport phenomena of topological origin, e.g.

chiral anomaly.

However, controlling magnetic moments is even more

challenging in noncollinear AFMs than in collinear AFMs.

Nonetheless, Tsai et al. succeeded in switching magnetic

configurations in polycrystalline Mn3Sn/Pt heterostructures

by using the spin Hall effect (SHE) of Pt under an external

magnetic field. Meanwhile, Takeuchi et al. investigated epi-

taxial Mn3Sn/Pt heterostructures and discovered a coherent

rotation of the chiral spin texture when the spin polarization

of the SHE is perpendicular to the Kagome plane. Unfortu-

nately, this cannot be used to deterministically switch the chi-

ral spin texture because the chiral rotation depends on the du-

ration and magnitude of the current pulse. We note that both

of these studies utilized aconventional spin Hall current to in-

duce magnetic excitations in Mn3Sn, which is analogous to a

heavy metal/ferromagnet bilayer.

However, a unique feature of AFMs is the sublattice de-

gree of freedom. Not only the equilibrium magnetic moment

but also their excitations are expected to be dependent on the

sublattice. With this motivation, we explore the possibility

of sublattice-dependent spin current excitation and investigate

how it affects the dynamics of the magnetic texture in non-

collinear AFMs. Our main finding is that thespin polarization

of the spin current excitation can be non-collinear in space.

In cubic crystals, the polarization of the spin current exci-

tation is identical in every atomic sites [Fig. 1(a)], which is

well known for the SHE in transition metals. However, crys-

tals with inequivalent sublattices may exhibit a NCSC due to

asymmetric potential in each sites. Layered metallic Kagome

magnets such as Mn3X is an example, where the spin Hall

current can havenon-collinear configuration of thespin polar-

ization [Fig. 1(b)].

In this Letter, we show that the NCSC is a general con-

(a) (b)

FIG. 1. Schematic illustration of the (a) conventional versus (b) non-

collinear spin Hall currents. The red arrows represent the direction
of the spin polarization and the blue arrows indicate the electron’s

propagation direction in average. NICE!!!

CHIRALITY
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