

Altermagnetism: Emerging Opportunities in a New Magnetic Phase

Magnetic octupoles as the order parameter for unconventional antiferromagnetism

Sayantika Bhowal

Materials theory, Department of Materials, ETH Zurich

Email: sayantika.bhowal31j@gmail.com sayantika.bhowal@mat.ethz.ch

Wednesday, May 10th

Antiferromagnetism: an early example of "hidden" magnetic order

Antiferromagnetism: an early example of "hidden" magnetic order

The Magnetic Susceptibility of MnO as a Function of the Temperature

RAYEN WELCH TYLER, University of Illinois (Received June 10, 1933)

Inconvenience of staggered magnetization $\mathbf{L} = \mathbf{M}_1 - \mathbf{M}_2$

- Absence of any ferroic ordering
- No information on conjugate field to select magnetic domain
- Can not distinct AFMs with & w/o broken time-reversal symmetries

Magnetic multipoles : Recent example of "hidden" magnetic order

Magnetic multipoles : Recent example of "hidden" magnetic order

Magnetic multipoles : Recent example of "hidden" magnetic order

ON THE MAGNETO-ELECTRICAL EFFECT IN ANTIFERROMAGNETS

I. E. DZYALOSHINSKI Ĭ

Institute for Physical Problems, Academy of Sciences, U.S.S.R.

Submitted to JETP editor June 17, 1959

J. Exptl. Theoret. Phys. (U.S.S.R.) 37, 881-882 (September, 1959)

I. Dzyaloshinskii Spaldin

Astrov, Sov. Phys. JETP 11, 708 (1960)

A new type of magnetism: "Altermagnetism"

Smejkal *et. al.*, Sci. Adv. 6, eaaz8809 (2020)
Naka *et. al.*, Nat. Commun. 10, 4305 (2019)
Ahn *et. al.*, Phys. Rev. B 99, 184432 (2019)
Hayami *et. al.*, J. Phys. Soc. Jpn. 88, 123702 (2019)
Yuan *et. al.*, Phys. Rev. B 102, 014422 (2020); Phys.
Rev. Materials 5, 014409 (2021)
Smejkal *et. al.*, Phys. Rev. X 12, 031042 (2022); Phys. Rev. X
12, 011028 (2022)
Mazin, Editorial: Phys. Rev. X 12, 040002 (2022)
Mazin et.al., PNAS 118, e2108924118 (2021)
.

Emerging properties: Spontaneous Hall effect, Giant magnetoresistance, spin current generations, etc...

A new type of magnetism: "Altermagnetism"

Smejkal *et. al.*, Sci. Adv. 6, eaaz8809 (2020)
Naka *et. al.*, Nat. Commun. 10, 4305 (2019)
Ahn *et. al.*, Phys. Rev. B 99, 184432 (2019)
Hayami *et. al.*, J. Phys. Soc. Jpn. 88, 123702 (2019)
Yuan *et. al.*, Phys. Rev. B 102, 014422 (2020); Phys.
Rev. Materials 5, 014409 (2021)
Smejkal *et. al.*, Phys. Rev. X 12, 031042 (2022); Phys. Rev. X
12, 011028 (2022)
Mazin, Editorial: Phys. Rev. X 12, 040002 (2022)
Mazin et.al., PNAS 118, e2108924118 (2021)

Emerging properties: Spontaneous Hall effect, Giant magnetoresistance, spin current generations, etc..

Centrosymmetric "altermagnets" with non-relativistic spin splitting

$$\mathcal{E}_{\text{int}} = -\vec{m} \cdot \vec{H}(0) - \mathcal{M}_{ij} \partial_i H_j(0) - \mathcal{O}_{ijk} \partial_i \partial_j H_k(0).$$

Magnetic octupole

Plan of talk : A classic example of "antiferromagnet"

Neutron Diffraction Studies of Antiferromagnetism in Manganous Fluoride and Some Isomorphous Compounds*

VOLUME 90, NUMBER 5

R. A. ERICKSON[†],[‡] Laboratory, Oak Ridge, Tennessee and Agricultural and Mechanical College of Texas, College Station, Texas (Received Februrary 24, 1953)

Magnetic octupole

- Correlation to structure and spin : octupolar domains
- Relevance to non-relativistic spin splitting

JUNE 1, 1953

Plan of talk : A classic example of "antiferromagnet"

PHYSICAL REVIEW

Neutron Diffraction Studies of Antiferromagnetism in Manganous Fluoride and Some Isomorphous Compounds*

VOLUME 90, NUMBER 5

R. A. ERICKSON[†],[‡] Laboratory, Oak Ridge, Tennessee and Agricultural and Mechanical College of Texas, College Station, Texas (Received Februrary 24, 1953)

Magnetic octupole

- Correlation to structure and spin : octupolar domains
- Relevance to non-relativistic spin splitting

JUNE 1, 1953

Implication of magnetic octupoles

- Piezo & antipiezo-magnetic effects
- Magnetic Compton profile

Magnetic octupoles

Magnetic octupoles: Ferro-type ordering : \mathcal{O}_{32} (xym_z), $\mathcal{Q}_{x^2-y^2}^{(\tau)}$; Anti-ferro-type ordering : \mathcal{O}_{30} [(3z²-r²)m_z], $t_z^{(\tau)}$ Charge quadrupoles: \mathcal{Q}_{20} (Ferro), \mathcal{Q}_{22}^{-} (AF)

