Spin crystalline group in magnetic materials

Qihang Liu（刘奇航）

Department of Physics and Shenzhen Institute for Quantum Science and Technology
Southern University of Science and Technology（SUSTech）

> 2023.5.9

```
Phys. Rev. X 12, 021016 (2022)
The Innovation 3, 100343 (2022)
arXiv:2303.04549 (2023)
arXiv:2301.12201 (2023)
```


Previous connection to spintronics

* 2012-2013 Northwestern University (Postdoc with A. Freeman)
* 2013-2018 CU Boulder (Postdoc with A. Zunger)
* 2018.4 - SUSTech Associate Professor

High global symmetry + Local symmetry breaking

Concept (LaOBiS_{2}):
QL*et al. Nano Lett. 13, 5264 (2013)
X. Zhang ${ }^{\dagger}$, QLt, J. Luo*, A. Zunger * et al. Nat. Phys. 10, 387 (2014)

New materials:
BiOI: C. Chen*, QL* * et al. PRL 127, 126402 (2021)
CuMnAs: QL* * et al. $P R L$ 129, 276601 (2022)

Outline

$>$ Introduction of spin group
$>$ Features of spin point/space group
$>$ Topological phases protected by spin group symmetry

- Kramers degeneracy and \mathbf{Z}_{2} topological phases
- Chiral Dirac-like semimetal

Symmetry considerations in crystals - Group Theory

Magnetic order

Magnetic order

Symmetry considerations in magnetic materials

w/ SOC

w/o SOC

$$
\widehat{H}=\frac{\widehat{\boldsymbol{p}}^{2}}{2 m}+V(\hat{\boldsymbol{r}})+\frac{1}{2 m^{2} c^{2}}(\nabla V(\hat{\boldsymbol{r}}) \times \widehat{\boldsymbol{p}}) \cdot \widehat{\boldsymbol{\sigma}}+\boldsymbol{S}(\hat{\boldsymbol{r}}) \cdot \widehat{\boldsymbol{\sigma}} \quad \widehat{H}=\frac{\widehat{\boldsymbol{p}}^{2}}{2 m}+V(\hat{\boldsymbol{r}})+\boldsymbol{S}(\hat{\boldsymbol{r}}) \cdot \widehat{\boldsymbol{\sigma}}
$$

$$
\begin{aligned}
& \widehat{C_{\boldsymbol{n}}(\theta)}\left(\frac{1}{2 m^{2} c^{2}}(\nabla V(\hat{\mathbf{r}}) \times \widehat{\mathbf{p}}) \cdot \widehat{\boldsymbol{\sigma}}\right) \widehat{C_{\boldsymbol{n}}(\theta)^{-1}} \\
& =\frac{1}{2 m^{2} c^{2}}\left(R_{\boldsymbol{n}}(\theta) \nabla V\left(R_{\boldsymbol{n}}(\theta)^{-1} \hat{\mathbf{r}}\right) \times R_{\boldsymbol{n}}(\theta) \widehat{\mathbf{p}}\right) \cdot \widehat{\boldsymbol{\sigma}} \\
& =\frac{1}{2 m^{2} c^{2}} R_{\boldsymbol{n}}(\theta)(\nabla V(\hat{\mathbf{r}}) \times \widehat{\mathbf{p}}) \cdot \widehat{\boldsymbol{\sigma}} \\
& \widehat{U_{\boldsymbol{n}}(\theta)} \widehat{C_{\boldsymbol{n}}(\theta)}\left(\frac{1}{2 m^{2} c^{2}}(\nabla V(\hat{\mathbf{r}}) \times \widehat{\mathbf{p}}) \cdot \widehat{\boldsymbol{\sigma}}\right) \widehat{C_{\boldsymbol{n}}(\theta)^{-1}} \widehat{U_{\boldsymbol{n}}(\theta)^{-1}} \\
& =\frac{1}{2 m^{2} c^{2}} R_{\boldsymbol{n}}(\theta)(\nabla V(\hat{\mathbf{r}}) \times \widehat{\mathbf{p}}) \cdot R_{\boldsymbol{n}}(\theta) \widehat{\boldsymbol{\sigma}} \\
& =\frac{1}{2 m^{2} c^{2}}(\nabla V(\hat{\mathbf{r}}) \times \widehat{\mathbf{p}}) \cdot \widehat{\boldsymbol{\sigma}}
\end{aligned}
$$

