Spontaneous anomalous Hall effect in MnTe

Ruben D. Gonzalez Betancourt, Jan Zubáč, Rafael J. Gonzalez-Hernandez, Atsushi Hariki, Kevin Geishendorf, Zbynek Šobáň, Gunther Springholz, Kamil Olejník, Libor Šmejkal, Jan Kuneš, Jairo Sinova, Tomas Jungwirth, Sebastian T. B. Goennenwein, Andy Thomas, Helena Reichlová, Jakub Železný, <u>Dominik Kriegner</u>

9.5.2023

Magnetically ordered collinear materials

classification without spin orbit coupling

- net magnetization
- exchange splitting
- breaking \mathcal{T} symmetry in electronic band structure

- no net magnetization
- no spin splitting
- **no breaking** \mathcal{T} **symmetry** in electronic band structure

- no net magnetization
- anisotropic spin splitting
- breaking *f* symmetry in electronic band structure

Libor Šmejkal, et al. Phys. Rev. X 12, 031042 (2022)

What about MnTe?: magnetic structure

Susceptibility

Comparison of the American Soc. Jpn. 18, 356 (1964)

Neutron

diffraction

□ Kunitomi, et al., Journal de Physique, 25, 568 (1964)

Magnetic space group

Cm'c'm

DK et al., Phys. Rev. B 96, 214418 (2017)

Building block of the structure

Is MnTe an altermagnet?

How to identify:

•

•

- The opposite-spin sublattices have to be connected by crystallographic rotation transformation, possibly combined with translation or inversion Transformation
- (but not by translation or inversion)

Libor Šmejkal, et al. Phys. Rev. X 12, 040501 (2022)

Is MnTe an altermagnet?

How to identify:

٠

٠

- The opposite-spin sublattices have to be connected by crystallographic rotation transformation, possibly combined with translation or inversion Transformation
- (but not by translation or inversion)

□ Libor Šmejkal, et al. Phys. Rev. X 12, 040501 (2022)

Type of spin splitting symmetry in band structure:

d- , g-, i- wave

$$(^{2}6/^{2}m^{2}m^{1}m)$$

 $\begin{bmatrix} C_2 | t_{1/2} \end{bmatrix} \mathcal{T} t$

screw axis
$$C_2 || C_6 t_{1/2}]$$

Spin-momentum locking			G	$\mathbf{R}^{\mathrm{III}}_{s}$	н	A	Candidate
Bulk	B-2 <i>d-</i> wave		2/m	²2/²m (4)	7	C _{2z}	CuF ₂
	B-4 <i>g-</i> wave		3m	¹ 3̄²m (12)	3	C ₂₁	CoF ₃ , FeF ₃ , Fe ₂ O ₃
			6/m	² 6/ ² m (12)		C _{6z}	
			6/mmm	² 6/ ² m ² m ¹ m (24)	Зm	C _{6z}	CrSb, MnTe, VNb₃S ₆
	B-6 /-wave		m3m	1m132m (48)	mĴ	C _{4z}	

Band structure of MnTe

Mirror planes combined with spin space rotation cause spin degeneracy

 $^{2}6/^{2}m^{2}m^{1}m$

Anomalous Hall effect: symmetries

Can a time reversal odd Hall pseudo vector **h** exist?

$$\mathbf{j}_{\mathrm{H}} = \mathbf{h} \times \mathbf{E} \qquad \mathbf{h} = (-\sigma_{yz}^{\mathrm{a}}, \sigma_{xz}^{\mathrm{a}}, -\sigma_{xy}^{\mathrm{a}})$$

Mn₁ Te Mn₂

α-MnTe

Depends on moment orientation!

AHE intrinsically anisotropic in altermagnets

Anomalous Hall effect: calculations

Φ defined between Neel vector and a-axis

E_F = VB - 0.25 eV

X-ray magnetic circular dichroism: calculations

Circular dichroism governed by same pseudo-vector: $\mathbf{h} = (-\sigma_{yz}^{a}, \sigma_{xz}^{a}, -\sigma_{xy}^{a})$

- AHE: only valence electronic states \rightarrow valence SOC
- XMCD: also atomic core levels
 → core SOC + core/valence exchange

(finally) experiments: MnTe thin films

single crystalline epitaxial growth by molecular beam epitaxy (JKU Linz)

- · Orientation (0001) $[1-100]_{MnTe} \parallel (111) [11-2]_{InP}$
- · Unintentional p-type doping
- Semiconducting band gap ~1.4eV

DK et al Nat. Comm. 7, 11623 (2016)

(finally) experiments: MnTe thin films

single crystalline epitaxial growth by molecular beam epitaxy (JKU Linz)

- · Orientation (0001) $[1-100]_{MnTe} \parallel (111) [11-2]_{InP}$
- · Unintentional p-type doping
- Semiconducting band gap ~1.4eV
- · No detectable spontaneous moment

DK et al Nat. Comm. 7, 11623 (2016)

Magnetic field sweep measurements

10

5

0

-5

-10

-6

-3

ρ_{yx} (μΩm)

Hall bars defined by lithography

30

0

Magnetic field $\mu_0 H$ (T)

-3

٠

٠

(233 (2017) 523

a 513

٠

503

-6

Analysis of longitudinal and transversal resistance during oblique field sweeps

150 K

3

0

Magnetic field $\mu_0 H$ (T)

6

Isolation of the hysteretic signal

3

-> spontaneous hysteretic signal

6

• Depends on out of plane field component

Magnetic field sweep interpretation

٠

Out of plane field component determines inplane magnetic order orientation

 $\mu_0 H \rightarrow$ weak $M_z \rightarrow$ change inplane $L \rightarrow$ Hall pseudovector

Note: moment's tilt heavily exaggerated

Temperature dependence of the AHE

- Neutron diffraction / susceptibility show magnetic transition
- AHE vanishes with the magnetic order

DK et al., Phys. Rev. B 96, 214418 (2017)

Altermagnets with AHE

- Symmetry breaking by **Te - octahedra**

g-wave

- spontaneous anomalous Hall effect

See also talk by Pete Wadley

Gonzales Betancourt, DK et al., PRL 130, 036702 (2023)

- Symmetry breaking by **O-octahedra**
- d-wave

No spontaneous anomalous Hall effect

Talk by Helena Reichlova

□ Feng et al. Nat. Electron. 5, 735–743 (2022)

- Symmetry breaking by multiple magnetic sublattices
- d-wave

spin polarized Fermi surfaces

spontaneous anomalous Hall effect

Talk by Sebastian Goennenwein

Reichlova, DK, et al., arXiv:2012.15651 **15**

16

Thank you for your attention

Gonzales Betancourt, DK et al., PRL 130, 036702 (2023)

- Easy axis Neel vector orientation allows for AHE and circular dichroism
- Experimentally detected AHE in field sweep measurements -> spontaneous nature

٠

٠

MnTe is an altermagnet

