Quantum optics with atomic arrays Tutorial talk

Darrick Chang ICFO

SPICE Conference on Quantum Spinoptics June 13, 2023

Αľ

erc

EXCELENCIA

SEVERO OCHOA

Outline

• Collective dissipation in quantum optics – why does it matter?

• Novel paradigms based on collective dissipation

• What we don't know

Motivation

• **Goal:** realize efficient quantum atom-light interfaces

Quantum memories

Photon-photon gates

Metrology/sensing

Many-body physics with photons

Challenge: hard to make a single photon and atom interact!

Record with single atoms in free space: ~10% (Kurtsiefer, Singapore)

A possible fix: collective enhancement

Common approach: collective enhancement

resonant photon

- Complementary viewpoint: branching ratio of emission into preferred mode over 4π

$$D \sim \frac{N_a \Gamma_{1D}}{\Gamma_0}$$

A.A. Svidzinsky et al, PRA 81, 053821 (2010)

Single collective excitation $|\psi\rangle \sim \sum_{j} e^{ik \cdot r_{j}} |e_{j}\rangle$

 Branching ratio of information imposes fundamental limits on the errors of any application

A possible fix: collective enhancement

Common approach: collective enhancement

resonant photon

Complementary viewpoint: branching ratio of emission into preferred mode over 4π

Single collective excitation $|\psi\rangle \sim \sum_{j} e^{ik \cdot r_{j}} |e_{j}\rangle$

 Branching ratio of information imposes fundamental limits on the errors of any application

Photon-photon gate

- Typical protocol:
 - Quantum memory / photon storage

• Current error ~ 60%

T. Stolz et al, PRX 12, 021035 (2022)

Complexity of atom-light interactions

- How did we arrive at these physical conclusions? What is the underlying theory?
- Full microscopic quantum theory?

zn

 $N \sim 10^4$ atoms Dim $\mathscr{H} \sim 2^{10000}$ Positions $\{r_i(t)\}$

Continuum of photon modes (frequency, direction, number) Dim $\mathscr{H} \sim \infty$

 \otimes

Standard approach: macroscopic theory

• Classical optics analogy:

- Conventional quantum optics (Maxwell-Bloch equations):
 - Quantum interaction between light and a smooth, uniform medium

What physics is left out?

- What is associated with granularity:
 - Multiple scattering and wave interference!
 - Should be strong (non-perturbative) once $d < \lambda_{e,q}$
- Light emitted into 4π can interfere... spontaneous emission must be a form of correlated dissipation

A new opportunity

- Can we exploit wave interference in protocols?
- Combine collective enhancement into good directions with collective suppression into 4π

Branching ratio
$$\sim \frac{N\Gamma_{1D}}{\Gamma'(N)} \gg D$$

New concept: "selective radiance"

A. Asenjo Garcia et al, PRX 7, 031024 (2017)

A new opportunity

- Can we exploit wave interference in protocols?
- Suppress emission altogether and allow coherent interactions to build up: "subradiance"

Theory: Ritsch, Ruostekoski, Asenjo, Adams, Yelin, Shahmoon, Lukin, Genes, Mølmer, Pohl, Cirac, Sheremet, Olmos, Podubbny, ... Experiment: Zeiher/Bloch, Browaeys, Kaiser, Lodahl, Wallraff, Painter, Mirhosseini, ...

Spin model of atom-light interactions

A "spin model" for multiple scattering

Freq.
$$\omega_{eg} = \frac{2\pi c}{\lambda_{eg}} \left(\Gamma_0 \right) \left(\begin{array}{c} |e\rangle \\ |g\rangle \end{array} \right)$$
 Multiple scattering Quantum detector

• A quantum input-output relation:

$$\widehat{E}(r,t) \sim \widehat{E}_{in}(r,t) + \sum_{i} G(r,r_{i},\omega_{eg}) \widehat{\sigma}_{ge}^{i}(t)$$

• In free space:

$$G(r, 0, \omega) = e^{ikr} \left[\frac{k^2}{r} \left(\hat{n} \times \hat{p} \right) \times \hat{n} + \left(3\hat{n}(\hat{n} \cdot \hat{p}) - \hat{p} \right) \left(\frac{1}{r^3} - \frac{ik}{r^2} \right) \right]$$
$$k = \omega/c$$

Quantum field properties can be derived from the atoms

A "spin model" for multiple scattering

- Atomic dynamics:
 - Coherent dipole-dipole interactions

$$H = H_{in} - \sum_{i,j} \operatorname{Re} G(r_j, r_i, \omega_{eg}) \sigma_{eg}^i \sigma_{ge}^j$$