$$
\begin{aligned}
& =\widehat{C_{\boldsymbol{n}}(\theta) \boldsymbol{S}(\hat{\boldsymbol{r}})} \widehat{\boldsymbol{C}_{\boldsymbol{n}}(\theta)^{-1}} \cdot \widehat{\boldsymbol{\sigma}} \\
& =\frac{\boldsymbol{S}\left(R_{n}(\theta)^{-1} \hat{\boldsymbol{r}}\right)}{=\boldsymbol{S}(\hat{\boldsymbol{r}}) ?} \cdot \widehat{\boldsymbol{\sigma}} \\
& \widehat{U_{\boldsymbol{m}}(\varphi)} \widehat{C_{\boldsymbol{n}}(\theta) \boldsymbol{S}(\hat{\boldsymbol{r}})} \cdot \widehat{\boldsymbol{\sigma}} \widehat{C_{\boldsymbol{n}}(\theta)^{-1}} \widehat{U_{\boldsymbol{m}}(\varphi)^{-1}} \\
& =\boldsymbol{S}\left(R_{\boldsymbol{n}}(\theta)^{-1} \hat{\boldsymbol{r}}\right) \cdot R_{\boldsymbol{m}}(\varphi)^{-1} \widehat{\boldsymbol{\sigma}} \\
& =\frac{R_{\boldsymbol{m}}(\varphi) \boldsymbol{S}\left(R_{\boldsymbol{n}}(\theta)^{-1} \hat{\boldsymbol{r}}\right)}{=\boldsymbol{S}(\hat{\boldsymbol{r}})} \cdot \widehat{\boldsymbol{\sigma}}
\end{aligned}
$$

Magnetic double group with every spatial rotation operator attached to a spin rotation

Spin group with spin rotation operators detached from spatial rotation operators

Symmetry considerations in crystals - Group Theory

Magnetic order

Original works about spin group symmetry

$$
\text { JOURNALOFAPPLIEDPHYSICS VOLUME 37, NUMBER3 } \quad \text { 1MARCH } 1966
$$

Space Group Theory for Spin Waves
W. Brinkman* and R. J. Elliott \dagger

Department of Theoretical Physics, Oxford University, Oxford, England

Theory of spin-space groups
By W. F. Brinkman \dagger and R. J. Elliott
Department of Theoretical Physics, University of Oxford, England
> Multiple-fold degeneracies of spin wave spectrum require an enhanced symmetry group called "spin group", which consider spin rotation and spatial rotation separately.

Consider an AFM spin arrangement

C_{2} rotation in magnetic group

C_{2} rotation in spin group

We are talking about spin "crystalline" group

In group theory, spin group is the double cover of $\mathrm{SO}(\mathrm{N})$
$\operatorname{Spin}(1)=O(1)=\{+1,-1\}$
Spin(2) $=\mathrm{U}(1)=\mathrm{SO}(2)$
$\operatorname{Spin}(3)=\operatorname{SU}(2)$

Outline

> Introduction of spin group

$>$ Features of spin point/space group
Topological phases protected by spin group symmetry

- Kramers degeneracy and \mathbf{Z}_{2} topological phases
- Chiral Dirac-like semimetal
$>$ Outlook

Separating spin \& lattice operation — notations

Spin rotation Lattice rotation

Spin point group: $\left\{U_{m}(\varphi), T U_{m}(\varphi) \| C_{n}(\theta), I C_{n}(\theta)\right\}$
Spin space group: $\left\{U_{\boldsymbol{m}}(\varphi), T U_{m}(\varphi) \| C_{n}(\theta), I C_{n}(\theta) \mid \tau\right\}$
Lattice rotation \& translation

There are 598 types of spin point group

D. B. Litvin and W. Opechowski, Physica 76, 538 (1974); D. B. Litvin, Acta Crystallogr. A 33, 279 (1977)

Theory to explore:
$>$ Spin point groups for specific magnetic configuration?
$>$ Classification of spin space groups?
$>$ Representation theory of spin space groups?
$>$ Application of spin group (Spintronics? Topology?)

Spin groups for collinear and coplanar spin arrangements

Coplanar: $G_{\text {SOP }}=Z_{2}^{K}$
Collinear: $G_{\text {SOP }}=S O(2) \rtimes Z_{2}^{K}$

$$
Z_{2}^{K}=\left\{\{E| | E\},\left\{T U_{n}(\pi)| | E\right\}\right\} ; S O(2)=\left\{\left\{U_{\boldsymbol{m}}(\omega) T| | E \mid 0\right\} \mid \omega \in(0,2 \pi]\right\}
$$

Degeneracies caused by spin space group

Space group
$P 6 / m m m \otimes S O(3) \otimes Z_{2}^{T} \quad P^{3_{z}} 6 /{ }^{1} m^{2_{x}} m^{2 x y} m^{m_{z}} 1$
$\mathrm{Cmm}^{\prime} \mathrm{m}^{\prime}$
Little co-group at K

$>$ 2-fold degeneracies occur at K are well explained by spin group symmetry

Applications of spin group symmetry (Before 2022)

Previous discussions

Landau theory of phase transition

Phys. Rev. B 26, 6947 (1982);
I. A. Izyumov et al., Phase transitions and crystal symmetry;...

