

Detecting, imprinting and switching spin chirality in magnetic materials

Yuriy Mokrousov

Peter Grünberg Institute, Forschungszentrum Jülich, Germany Institute of Physics, University of Mainz, Germany

Rich world of chiral states

Menzel et al. PRL 108, 197204 (2012)

Spirals, Domain walls

Fert et al. Nat. Nano. 8, 152 (2013)

Topological spin textures

vector spin chirality

Ferromagnets

Antiferromagnets

scalar spin chirality

$$\chi_{ijk} = \mathbf{S}_i \cdot (\mathbf{S}_j \times \mathbf{S}_k)$$

"octupolar" chirality

Yang et al. PRL **124**, 137201 (2020)

Canted Magnets

Smejkal et al., Nat. Phys. 14, 242 (2018)

Frustrated Magnets

Why chirality?

- There is a zoo of chiral states out there!
 You have to deal with them!
- > We have to learn how to manipulate them
- Profound impact on: energetics, transport, dynamics
- Platform for "advanced" and/or topological concepts

Teleportation & Entanglement

Exotic States of Matter: chiral spin liquids

Novel Topological States

How to read out chirality and chiral states?

Concept of chiral currents Chiral Hall effect in canted systems Chiral Hall effect in textures Chiral spin currents Chirality, Berry phase & spin torque

How to switch chirality?

Chiral currents for chirality switching

magnetic sample

"Hidden" and "driven" chirality out of equilibrium

Driving chirality by laser excitations Chirality by fluctuations Magnon drag of chirality Chirality and g-factor

Read-Out: Anomalous Hall Effect

(images from) Smejkal *et al.* Sci. Adv. **6**, eaaz8809 (2020)

AHE vanishes in collinear AFMs

Non-collinear AFMs offer a rich platform

Taguchi *et al.*, Science **291**, 2573 (2001) (exp. $Md_2Mo_2O_7$) Shindou, Nagaosa, PRL **87**, 116801 (2001) (fcc 3Q) Machida *et al.*, Nature **463**, 210 (2010) (exp. $Pr_2Ir_2O_7$) Machida *et al.* PRL **98**, 057203 (2007) (exp. $Pr_2Ir_2O_7$) Tomizawa, Kontani, PRB **80**, 100401 (2009) (theo. $Nd_2Mo_2O_7$) J. Kübler, C. Felser, EPL **108**, 67001 (2014) (theo. Mn_3X) Chen, Niu, MacDonald, PRL **112**, 017205 (2014) (theo. Mn_3Ir) Nayak *et al.*, Sci. Adv. **2**, e1501870 (2016) (exp. Mn_3Ge) Sürgers *et al.*, Nat. Comm. **5**, 3400 (2014) (exp. Mn_5Si_3) Zhou, Hanke, Feng, et al. PRB 2019, PRM 2020 (Mn_3XN) ... goes on ...

- Coplanar AFMs + Spin-Orbit Interaction (SOI)
 - Non-coplanar AFMs: SOI not needed

scalar spin chirality

 $\chi_{ijk} = \mathbf{S}_i \cdot (\mathbf{S}_j \times \mathbf{S}_k)$

S_k "topological" Hall effect prominent e.g. in skyrmions S_j OHANNES GUTENBERG UNIVERSITÄT MAINZ OF DUCLES

Probing Scalar Chirality by Magneto-Optics

Feng, Hanke, YM et al. Nature Comm. 11, 118 (2020)

Scalar spin chirality mediates topological magneto-optical phenomena

Kerr and Faraday effects

[111]

 $[1\bar{1}\bar{1}]$

Read-Out: Anomalous Hall Effect

(images from) Smejkal *et al.* Sci. Adv. **6**, eaaz8809 (2020)

AHE does not exist in collinear AFMs

Non-collinear AFMs offer a rich platform

Taguchi *et al.*, Science **291**, 2573 (2001) (exp. $Md_2Mo_2O_7$) Shindou, Nagaosa, PRL **87**, 116801 (2001) (fcc 3Q) Machida *et al.*, Nature **463**, 210 (2010) (exp. $Pr_2Ir_2O_7$) Machida *et al.* PRL **98**, 057203 (2007) (exp. $Pr_2Ir_2O_7$) Tomizawa, Kontani, PRB **80**, 100401 (2009) (theo. $Nd_2Mo_2O_7$) J. Kübler, C. Felser, EPL **108**, 67001 (2014) (theo. Mn_3X) Chen, Niu, MacDonald, PRL **112**, 017205 (2014) (theo. Mn_3Ir) Nayak *et al.*, Sci. Adv. **2**, e1501870 (2016) (exp. Mn_3Ge) Sürgers *et al.*, Nat. Comm. **5**, 3400 (2014) (exp. Mn_5Si_3) Zhou, Y.M., Hanke, Feng, et al. PRB 2019, PRM 2020 (Mn_3XN) ... goes on ...

