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Altermagnetism Šmejkal, Sinova & Jungwirth PRX 12, 031042 (2022); 12, 040501 (2022)

Libor Šmejkal et al. Sci. Adv. 6, eaaz8809 (2020)

Crystal Hall effectPrototype altermagnet: RuO2

What drives transport in altermagnets microscopically?

odd in crystal chirality



A case of SrRuO3
Samanta, Lezaic, Freimuth, Blügel, YM, JAP 127, 213904 (2020) 

Antiferromagnetic up to 4 monolayers
Xia et al. PRB 79 (2009)

7º-rotation



A case of SrRuO3
Samanta, Lezaic, Freimuth, Blügel, YM, JAP 127, 213904 (2020) 

10 meV

unexpected Berry

curvature behavior

Control of altermagnetic splitting in oxides?



A case of SrRuO3
Samanta, Lezaic, Freimuth, Blügel, YM, JAP 127, 213904 (2020) 

7º-rotation

Large crystal Hall effect

crystal magneto-optical effect

upon a “mininal” octahedral distortion 

crystal Hall Effect

crystal 

magneto-optics

All transitions matter!



Band Topology of RuO2
Zhou, Feng, LS, JS, YM et al., arXiv:2305.01410 

Type I : bands A/B – C

Type II : bands A – B

Type III : bands C

Bands A-B : strong altermagnetism

Bands C : weak altermagnetism

C

A

B



Strong altermagnetism

pseudo-nodal surfaces

Weyl 

pseudo-nodal lines
Ladder transitions

weak altermagnetism

Altermagnetic Transitions
Zhou, Feng, LS, JS, YM et al., arXiv:2305.01410 

Type II and III :

altermagnetic!
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Type II

symmetry-enforced anisotropic exchange-originated

robust 

feature!



spectral AHC 

Psi-K Workshop, 

Halle, 2011

L10 FePt

spin-flip only



Ladder transitions 

are universal

Chiral Hall effect in 

AFM

can be gigantic

Kipp, YM et al. Comm. Phys. 4, 99 (2021)



Type II, III : Spin-flip Transitions
YM, Zhang, Freimuth et al., JPCM 25, 163201 (2013) 

1st order perturbation theory:

2nd order perturbation theory:

purely spin-conserving

purely spin-flip

Strong anisotropy expected

Fermi surface, properties

same energy & k different energy and/or k



Crystal Hall effect Crystal Nernst effect Crystal thermal Hall effect

N // [001] 
N // [110]

Anisotropy in RuO2
Zhou, Feng, LS, JS, YM et al., arXiv:2305.01410

anomalous Hall conductivity anomalous Nernst conductivity anomalous thermal Hall conductivity

Access thermal phenomena:

compare to      0.2 – 0.3   1.5 – 4.5 in Mn3X
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Fig. 4. Anomalous Hall Lorenz number. (A) Temperature dependence of the anomalous Hall Lorenz 

number, 𝐿𝑧𝑥
𝐴𝐻 , for samples #1 (filled blue circles) and #2 (filled red circles). For comparison, we also plot 

the temperature dependence of 𝐿𝑥𝑦
𝐴𝐻  for the ferromagnetic metals Ni (open purple squares) with 𝜃D  ~  450 K 

and fcc Fe (open green triangles) with 𝜃D  ~  470 K (9, 10). The dashed line represents the value of 𝐿0 ≡

π2 3⁄ . The inset shows the temperature dependence of 𝐿𝑥𝑦
𝐴𝐻  for Ni, Ni0.97Cu0.03, and Ni0.90Cu0.10 (10). (B) 

Contour plot of the band below the Weyl point for Mn3 + xSn1 − x in the kx-ky plane at kz = 0. The color scale 

represents EF for Mn3 + xSn1 − x measured from that of the non-Mn doped sample, Mn3.00Sn1.00. Each colored 

line represents the result for the corresponding 𝐸F. A pair of two Weyl nodes with different chiralities is 

shown by the filled and open circles. All of the calculated results were obtained for the magnetic structure 

shown in Fig. 1A (see also MATERIALS AND METHODS). (C) Schematic band dispersion near the Weyl 

point in Mn3Sn. The horizontal axis represents the wavevector k along the black dashed line shown in (B). 