Thorpe, Proc. Phys. Soc. 91, 903 (1967); Acta Crystallogr. A 29, 651 (1973);...

> | Electronic states of spiral |
| :---: |
| magnet |

J. Phys. Condens. Matter 3, 8565 (1991)

Recent applications

Spin splitting in AFM
systems
J. Phys. Soc. Jpn. 88, 123702 (2019);

Phys. Rev. B 102, 014422 (2020);
PNAS 118, e2108924118 (2021)...

Spin Hall effect in AFM

systems
Phys. Rev. Lett. 119, 187204 (2017);
Phys. Rev. Lett. 126, 127701 (2021);...

Piezomagnetism
Nat. Commun. 12, 2846 (2021)

Other possible applications?

Topological phase of matter

$>$ Introduction of spin group

$>$ Features of spin point/space group
$>$ Topological phases protected by spin group symmetry

- Kramers degeneracy and \mathbf{Z}_{2} topological phases
- Chiral Dirac-like semimetal

Kramers degeneracy and \mathbf{Z}_{2} topological classification

$>$ Kramers degeneracy

1. An antiunitary symmetry operator Θ (i.e., $\langle\Theta \phi \mid \Theta \varphi\rangle=\langle\varphi \mid \phi\rangle$)
2. $\Theta^{2}=-1$
$>\mathrm{Z}_{2}$ topological classification in 2D

- Time reversal symmetry T of electronic system could protect Kramers degeneracy
\rightarrow Degeneracy at time reversal invariant momenta (TRIM) for surface states
\rightarrow Two types of surface states connection in edges of 2D systems corresponds to Z_{2} topological trivial and nontrivial phase (Dirac surface states)

Rev. Mod. Phys. 82, 3045 (2010)

Kramers degeneracy protected by spin group operations

- Find all symmetries that could protect Kramers degeneracy and are unbroken on certain surfaces

Spin group Symmetry	Momenta with protected 2fold degeneracy	Surface with the symmetry	Possible surface states	
$\left\{T\left\|\|E\| \tau_{z / 2}\right\}\right.$	TRIM within $k_{z}=0$ plane	(xy0)	DP at (0,0) or $(\pi, 0)$	
$\left\{T U_{z}(\pi)\| \| m_{[001]} \mid \tau_{x / 2}\right\}$	$\left(\pi, 0, k_{z}\right)$ and $\left(\pi, \pi, k_{z}\right)$ lines	(010)	DNL at $k_{x}=\pi$	
$\left\{T \\| C_{z}(\pi) \mid 0\right\}$	$k_{z}=0$ and $k_{z}=\pi$ planes	(001)	Possible double DP	
$\left\{T\left\|\left\|m_{[001]}\right\| 0\right\}\right.$	$\begin{gathered} \left(0,0, k_{z}\right),\left(0, \pi, k_{z}\right) \\ \left(\pi, 0, k_{z}\right) \text { and }\left(\pi, \pi, k_{z}\right) \text { lines } \end{gathered}$	(xy0)	DNL at $k_{x}=0$ or $k_{x}=\pi$	
$\left\{T\left\|\left\|m_{[001]}\right\| \tau_{x / 2}\right\}\right.$	$\left(0,0, k_{z}\right)$ and $\left(0, \pi, k_{z}\right)$ lines	(010)	DNL at $k_{x}=0$	
$\left\{T U_{\boldsymbol{n}}(\pi)\| \| m_{[001]} \mid \tau_{x / 2}\right\}$	$\left(\pi, 0, k_{z}\right)$ and $\left(\pi, \pi, k_{z}\right)$ lines	(010)	DNL at $k_{x}=\pi$	
$\left\{T U_{n}(\pi)\| \| E \mid \tau_{z / 2}\right\}$	TRIM within $k_{z}=\pi$ plane	(xy0)	DP at $(0, \pi)$ or (π, π)	

DP—Dirac point; DNL—Dirac nodal line

Z_{2} topological phases realized by a tight binding model

Structure	Expected surface states	Calculated surface states	
$>\mathrm{Z}_{2}$ Topological insulator protected by			
$\left\{T \\| m_{[001]} \mid 0\right\} \&\left\{T U_{\boldsymbol{n}}(\pi)\| \| E \mid \tau_{\boldsymbol{z} / 2}\right\}$			

$>\mathrm{Z}_{2}$ Topological insulator protected by $\left\{T U_{n}(\pi)| | E \mid \tau_{z / 2}\right\}$
$>$ Trivial insulator