- Coplanar AFMs + Spin-Orbit Interaction (SOI)
- Non-coplanar AFMs: SOI not needed

scalar spin chirality

 $\chi_{ijk} = \mathbf{S}_i \cdot (\mathbf{S}_j \times \mathbf{S}_k)$

and crystal symmetry is low...

 $old S_k$

 ${old S}_i$

"topological" Hall effect...

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Toy Model : 2 atoms per cell

Point group symmetry C_{6v}

And let's assume that everything is possible...

Hall effect : Effect of canting

Kipp, Samanta, Lux, Go, Merte, YM et al. Comm. Physics 4, 99 (2021)

Chiral Hall Effect of FMs honeycomb Rashba ferromagnet

No change in magnetization with sense of chirality!

 $oldsymbol{\chi} = \mathbf{S}_{\mathrm{A}} imes \mathbf{S}_{\mathrm{B}} \sim oldsymbol{ heta}$

бдн

Smejkal et al. Sci. Adv. 6, eaaz8809

JG U

Chiral Hall Effect in AFMs

Kipp, Samanta, Lux, Go, Merte, YM et al. Comm. Physics 4, 99 (2021)

Mn₂Au 2.01.51.0 $E_{\rm F}^{\rm true}$ [eV] Chiral Hall 0.50.0-0.5 $\approx 2^{\circ}$ E_{F} -1.00.1 eV0.3 eV-1.50.5 eV-2.0-5005001000 $\sigma_{zx} \left[(\Omega \cdot \mathrm{cm})^{-1} \right]$

Colossal Chiral Hall Effect

DyPtBi: Zhang, **GdPtBi**: Suzuki, **EuTiO**₃: Takahashi **CaNaMnBi**₂: Yang et al. PRL **124**, 137201 (2020)

Samanta, Ležaić, YM, et al. JAP **127**, 213904 (2020)

Zelezny *et al.* PRL **113**, 157201 (2014) Bodnar *et al.* Nat. Comm. **9**, 348 (2018) Chiral and Crystal Hall : can be also

distinguished by optical means

Chiral Currents : Symmetry

Kipp, Samanta, Lux, Merte, Lezaic, YM et al. Comm. Physics 4, 99 (2021)

$$P \mathbf{n}_{\pm} = \pm \mathbf{n}_{\pm}$$

staggered / ferromagnetic:

$$\mathbf{n}_{\pm} = \mathbf{s}_{\mathrm{A}} \pm \mathbf{s}_{\mathrm{B}}$$

AHE is odd under time-reversal

$$\sigma_{[xy]} = \frac{1}{2}(\sigma_{xy} - \sigma_{yx})$$

This suggests the following expansion :

$$\sigma_{xy}^{\text{odd}} = \sum_{k,l=0}^{\infty} (c_{xy}^{\text{odd}})^i \colon (\mathbf{n}_{-}^{\otimes 2k+1} \otimes \mathbf{n}_{+}^{\otimes 2l})_i \quad \text{odd in } A \leftrightarrow B$$
$$\sigma_{xy}^{\text{even}} = \sum_{k,l=0}^{\infty} (c_{xy}^{\text{even}})^i \colon (\mathbf{n}_{-}^{\otimes 2k} \otimes \mathbf{n}_{+}^{\otimes 2l+1})_i \quad \text{even in } A \leftrightarrow B$$

