

On the origins of transport in altermagnets

Yuriy Mokrousov

Peter Grünberg Institute, Forschungszentrum Jülich, Germany Institute of Physics, University of Mainz, Germany

Thanks

Thodoris Adamantopoulos

Frank Freimuth

Max Merte

Marjana Ležaić

Kartik Samanta

Stefan Blügel

中德科学中心

Marjana Ležaić **Dongwook Go** Lishu Zhang **Hongbin Zhang Peter Schmitz** Mahmoud Zeer Fabian Lux Yugui Yao **Run-Wu Zhang Olena Gomonay** Lukasz Plucinski

Chinesisch-Deutsches Zentrum für

Wissenschaftsförderung

Wanxiang Feng

Libor Šmejkal

Xiadong Zhou

Sinova

Altermagnetism

Šmejkal, Sinova & Jungwirth **PRX** 12, 031042 (2022); 12, 040501 (2022) Libor Šmejkal *et al.* **Sci. Adv.** 6, eaaz8809 (2020)

Crystal Hall effect

odd in crystal chirality

A case of SrRuO₃

Antiferromagnetic up to 4 monolayers Xia et al. PRB 79 (2009)

Samanta, Lezaic, Freimuth, Blügel, YM, JAP 127, 213904 (2020)

A case of SrRuO₃

Samanta, Lezaic, Freimuth, Blügel, YM, JAP 127, 213904 (2020)

A case of SrRuO₃

Samanta, Lezaic, Freimuth, Blügel, YM, JAP 127, 213904 (2020)

Large *crystal Hall effect crystal magneto-optical effect* upon a "mininal" octahedral distortion

(meV)

(meV)

Band Topology of RuO₂

Zhou, Feng, LS, JS, YM et al., arXiv:2305.01410

Bands A-B : strong altermagnetism

Bands C : weak altermagnetism

- **Type I :** bands A/B C
 - **Type II :** bands A B
 - **Type III :** bands C

Altermagnetic Transitions

Zhou, Feng, LS, JS, YM et al., arXiv:2305.01410

Type II

Type II

Chiral Hall effect in AFM cantingan, beygigan, timetry

Kipp, YM et al. Comm. Phys. **4**, 99 (2021)

J. Železný,^{1,2} H. Gao,³ K. Výborný,¹ J. Zemen,⁴ J. Mašek,⁵ Aurélien Manchon,⁶ J. Wunderlich,^{1,7} Jairo Sinova,^{8,1,3} and T. Jungwirth^{1,9}

spin-axis angles, as shown in Figs. 3(e) and 3(f). Another important feature, illustrated in Figs. 4(a) and 4(b), is that the interband NSOT in the AFM can be significantly larger than its FM SOT counterpart. The interband nature of the term $\delta \vec{s}^{\text{inter}}$ from Eq. (5) implies that its magnitude is large when two subbands linked by spin-orbit coupling have a small energy spacing. In the calculations shown in Figs. 3(e) and

Ladder transitions are universal

Anisotropy in RuO₂

Zhou, Feng, LS, JS, YM et al., arXiv:2305.01410

Access thermal phenomena:

$$R_{ij}^{(n)} = \int_{-\infty}^{\infty} (\varepsilon - \mu)^n (-\frac{\partial f}{\partial \varepsilon}) \sigma_{ij}^{T=0}(\varepsilon) d\varepsilon$$

(b)

0.2 - 0.3

N || [100] , α_{zx} Μ

anomalous Nernst conductivity

 $\alpha_{ij} = -R_{ij}^{(1)}/eT$

anomalous thermal Hall conductivity

 $\kappa_{ij} = R_{ij}^{(2)} / e^2 T$

Crystal Hall effect

anomalous Hall conductivity

 $\sigma_{ij} = R_{ij}^{(0)}$

 α_{xv}

 $\alpha_{\rm vz}$ C

30

compare to

0

60

90

 θ (deg)

Crystal Nernst effect

Wiedemann-Franz Law

 σ_{ii}

Zhou, Feng, LS, JS, YM et al., arXiv:2305.01410

Sommerfeld expansion

$$\hat{\tau} \quad \sigma_{ij}^{T=0}(\mu) \qquad \kappa_{ij} \quad \hat{\tau} \quad \frac{\hat{\tau}^2 k_B^2 T}{3e^2} \sigma_{ij}^{T=0}(\mu)$$

Lorentz ratio: $L_{ij} = \kappa_{ij}/\sigma_{ij}T_{j}$ Sommerfeld constant $L_{ij}(T \rightarrow 0) = L_0 = \pi^2 k_B^2/3e^2$

inelastic Traditionally believed to give an estimate for extrinsic / intrinsic origins

small-angle inelastic scattering has stronger impact on heat flow than electron momentum flow [Ziman, 1972]

Mn₃Sn and Mn₃Ge: intrinsic by far, negligible inelastic scattering

Where does WF law violation come from?

Sugii et al. arXiv:1902.06601 (2019)

Wiedemann-Franz Law Violation

Zhou, Feng, LS, JS, YM et al., arXiv:2305.01410

At T = 0 pondering function gives WF law:
$$F_n(\varepsilon) = \left(\frac{\varepsilon - \mu}{k_B T}\right)^n \frac{\partial f}{\partial \varepsilon}$$

WF law deviations can be caused by pondering function

Purely antisymmetric AHC around the chemical potential: WF law is satisfied

Xu et al. Sci. Adv. 6, eaaz3522 (2020)

Wiedemann-Franz Law in RuO₂

Zhou, Feng, LS, JS, YM et al., arXiv:2305.01410

Photo Orbital Magnetism : RuO₂

Adamantopoulos, YM, WF, LS, JS et al. (2023)

Strong canting in RuO₂

Giant induced moments in CoF₂

Outlook

- Clearly, altermagnets combine properties of FMs, *PT*-AFMs, and NC-AFMs
- Crystal symmetries play a role in classification of topological features / excitations
- Electrically and thermally altermagnets are not worse than (e.g.) Mn₃X type
- Canting properties in ground state and out of equilibrium: anisotropic!
 may give a handle on dynamics driven by magnetic field
- Expect some exciting orbital properties
- Sublattice-dependent currents and response may be more relevant
- Interplay of structural and magnetic chirality: new ideas for magno-phononics?