Correlated emission

$$d\rho_{\text{atoms}}/dt = -i[H, \rho_{\text{atoms}}] + \sum_{i,j} \ln G(r_i, r_j) \left(\hat{\sigma}_{ge}^j \rho_{\text{atoms}} \hat{\sigma}_{eg}^i - \left\{\hat{\sigma}_{eg}^i \hat{\sigma}_{ge}^j, \rho_{\text{atoms}}\right\}/2\right)$$

- Encodes wave interference effects in radiation
- Quantum optics encoded in long-range, out-of-equilibrium, correlated dissipative spin model

A perfect mirror

• An infinite 2D array of atoms can form a perfect mirror for single, resonant photons

• Four ingredients:

- Atoms cannot absorb (only scatter)
- Spatial order: scattering only in discrete diffraction orders

Bettles et al, PRL (2016); Shahmoon et al, PRL (2017)

A perfect mirror

• An infinite 2D array of atoms can form a perfect mirror for single, resonant photons

• Four ingredients:

- Atoms cannot absorb (only scatter)
 - Spatial order: scattering only in discrete diffraction orders
- $d < \lambda_{eg}$: only fundamental order is radiative
- Atoms have a resonance

Bettles et al, PRL (2016); Shahmoon et al, PRL (2017)

Experimental realization

• Bloch group (MPQ) (Nature 583, 369 (2020))

 ~60% reflectance, mainly limited by non-ideal collection optics and recoil heating of atomic motion

Finite systems

- 100% reflection \leftrightarrow 100% atom-photon interaction efficiency?
- **Be careful!** Even in textbook models, infinite *N* (or optical depth) implies 100% fidelity/efficiency
- Need to consider finite resources (atom number N)

Quantum memory for light

 Analyze the error of a single-photon quantum memory based on a finite array, vs. the textbook result

Quantum memory for light

• Quantum memory protocol:

• Split photon: optimal by mirror symmetry

Quantum memory for light

• Quantum memory protocol:

Quantum memory has exactly the same error sources as reflection

Error
$$\sim \frac{\log^2 N}{N^4}$$

Optimized retrieval efficiency

• Different array geometry (1D array coupled to nanofiber): *exponential* improvement, Error $\sim e^{-D}$

A. Asenjo Garcia et al, PRX 7, 031024 (2017)

Photon-photon gate

- Following storage of first photon into Rydberg excitation, send in a second photon
- Utilize Rydberg excitation to strongly shift resonance frequency of nearby atoms

Conditional transmission of second photon, depending on presence of first

Efficient photon-photon gate

Error as a function of "blockade radius"

- Polynomial improvement over best known gate using Rydberg EIT in ensembles $(R_b^{-3/2})$
- 1% error for moderate system sizes and blockade radius
- Other realistic errors (atomic motion, imperfect filling, realistic Rydberg dressing): $\sim 1\%$

Experimental observation of switched mirror

• Classically excited Rydberg atom can switch atom array

K. Srakaew et al, Nature Phys. 19, 714 (2023)

• Subradiance: $|k| > \omega/c$, spin wave modes decouple from radiation

 $k_{y}d/\pi$ Subradiance

Exciting subradiant modes?

 How do we access subradiant modes, if they are decoupled from laser light?

Exciting subradiant modes?

• Highly excited 1D chain: $|\psi(t=0)\rangle = |e\rangle^{\otimes N}$

- Closing Liouvillian gap
 - Continuous manifold of (many-body) states with zero decay rate as $N \rightarrow \infty$

Buildup of "fermionic" correlations

- Density-density correlations of atomic excitations $\langle \sigma_{ee}^n(t) \sigma_{ee}^m(t) \rangle$
- Buildup of "Pauli exclusion" between subradiant states?

• Can protect subradiance by including a Slater determinant

Summary

- Independent spontaneous emission is a killer for atom-light interactions
- But true physics must involve correlated dissipation
 - Encoded in a many-body dissipative spin model

 $d\rho_{\rm atoms}/dt = -i[H,\rho_{\rm atoms}] + \sum_{i,j} \operatorname{Im} G(r_i,r_j) \left(\hat{\sigma}_{ge}^j \rho_{\rm atoms} \hat{\sigma}_{eg}^i - \left\{\hat{\sigma}_{eg}^i \hat{\sigma}_{ge}^j, \rho_{\rm atoms}\right\}/2\right)$

 Dramatically improved building blocks for quantum information processing

Excitations

The many-body frontier

Insight-based development of novel theoretical and numerical methods

Paradigms or universality classes

Goals:

- Use correlated dissipation to protect all applications
 - New strongly correlated phenomena and states

Inspiration from and connections to other fields

Development of dedicated experimental platforms

The group