After including the *staggered* nature of tensors into account:

$$\frac{\sigma_{xy}^{\text{odd}} - \sigma_{yx}^{\text{odd}}}{2} \in \text{span}\{n_{-}^{y}n_{+}^{y}n_{+}^{x} + n_{-}^{y}n_{+}^{x}n_{+}^{y} + n_{-}^{x}n_{+}^{y}n_{+}^{y} - n_{-}^{x}n_{+}^{x}n_{+}^{x}\} + \mathcal{O}(n^{5})$$

$$\frac{\sigma_{xy}^{\text{even}} - \sigma_{yx}^{\text{even}}}{2} = \in \text{span}\{n_{+}^{z}, n_{-}^{z}n_{-}^{x}n_{+}^{x} + n_{-}^{z}n_{-}^{y}n_{+}^{y}, n_{-}^{x}n_{-}^{z}n_{+}^{x} + n_{-}^{y}n_{-}^{z}n_{+}^{x} + n_{-}^{y}n_{-}^{z}n_{+}^{x} + n_{-}^{y}n_{-}^{z}n_{+}^{y}, n_{-}^{x}n_{-}^{x}n_{+}^{x} + n_{-}^{y}n_{-}^{y}n_{+}^{y}, n_{-}^{x}n_{-}^{x}n_{+}^{x} + n_{-}^{y}n_{-}^{y}n_{+}^{y}, n_{-}^{x}n_{-}^{x}n_{+}^{y} + n_{-}^{y}n_{-}^{y}n_{+}^{y}, n_{-}^{x}n_{-}^{y}n_{+}^{y} + n_{-}^{y}n_{-}^{y}n_{+}^{y}, n_{-}^{x}n_{-}^{y}n_{+}^{y} + n_{-}^{y}n_{-}^{y}n_{+}^{y}, n_{-}^{x}n_{-}^{y}n_{+}^{y} + n_{-}^{y}n_{-}^{y}n_{+}^{y} + n_{-}^{y}n_{-}^{y}n_{+}^{y}, n_{-}^{x}n_{-}^{y}n_{+}^{y} + n_{-}^{y}n_{-}^{y}n_{+}^{y}, n_{-}^{x}n_{-}^{y}n_{+}^{y} + n_{-}^{y}n_{-}^{y}n_{+}^{y} + n_{-}^{y}n_{+}^{y}n_{+}^{y} + n_{-}^{y}n_{+}^{y}n_{+}^{y} + n_{-}^{y}n_{+}^{y}n_{+}^{y} + n_{-}^{y}n_{+}^{y}n_{+}^{y} + n_{$$

Chiral Hall Effect: Impact

Kipp, Samanta, Lux, Merte, YM et al. Comm. Physics 4, 99 (2021) Bac, Koller, Lux, Assaf et al. arXiv:2103.15801 (2021)

50

-50

-100

Prediction of symmetry analysis:

"foratumestily in B-field behaviolty)2

 $\delta \sigma_{xy} \sim \mathbf{n}_+ \cdot \mathbf{n}_-^2$

MnBi₂Te₄

scaling law with magnetization

Will help you read out chirality

Chiral Hall Effect: Origins

Kipp, Samanta, Lux, Go, Lezaic, YM et al. Comm. Physics 4, 99 (2021)

➢ Reference state + small admixture of needed chirality apply perturbation theory → obtain expressions

2-spin chiral Hall effect:

 $\Omega^a_{xy} \approx |\theta| \cdot \delta \Omega_{xy}$

Non-linear in *E* contributions to the Hall effect

"staggered" mixed Berry curvature "staggered" **spin-orbit torques** $\rightarrow \Omega_{x\lambda}$

Complex geometric nature:

Chiral Hall $\stackrel{1.8}{[6]{\text{GN}}}_{1.6}$ -10^{1} 1.4 $\overset{\mathbf{k}}{=} 1.2$ -10^{2} 1.0 -Х Ζ 2.0staggered SOT $\stackrel{1.8}{E_{\rm L}} \stackrel{0.1}{[\rm eV]}{\rm eV}$ -10^{1} 1.4 $\overset{\mathbf{k}}{=}_{1.2}$

 $\Omega^{\theta k_x}_{n \mathbf{k}} \left[\mathbf{\hat{A}} \right]$

 -10^{2}

Ż

 $\delta \Omega_{xy} = \operatorname{tr}_{\operatorname{occ}} \Im \left([\Omega_{xy}, \mathcal{A}_{\lambda}] + [\mathcal{Q}_{\lambda y}, \mathcal{A}_{x}] + [\Omega_{x\lambda}, \mathcal{A}_{y}] \right)$