The purple, blue, and red dashed lines represent the Fermi energies of Mn3.02Sn0.98 (𝐸F ~  0.02 eV ), 

Mn3.06Sn0.94 (𝐸F ~  0.04 eV), and Mn3.09Sn0.91 (𝐸F ~  0.05 eV), respectively (16, 24). The shaded area roughly 

indicates the energy region of linear dispersion, namely, the Weyl band. (D) Schematic band structures of 

Mn3.09Sn0.91. The gray-shaded plane represents EF. The green and black solid (red dashed) lines represent 

intra-band (inter-band) scatterings. Our study indicates that the scattering rates within the Weyl bands (𝜏𝑊𝑒𝑦𝑙 ) 

and within the metallic bands (𝜏𝐷𝑟𝑢𝑑𝑒 ) are not equal to each other, leading to the conclusion that the inter-

band scatterings between Weyl bands and metallic bands are strongly suppressed.  

Wiedemann-Franz Law
Zhou, Feng, LS, JS, YM et al., arXiv:2305.01410

Sommerfeld constant Lorentz ratio:

Sugii et al. arXiv:1902.06601 (2019)

Traditionally believed to give an estimate for extrinsic / intrinsic origins

Sommerfeld expansion
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FIG. 3. (a-c) Three distinct types of interband transitions in al-
termagnetic RuO2, due to pseudo-nodal lines forming among the

bands of same spin, (a), altermagnetic pseudo-nodal surfaces form-
ing among the states of opposite spin as a results of crystal sym-

metry, (b), and so-called ladder transition among weakly split bands
of opposite spin with similar dispersion, (c). (d) Momentum and

energy distribution of topological nodal lines and Weyl points for
N(' = 45◦ ,✓= 90◦ ). (e) Relativistic Fermi surface (black lines)

and Berry curvature⌦zx (color maps, in atomic units) on the (001)
plane at the true Fermi energy for N(' = 45◦ ,✓= 90◦ ). The con-

tributions from gapped nodal lines, pseudo-nodal surfaces, and spin-
flip ladder transitions are indicated by black arrows, pink and green
dashed rectangles, respectively. (e) Similar to (d), but for theanoma-

lousNernst conductivity ↵zx .

contributionscoming fromWeyl pointsparticularly noticeable

in thecaseof ANE, Fig. 3(f).

Next, weturn our attention to themagnitudeof crystal ther-

mal transport coefficients. Figures2(e)-2(g) show σ, ↵, and

as a function of the Fermi energy for different temperatures.

At the true Fermi energy (" = "F ), σ stays nearly constant

with theincreasingof temperature, while↵ and changedras-

tically upon heating. In addition, althoughσ israther small, ↵
and can reach asmuch as−0.35 AK− 1m− 1 and 5.5⇥10− 2

WK− 1m− 1 [58]. Thesevaluescan befurther substantially en-

hanced by engineering the degree of band filling via electron

or holedoping.

In understanding the temperature dependence of thermal

transport let us first turn to the low-temperature limit. Here,

σ, ↵, and [Eq. (4)] are reduced to thefirst-order correction

in theSommerfeld expansion [48]:

σi j ⇡ σT = 0
i j (µ), (5)

↵ i j ⇡ −
⇡ 2k2

B T

3e

dσT = 0
i j (")

d"
" = µ

, (6)

i j ⇡
⇡2k2

B T

3e2
σT = 0

i j (µ), (7)

where e is the elementary charge and kB is the Boltzmann

constant. Relations (6) and (7) reflect two well-known ex-

pressions: one is the Mott relation, linking the ANC to the

-30

0

30

60

90

(a)

(b)

(c)

σ
 (

S
/c

m
)

0

4

8

κ
 (

1
0

-2
 W

K
-1

m
-1

)

0

2

4

0 100 200 300

L0

L
 (

1
0

-8
 Ω

W
K

-2
)

T (K)

ε = εF - 0.4

ε = εF - 0.3

ε = εF - 0.2

ε = εF - 0.1

ε = εF

ε = εF + 0.15

FIG. 4. Temperature-dependence of (a) anomalous Hall conductiv-
ity σ, (b) anomalous thermal Hall conductivity , and (c) anomalous

Lorenz ratio L for N(' = 45◦ ,✓= 90◦ ) with different Fermi en-
ergies " . The horizontal dashed line in (c) denotes the Sommerfeld

constant L 0. The vertical dashed line denotes the allowed maximal
temperature rangeof theWiedemann-Franz law.

energy derivative of AHC; another is the WF law which in-

troduces the anomalous Lorenz ratio L i j = i j / (σi j T), con-

verging to the Sommerfeld constant (L0 = ⇡2k2
B / (3e2) =

2.44⇥10− 8 ⌦WK− 2) in the low-temperature limit.