Magnetic octupoles

Magnetic octupoles: Ferro-type ordering : $\mathcal{O}_{32}(xym_z)$, $\mathcal{Q}_{x^2-y^2}^{(\tau)}$; Anti-ferro-type ordering : $\mathcal{O}_{30}[(3z^2-r^2)m_z]$, $t_z^{(\tau)}$ Charge quadrupoles: \mathcal{Q}_{20} (Ferro), \mathcal{Q}_{22}^{-} (AF)

Quantify the effect of neighboring nonmagnetic ions

- Variation with Hubbard U : similar behavior for quadrupoles and octupoles
- Quantify the effect of neighboring nonmagnetic F environment via electric quadrupoles
- Systematic increase in the octupoles as the quadrupole moment increases

L. Schaufelberger, M. E. Merkel, A. M. Tehrani, N. A. Spaldin, and C. Ederer (to be published) <u>https://github.com/materialstheory/multipyles</u>

Spin splitting and its tuning

Watanabe-Yanase, PRB 98, 245129 (2018)

- Reversal of spin splitting with **90° rotation**
- *Reversal of spin splitting* for the opposite sign of magnetic octupoles
- *Controlling spin splitting* via tuning the strength of the magnetic octupole
- Crucial insight into *conjugate fields* for the formation of magnetic domain

Product of stress (rank-2, even under inversion) and magnetic field (odd under TR)

Baruchel et. al., J. Phys. Collogues 49, C8 (1988)

Plan of talk : A classic example of "antiferromagnet"

Neutron Diffraction Studies of Antiferromagnetism in Manganous Fluoride and Some Isomorphous Compounds*

VOLUME 90, NUMBER 5

R. A. ERICKSON[†],[‡] Laboratory, Oak Ridge, Tennessee and Agricultural and Mechanical College of Texas, College Station, Texas (Received Februrary 24, 1953)

Magnetic octupole

- Correlation to structure and spin: octupolar domains
- Relevance to non-relativistic spin splitting

JUNE 1, 1953

Implication of magnetic octupoles

- Piezo & antipiezo-magnetic effects
- Magnetic Compton profile

Implications of magnetic octupoles: Piezo and anti-piezomagnetic effects

Piezomagnetic effect: Application of stress generates a change in net magnetization Allowed components in MnF₂:

Moment along y (μ_{B})

Mn[·]

0.08

 $\lambda_r = 1$

0.04

 σ_{xz}

0.0003

-0.0003

0.04

 σ_{VZ}

0.08

Net moment along y (μ_B)

Moment along x (μ_B)

0.0003

-0.0003

 $\mathcal{M}_x = \Lambda_{xyz}\sigma_{yz}, \mathcal{M}_y = \Lambda_{yxz}\sigma_{xz}, \mathcal{M}_z = \Lambda_{zxy}\sigma_{xy}$ Baruchel et. al., JMMM 15-18, 1510 (1980); Borovik-Romanov J. Exptl. Theoret. Phys. 38, 1088 (1960) Magnetic Octupole tensor $\mathcal{O}_{ijk} \rightarrow$ Piezomagnetic response Λ_{ijk} Net moment along x (μ_B) Urru-Spaldin, Ann. Phys. 447, 168964 (2022) (a) Piezomagnetic 0.002 0.002 **Universal** to all materials with non-zero magnetic octupoles *Reversal* for opposite magnetic domains -0.002 -0.002 (C) Depends on **SOC** effect 0.04 0.08 0.04 0.08 Λ Prediction of *anti-piezomagnetic effect* Anti-piezomagnetic (b) (d)

Same dependence on spin-orbit coupling strength and magnetic domain

Direct detection of magnetic octupole via magnetic Compton scattering

Magnetic Compton profile (MCP)

p_z

$$J_{mag}(p_z) = \int \int [\rho^{\uparrow}(\vec{p}) - \rho^{\downarrow}(\vec{p})] dp_x dp_y$$

Platzman-Tzoar, PRB **2**, 3556 (1970)

- Non-zero MCP, unusual for conventional antiferromagnets
- MCP is symmetric in *p*
- Occurs w/o SOC
- Much larger magnitude than ferroelectrics

Bhowal-Collins-Spaldin, PRL 128, 116402 (2022)

- The integral of the MCP is zero \rightarrow zero net moment
- MCPs along (110) and (1-10) have opposite signs
- Experiments require single magnetic domain (piezomagnetic annealing)

Summary and outlook

Connection between sub-fields of physics \rightarrow New avenues for future exploration

Acknowledgements

ETH zürich

Prof. Nicola Spaldin

Andrea Urru

Sophie Weber

Weber Maximilian Ernest Merkel

Group members at ETH

Acknowledgements

ETH zürich

Prof. Nicola Spaldin

Andrea Urru

Sophie Weber

Weber Maximilian Ernest Merkel

Group members at ETH