1.0 + X

Mn₂Au

2.0

Chiral Spin Currents

Go, Sallermann, Lux, Blügel, Gomonay, Y.M., arXiv:2201.11476 (2022)

spin Hall effect

in spirit: spin-decomposition of AHE

Symmetry allows for *site-dependent* spin current polarization!

non-magnetic crystal

F

Freimuth, Blügel, Y.M. PRL **105**, 246602 '10 Rauch, Töpler, Mertig PRB **101**, 064206 '20

"chiral" spin Hall effect

Chiral Spin Hall Effect : Mn₃X

Go, Sallermann, Lux, Blügel, Gomonay, Y.M., arXiv:2201.11476 (2022)

tight-binding model for Mn₃X structure

Non-magnetic Mn3X lattice: electric field along y spin current along z

chiral spin Hall effect

Chiral current operator:

 $j_z^{\rm chi} = 1/2 \left(S_{\rm chi} v_z + v_z S_{\rm chi} \right)$

Chiral spin operator $S_{
m chi} = \boldsymbol{S}_A \cdot \hat{\boldsymbol{n}}_A + \boldsymbol{S}_B \cdot \hat{\boldsymbol{n}}_B + \boldsymbol{S}_C \cdot \hat{\boldsymbol{n}}_C$

Kubo formalism for response

Can couple to the spin texture!

Chiral Spin Currents for Chirality Switching

Go, Sallermann, Lux, Blügel, Gomonay, Y.M., arXiv:2201.11476 (2022)

Gradient expansion : (very) smooth textures

Kipp, Lux, YM, Phys. Rev. Research 3, 043155 (2021)

> Given a texture, the spirit of gradient expansion dictates:

Point group symmetry C_{6v}

Conductivity in terms of irreducible representations of the symmetry group: $\sigma = A_1 + A_2 + E_2$

 $\sigma_{A_2}[\hat{\mathbf{n}}] = \gamma_{\text{AHE}} \langle n_z \rangle + \gamma_{\text{CHE}} \langle (\nabla \cdot \hat{\mathbf{n}}) (n_{\perp}^2 - n_{\parallel}^2) \rangle$

planar Hall effect

magnetoconductivity

$$\sigma_{A_1}[\hat{\mathbf{n}}] = (\gamma_{\text{LC}} + \gamma_{\text{MC}}) + \gamma_{\text{AMC}} \langle n_{\perp}^2 - n_{\parallel}^2 \rangle + \gamma_{\text{CMC}} \langle (\nabla \cdot \hat{\mathbf{n}} - \hat{\mathbf{n}} \cdot \nabla) n_z$$

$$\sigma_{E_2}[\hat{\mathbf{n}}] = \gamma_{\text{PHE}} \left\langle \left[\left(n_x^2 - n_y^2 \right) / 2, n_x n_y \right] \right\rangle + \gamma_{\text{CPHE}} \left\langle n_z (\partial_x n_x - \partial_y n_y, \partial_x n_y + \partial_y n_x) \right\rangle$$

anomalous Hall effect

Gradient expansion : Predictions

Kipp, Lux, YM, Phys. Rev. Research 3, 043155 (2021)

Irrep	Channel	Name	Collinear effects $\mathcal{O}(\partial^0)$	Chiral effects $\mathcal{O}(\partial^1)$
A_1	$(\sigma_{(xx)} + \sigma_{(yy)})/2$	isotropic longitudinal	longitudinal conductivity (LC), magnetocon- ductivity (MC), anisotropic magnetoconductiv-	chiral magnetoconductivity (CMC)
A_2	$\sigma_{[xy]}$	antisymmetric transverse	ity (AMC) anomalous Hall effect (AHE)	chiral Hall effect (CHE)
$(E_2)_1$	$(\sigma_{(xx)} - \sigma_{(yy)})/2$	anisotropic longitudinal	longitudinal planar Hall effect (LPHE)	chiral longitudinal planar Hall effect (CLPHE)
$(E_2)_2$	$\sigma_{(xy)}$	symmetric transverse	planar Hall effect (PHE)	chiral planar Hall effect (CPHE)

Туре		AHE	CHE	MC	CMC	PHE	CPHE
	[100]			\checkmark	\checkmark		
Néel	$[0\overline{1}1]$			\checkmark	\checkmark		
	[110]			\checkmark	\checkmark	\checkmark	\checkmark
	[100]			\checkmark			\checkmark
Bloch	$[0\overline{1}1]$			\checkmark			\checkmark
	[110]			\checkmark	\checkmark	\checkmark	\checkmark
	[100]	\checkmark	\checkmark	\checkmark	\checkmark		
Cone	$[0\overline{1}1]$	\checkmark	\checkmark	\checkmark	\checkmark		
	[110]	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