The variation of σ, , and L with temperature for differ-

ent Fermi energies is shown in Figure 4. When " = "F , the

anomalous Lorenz ratio L is close to the Sommerfeld con-

stant L0 for T < 100 K [Fig. 4(c)]. This is because in the

low-temperature region, L isdominated by σ dueto thelinear

dependence of on temperature [Fig. 4(b)]. From Fig. 4(a),

wecan seethat σ isnearly constant and it isequal to thezero-

temperaturevaluebelow 100K. Therobustnessof WFlaw ob-

served in RuO2 at relatively largetemperatures comes in con-

trast to theexpectations based on our experiencewith conven-

tional ferromagnets [6–8]. Theunderlying physics ispossibly

rooted in theWeyl nodal propertiesof RuO2. Wenotethat the

nodal linehasastrong dispersion, especially prominent in the

range from − 0.2 eV to + 0.2 eV [Fig. 3(a)]. The WF law is

valid in the energy range of the nodal line, and its robustness

gradually weakens when going away from this energy range.

Particularly, with the energy approaching the crossing points

at about " = "F + 0.15 eV [Fig. 2(d)], the WF law is valid

even up to 150 K. Hence, therobust validity of theWF law in

RuO2 is likely related to its topological characteristics.

Here, we do not consider the effect of inelastic scatter-
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ing among the states of opposite spin as a results of crystal sym-
metry, (b), and so-called ladder transition among weakly split bands

of opposite spin with similar dispersion, (c). (d) Momentum and
energy distribution of topological nodal lines and Weyl points for

N(' = 45◦ ,✓= 90◦ ). (e) Relativistic Fermi surface (black lines)
and Berry curvature⌦zx (color maps, in atomic units) on the (001)
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tributions from gapped nodal lines, pseudo-nodal surfaces, and spin-

flip ladder transitions are indicated by black arrows, pink and green
dashed rectangles, respectively. (e) Similar to (d), but for theanoma-

lous Nernst conductivity ↵zx .

contributionscoming fromWeyl pointsparticularly noticeable

in thecase of ANE, Fig. 3(f).

Next, weturn our attention to themagnitudeof crystal ther-

mal transport coefficients. Figures 2(e)-2(g) show σ, ↵, and

as a function of the Fermi energy for different temperatures.

At the true Fermi energy (" = "F ), σ stays nearly constant

with theincreasingof temperature, while↵ and changedras-

tically upon heating. In addition, although σ is rather small, ↵
and can reach as much as− 0.35 AK− 1m− 1 and 5.5⇥10− 2

WK− 1m− 1 [58]. Thesevaluescan befurther substantially en-

hanced by engineering the degree of band filling via electron

or holedoping.

In understanding the temperature dependence of thermal

transport let us first turn to the low-temperature limit. Here,

σ, ↵, and [Eq. (4)] are reduced to the first-order correction

in theSommerfeld expansion [48]:

σi j ⇡ σT = 0
i j (µ), (5)

↵ i j ⇡ −
⇡ 2k2

B T

3e

dσT = 0
i j (" )

d"
" = µ

, (6)

i j ⇡
⇡ 2k2

B T

3e2
σT = 0

i j (µ), (7)

where e is the elementary charge and kB is the Boltzmann
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FIG. 4. Temperature-dependence of (a) anomalous Hall conductiv-

ity σ, (b) anomalous thermal Hall conductivity , and (c) anomalous
Lorenz ratio L for N( ' = 45◦ ,✓= 90◦ ) with different Fermi en-

ergies " . The horizontal dashed line in (c) denotes the Sommerfeld
constant L 0. The vertical dashed line denotes the allowed maximal

temperature range of theWiedemann-Franz law.

energy derivative of AHC; another is the WF law which in-

troduces the anomalous Lorenz ratio L i j = i j / (σi j T), con-

verging to the Sommerfeld constant (L0 = ⇡ 2k2
B / (3e2) =

2.44⇥10− 8 ⌦WK− 2) in the low-temperature limit.