$>$ Introduction of spin group

$>$ Features of spin point/space group
$>$ Topological phases protected by spin group symmetry

- Kramers degeneracy and Z_{2} topological phases
- Chiral Dirac-like semimetal

Conventional Dirac semimetal

Surface states

A

$>$ A Dirac cone is composed of two Weyl cones with opposite chirality
> Appear at high-symmetry line/point
$>$ The surface states are not topologically protected

PNAS 113, 8648 (2016)

Hidden $\mathbf{S U}(2)$ symmetry in certain AFM systems without SOC

> Consider a collinear AFM structure with type-IV magnetic space group.

$$
\begin{aligned}
& u_{x}^{1 / 2} \equiv\left\{U_{x}(\pi)| | E \mid \tau_{1 / 2}\right\}=-i e^{-i \boldsymbol{k} \cdot \tau_{1 / 2}} \tau_{x} \otimes \sigma_{x} \\
& u_{y}^{1 / 2} \equiv\left\{U_{y}(\pi)| | E \mid \tau_{1 / 2}\right\}=-i e^{-i \boldsymbol{k} \cdot \tau_{1 / 2}} \tau_{x} \otimes \sigma_{y} \\
& u_{z} \equiv\left\{U_{z}(\pi)| | E \mid 0\right\}=-i \tau_{0} \otimes \sigma_{z}
\end{aligned}
$$

Generators of $s u(2)$ Lie algebra for an arbitrary \boldsymbol{k}

$$
\begin{aligned}
& S U(2)=\{\exp (-i \boldsymbol{\theta} \cdot \boldsymbol{\rho})\}, \\
& \boldsymbol{\rho}=\left(\frac{1}{2} \tau_{x} \otimes \sigma_{x}, \frac{1}{2} \tau_{x} \otimes \sigma_{y}, \frac{1}{2} \tau_{0} \otimes \sigma_{z}\right)
\end{aligned}
$$

QL* et al. The Innovation 3, 100343 (2022)

A Dirac-like fermion but with chirality

> Two Weyl quasiparticles with same chirality
$>$ Robust Fermi arcs
$>$ Dirac-like on certain surfaces while Weyl-like on other surfaces

Materials realization

$>\mathrm{CoNb}_{3} \mathrm{~S}_{6}$ is a representative material of chiral Dirac-like semimetal

D $\quad S U(2)$ preserved $S U(2)$ broken

$>\mathrm{P}_{1}$ and P_{2} have chirality +2
$>\mathrm{N}_{1}$ and N_{2} have chirality -2 .

Experimental verification by ARPES and neutron diffraction

The comparison between ARPES and DFT reveal the Fermi arc surface states of $\mathrm{CoNb}_{3} \mathrm{~S}_{6}$

Summary and What's next ?

Spin crystalline group - symmetry description of magnetic materials in SOC-free limit:

1) New symmetry operations, new degeneracies, and new quasiparticles
2) New topological phases and new topological classifications

(a)

(c)

(b)

Symmetry invariants arxiv:2105.12738

New fermions
PRL 127, 176401 (2021)

Magnon topology PRB 105, 064430 (2022)

Altermagnetism and spintronics

reciprocal space band structure and energy isosurfaces

$\mathrm{RuO}_{2}, \mathrm{FeSb}_{2}, \mathrm{MnF}_{2}, \mathrm{CrSb}, \mathrm{MnTe}, \mathrm{VNb}_{3} \mathrm{~S}_{6} \ldots$

PRX 12, 031042 (2022); PRX 12, 040501 (2022)

Spin splitting torque
Spin Hall effect
Tunneling Magnetoresistance

PRL 128, 197202 (2022)
PRL 126, 127701 (2021)
PRX 12, 011028 (2022)

Plaid-like spin splitting in a noncoplanar antiferromagnet $\mathbf{M n T e}_{2}$

Spin-ARPES shows symmetric/antisymmetric spin polarization along k_{x} / k_{y} axes

$$
\text { S. Qiao*, } \underline{\text { QL}}^{*}, \text { C. Liu* et al. arXiv:2303.04549 (2023) }
$$

Acknowledgements

Prof．Xiangang Wan（NJU）Theory
Prof．Chaoyu Chen（SUSTech）ARPES
Collaborators
Prof．Chang Liu（SUSTech）ARPES
Prof．Liusuo Wu（SUSTech）Neutron diffraction

南方护技大学
SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Please also check our posters：

5149：Antiferromagnetic Chern insulators
5151：Observation of plaid－like spin splitting in a noncoplanar antiferromagnet

Thank you for your attention！

Phys．Rev．X 12， 021016 （2022）
The Innovation 3， 100343 （2022）
arXiv：2303．04549（2023）
arXiv：2301．12201（2023）
南立种技大学
SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