- \rightarrow Kubo formalism
- \rightarrow Up to 2000 atoms
- → Variable disorder

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Forsch

JGU

Chiral Transport of Spirals

Kipp, Lux, YM, Phys. Rev. Research 3, 043155 (2021)

prominent Berry phase signal

Chiral Hall Effect of Textures

Lux, Freimuth, Praß, Blügel, Y.M., arXiv:2005.12629; PRL **124**, 096602 (2020)

Orbital magnetism of magnons

Zhang, Lux, Go, Y.M. et al. Comm. Phys. 3, 227 (2020)

Magnon-driven orbital moment:

 $L_{n\mathbf{k}}^{\mathrm{TOM}} = \kappa^{\mathrm{TO}} \langle \Psi_{n\mathbf{k}} | \chi(\mathbf{k}) | \Psi_{n\mathbf{k}} \rangle$

Hanke, YM *et al.* Sci. Rep. **7**, 41078; Dias *et al.* Nat. Commun. **7**, 13613 Lux, Freimuth, Blügel, YM *et al.* Commun. Phys. **1**, 60 (2018) Redies, Lux, Hanke, YM *et al.* PRB **99**, 140407(R) (2020)

Taguchi *et al.* Science **291**, 2573 (2001) Shindou, Nagaosa, PRL **87**, 116801 (2001)

> JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JG|U

Topological Orbital Magnetism

giant effective fields

$$oldsymbol{L}_{ijk}^{ ext{TO}} = arkappa_{ijk}^{ ext{TO}} \left[oldsymbol{S}_i \cdot \left(oldsymbol{S}_j imes oldsymbol{S}_k
ight)
ight] oldsymbol{ au}_{ijk}$$

Chirality and g-factor

Alahmed, Wen, Zhang, Lux, Y.M., Zhang, Lee, Li et al. (2021)

i n

40

50

T (K)

Fe

10

20

Farle, Rep. Temperature (K)

30

Den 2 shev et 2 l. EPL 68, 446 (2003), Ol 6 eO₃

2.20

2.16

2.12

2.08

0

g-factor

g-factor

Orbital moment is correlated with the (spectroscopic) *g*-factor as:

HOOP

$$g = 2\left(1 + \frac{M_L}{M_S}\right)$$

Expectation:

- OOP g-factor increases with T
- IP g-factor decreases with T

Magnons mediate OOP orbital moment with increasing T

Kittel Phys. Rev. **76**, 743 (1949) Kläui, Weiler, Mokrousov, *Physik Journal* Feb 2022

Transport of chirality by magnons

Zhang, Lux, Go, Y.M. et al. Comm. Phys. 3, 227 (2020)

Orbital Nernst Effect:

 ∇T

0

Optical chirality engineering

Not an effect of thermal repopulation

Ghosh, Freimuth, Gomonay, Blügel, YM, in press (arXiv:2011.01670)

"Chiral" coherent electronic excitations

chiral interactions out of equilibrium

Karnad, Freimuth, Y.M., Kläui, et al. PRL 121, 147203 '18 Freimuth, Blügel, Y.M., Phys. Rev. B 102, 245411 (2020)

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

TRANSPORT

JG

People

Fabian Lux

Dongwook Go

Ghosh

Jonathan

Kipp

Li-Chuan Zhang

Frank Freimuth (JGU) Sergii Grytsiuk Jan-Philipp Hanke Kartik Samanta Matthias Redies Pascal Praß (JGU) Max Merte Markus Sallermann Marjana Ležaić Mathias Kläui (JGU) Stefan Blügel

Wanxiang Feng Yugui Yao & Co. Badih Assaf & Co. Laith Alahmed, Peng Li & Co. Wei Zhang & Co.

@ Beijing @ Beijing @ Notre Dame @ Auburn @ Oakland

MO 1731/7-1 "Magneto-chiral transport effects in skyrmions" (CHITOS)

Thank

SPIN+X SFB/TRR 173 Kaiserslautern • Mainz

EU Synergy Project "3D MAGIC"

SPP2137 Skyrmionics

JGU