The variation of σ, , and L with temperature for differ-

ent Fermi energies is shown in Figure 4. When " = "F , the

anomalous Lorenz ratio L is close to the Sommerfeld con-

stant L0 for T < 100 K [Fig. 4(c)]. This is because in the

low-temperature region, L isdominated by σ dueto the linear

dependence of on temperature [Fig. 4(b)]. From Fig. 4(a),

wecan seethat σ isnearly constant and it isequal to thezero-

temperaturevaluebelow 100K. Therobustnessof WFlaw ob-

served in RuO2 at relatively largetemperatures comes in con-

trast to theexpectations based on our experiencewith conven-

tional ferromagnets [6–8]. Theunderlying physics ispossibly

rooted in theWeyl nodal properties of RuO2. Wenote that the

nodal linehasastrong dispersion, especially prominent in the

range from − 0.2 eV to + 0.2 eV [Fig. 3(a)]. The WF law is

valid in the energy range of the nodal line, and its robustness

gradually weakens when going away from this energy range.

Particularly, with the energy approaching the crossing points

at about " = "F + 0.15 eV [Fig. 2(d)], the WF law is valid

even up to 150 K. Hence, the robust validity of theWF law in

RuO2 is likely related to its topological characteristics.

Here, we do not consider the effect of inelastic scatter-

small-angle inelastic scattering has stronger impact on 

heat flow than electron momentum flow [Ziman, 1972]

Mn3Sn and Mn3Ge: intrinsic by far, negligible inelastic scattering

inelastic

Where does WF law violation come from?



Wiedemann-Franz Law Violation
Zhou, Feng, LS, JS, YM et al., arXiv:2305.01410

Xu et al. Sci. Adv. 6, eaaz3522 (2020)

WF law deviations can be caused by pondering function

At T = 0 pondering function gives WF law:

+ -

Purely antisymmetric AHC around the chemical potential:

WF law is satisfied
WF nodes in Mn3Sn

intrinsic

+ +
Type I 

Type II, III 
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FIG. 3. (a-c) Three distinct types of interband transitions in al-

termagnetic RuO2 , due to pseudo-nodal lines forming among the
bands of same spin, (a), altermagnetic pseudo-nodal surfaces form-

ing among the states of opposite spin as a results of crystal sym-
metry, (b), and so-called ladder transition among weakly split bands

of opposite spin with similar dispersion, (c). (d) Momentum and
energy distribution of topological nodal lines and Weyl points for

N(' = 45◦ ,✓ = 90◦ ). (e) Relativistic Fermi surface (black lines)
and Berry curvature⌦zx (color maps, in atomic units) on the (001)

plane at the true Fermi energy for N(' = 45◦ ,✓= 90◦ ). The con-
tributions from gapped nodal lines, pseudo-nodal surfaces, and spin-
flip ladder transitions are indicated by black arrows, pink and green

dashed rectangles, respectively. (e) Similar to (d), but for theanoma-
lous Nernst conductivity ↵zx .

contributionscoming from Weyl pointsparticularly noticeable

in the case of ANE, Fig. 3(f).

Next, weturn our attention to themagnitude of crystal ther-

mal transport coefficients. Figures 2(e)-2(g) show σ, ↵ , and

as a function of the Fermi energy for different temperatures.

At the true Fermi energy (" = "F ), σ stays nearly constant

with theincreasing of temperature, while↵ and changedras-

tically upon heating. In addition, although σ is rather small, ↵
and can reach as much as− 0.35 AK− 1m− 1 and 5.5⇥10− 2

WK− 1m− 1 [58]. Thesevaluescan befurther substantially en-

hanced by engineering the degree of band filling via electron

or hole doping.
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transport let us first turn to the low-temperature limit. Here,

σ, ↵, and [Eq. (4)] are reduced to the first-order correction
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energy derivative of AHC; another is the WF law which in-

troduces the anomalous Lorenz ratio L i j = i j / (σi j T ), con-

verging to the Sommerfeld constant (L 0 = ⇡ 2k2
B / (3e2) =

2.44⇥10− 8 ⌦WK− 2) in the low-temperature limit.

The variation of σ, , and L with temperature for differ-

ent Fermi energies is shown in Figure 4. When " = "F , the

anomalous Lorenz ratio L is close to the Sommerfeld con-

stant L 0 for T < 100 K [Fig. 4(c)]. This is because in the

low-temperature region, L isdominated by σ due to the linear

dependence of on temperature [Fig. 4(b)]. From Fig. 4(a),

wecan see that σ isnearly constant and it isequal to thezero-

temperaturevaluebelow 100 K. Therobustnessof WF law ob-

served in RuO2 at relatively large temperatures comes in con-

trast to theexpectations based on our experience with conven-

tional ferromagnets [6–8]. Theunderlying physics ispossibly

rooted in theWeyl nodal properties of RuO2. Wenote that the

nodal line has astrong dispersion, especially prominent in the

range from − 0.2 eV to + 0.2 eV [Fig. 3(a)]. The WF law is

valid in the energy range of the nodal line, and its robustness

gradually weakens when going away from this energy range.

Particularly, with the energy approaching the crossing points

at about " = "F + 0.15 eV [Fig. 2(d)], the WF law is valid

even up to 150 K. Hence, the robust validity of the WF law in

RuO2 is likely related to its topological characteristics.

Here, we do not consider the effect of inelastic scatter-
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energy derivative of AHC; another is the WF law which in-

troduces the anomalous Lorenz ratio L i j = i j / (σi j T ), con-

verging to the Sommerfeld constant (L 0 = ⇡ 2k2
B / (3e2) =

2.44⇥10− 8 ⌦WK− 2) in the low-temperature limit.

The variation of σ, , and L with temperature for differ-

ent Fermi energies is shown in Figure 4. When " = "F , the

anomalous Lorenz ratio L is close to the Sommerfeld con-

stant L0 for T < 100 K [Fig. 4(c)]. This is because in the

low-temperature region, L isdominated by σ dueto the linear

dependence of on temperature [Fig. 4(b)]. From Fig. 4(a),

wecan seethat σ isnearly constant and it isequal to thezero-

temperaturevaluebelow 100K. Therobustnessof WF law ob-

served in RuO2 at relatively large temperatures comes in con-

trast to theexpectations based on our experience with conven-

tional ferromagnets [6–8]. Theunderlying physics ispossibly

rooted in theWeyl nodal properties of RuO2. Wenote that the

nodal linehasastrong dispersion, especially prominent in the

range from − 0.2 eV to + 0.2 eV [Fig. 3(a)]. The WF law is

valid in the energy range of the nodal line, and its robustness

gradually weakens when going away from this energy range.

Particularly, with the energy approaching the crossing points

at about " = "F + 0.15 eV [Fig. 2(d)], the WF law is valid

even up to 150 K. Hence, the robust validity of theWF law in

RuO2 is likely related to its topological characteristics.

Here, we do not consider the effect of inelastic scatter-

Wiedemann-Franz Law in RuO2
Zhou, Feng, LS, JS, YM et al., arXiv:2305.01410

Use WF law to identify the type of transitions?

Anisotropy of electrical & thermal transport: 

position and character of different types of features?

WF ratio is very sensitive to band filling



Photophysics with RuO2?
Adamantopoulos, YM, WF, LS, JS et al. (2023)

actually has 

inversion symmetry…

Orbital Hall
Spin Hall 
Anomalous Hall

Orbital, spin 
accumulation

Linear in electric field

Quadratic in electric field
(photo)

Torques



Photo Orbital Magnetism : RuO2
Adamantopoulos, YM, WF, LS, JS et al. (2023)

Poster 

session 

RuO2

CoF2

Strong canting in RuO2

Giant induced moments in CoF2



Outlook

Clearly, altermagnets combine properties of FMs, PT-AFMs,  and NC-AFMs

Crystal symmetries play a role in classification of topological features / excitations   

Electrically and thermally altermagnets are not worse than (e.g.) Mn3X type

Canting properties in ground state and out of equilibrium: anisotropic!

may give a handle on dynamics driven by magnetic field

Expect some exciting orbital properties

Sublattice-dependent currents and response may be more relevant  

Interplay of structural and magnetic chirality: new ideas for magno-phononics?  
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