Cooperative quantum optics with molecules

Claudiu Genes

Max Planck Institute for the Science of Light Department of Physics, University of Erlangen-Nuremberg

SPICE-Workshop on Quantum Spinoptics

-- 13.06.2023 --

Genes Research Group Cooperative Quantum Phenomena

Two quantum emitters: superradiance and subradiance

Courtesy of Raphael Holzinger

 x/λ_0 *Robust states* – quantum metrology, quantum information

Ó 5 10 15 20

State of the art

Cooperative Quantum Phenomena in Light-Matter Platforms

Michael Reitz⁽⁰⁾,^{1,2} Christian Sommer⁽⁰⁾,^{1,†} and Claudiu Genes⁽⁰⁾,^{2,*}

PRX QUANTUM (TUTORIAL) 3, 010201 (2022) arxiv: 2107.02674

Ι	Introduction	1
Π	Cooperativity of light and matter	3
Α	Collective radiative emission	3
В	Superradiance and subradiance	5
\mathbf{C}	The single excitation subspace	5
D	The collective Bloch sphere: Dicke superradiance	7
III	Subwavelength quantum emitter arrays	8
Α	Band structure and topology of 1D chains	8
В	Applications of quantum emitter rings and chains	11
\mathbf{C}	Optical response of 2D subwavelength mirrors	13
D	Further remarks	15
IV	Cooperativity in cavity QED	16
Α	Cavity QED with coupled quantum emitters .	16
В	Input-output formalism for operators	18
\mathbf{C}	Cavity QED with disordered ensembles	20
\mathbf{V}	Applications in cavity QED	21
Α	Antiresonance spectroscopy with 1D or 2D arrays	21
В	Hybrid cavities with 2D subwavelength mirrors	22
\mathbf{C}	Superradiant lasers	24
D	Further remarks	26
VI	Quantum optics with molecules	26
Α	Optical response of a single molecule	26
В	Near-field coupled molecules	30
\mathbf{C}	Further remarks	31

A subradiant optical mirror formed by a single structured atomic layer

 https://doi.org/10.1038/s41586-020-2463-x
 Jun Rui¹², David Wei¹², Antonio Rubio-Abadal¹², Simon Hollerith¹², Johannes Zeiher³,

 Received: 3 January 2020
 Dan M. Stamper-Kurn³, Christian Gross^{12,4} & Immanuel Bloch^{12,5}

- Strong and narrow cooperative subradiant response
- Only a few hundred atoms (extremely small mass)
- Efficient optical metamaterial engineering
- Applications in low-mass hybrid nano-optomechanics

Optical metasurfaces

State of the art

Cooperative Quantum Phenomena in Light-Matter Platforms

Michael Reitz⁽⁰⁾,^{1,2} Christian Sommer⁽⁰⁾,^{1,†} and Claudiu Genes⁽⁰⁾,^{2,*}

PRX QUANTUM (TUTORIAL) 3, 010201 (2022) arxiv: 2107.02674

Ι	Introduction	1
Π	Cooperativity of light and matter	3
Α	Collective radiative emission	3
В	Superradiance and subradiance	5
\mathbf{C}	The single excitation subspace	5
D	The collective Bloch sphere: Dicke superradiance	7
III	Subwavelength quantum emitter arrays	8
Α	Band structure and topology of 1D chains $\ . \ .$	8
В	Applications of quantum emitter rings and chains	11
\mathbf{C}	Optical response of 2D subwavelength mirrors	13
D	Further remarks	15
IV	Cooperativity in cavity QED	16
Α	Cavity QED with coupled quantum emitters .	16
В	Input-output formalism for operators	18
\mathbf{C}	Cavity QED with disordered ensembles	20
\mathbf{V}	Applications in cavity QED	21
Α	Antiresonance spectroscopy with 1D or 2D arrays	21
В	Hybrid cavities with 2D subwavelength mirrors	22
\mathbf{C}	Superradiant lasers	24
D	Further remarks	26
VI	Quantum optics with molecules	26
Α	Optical response of a single molecule	26
В	Near-field coupled molecules	30
\mathbf{C}	Further remarks	31

Platforms for excitation transport

Why molecules

Single organic molecules for photonic quantum technologies NATURE MATERIALS | VOL 20 | DECEMBER 2021 | 1615-1628 |

C. Toninelli[®]^{1,2}[∞], I. Gerhardt³, A. S. Clark⁴, A. Reserbat-Plantey⁵, S. Götzinger^{6,7}, Z. Ristanović⁸,
 M. Colautti^{1,2}, P. Lombardi[®]^{1,2}, K. D. Major[®]⁴, I. Deperasińska⁹, W. H. Pernice[®]¹⁰,
 F. H. L. Koppens[®]^{5,11}, B. Kozankiewicz[®]⁹, A. Gourdon[®]¹², V. Sandoghdar[®]^{6,7} and M. Orrit⁸

Polyaromatic hydrocarbons (PAH)

Advantages

- Good isolation in solid state host matrices
- Flexibility in synthesis wide pallete of emission wavelengths
- Optimized interaction with light

Promises

- Single photon sources
- Nonlinear elements with competitive performance in terms of coherence, scalability and compatibility with diverse integrated platforms
- Transducers promise of single quanta resolution in the sensing of charges and motion

Photon antibunching

Qubit - closed two level system

Wang, D. et al. Turning a molecule into a coherent two-level quantum system. Nat. Phys. 15, 483–489 (2019)

Why molecules

Use light (vacuum field) to modify material properties?

Confine light in space to get strong **few-photon** interaction with **interesting materials**

Many molecules / macroscopic

Promises

- "Easy" to reach collective strong coupling
- Modifications of electronic properties
- Tunable chemistry
- Could integrate in devices

Modify photochemical reaction rates

J. A. Hutchison *et al.*, Angew. Chemie **124**, 1624 (2012)

Conductivity in organic semiconductors hybridized with the vacuum field

E. Orgiu et al., Angew. Nat Mat 14, 1123 (2015)

The complex nature of molecules

Fundamental aspects

- Photon-electron coupling strongly perturbed by additional vibrational degrees of freedom
- Radiative emission can compete with non-radiative pathways of relaxation

The complex nature of molecules

The complex nature of molecules

Coupling at optical frequencies

- Experimentally: photo-physics, (photo) chemistry, charge/exciton transport, etc.
- Theory: role of vibrations, Tavis-Cummings-Holstein model, polariton cross-talk, etc...

Quantum optics approach to molecules: a simple model

Minimal model

- Expansion of the molecular potential landscapes along the nuclear coordinate
- Harmonic approximation
- Difference between minima gives rise to electron-vibron coupling

Quantum optics approach to molecules: a simple model

Minimal model

- Expansion of the molecular potential landscapes along the nuclear coordinate
- Harmonic approximation
- Difference between minima gives rise to electron-vibron coupling

Quantum optics approach to molecules

$$H = \left(\omega_e + \frac{p^2}{2\mu} + \frac{1}{2}\mu\nu^2\left(R + \frac{R_e}{2}\right)^2\right)\sigma^{\dagger}\sigma + \left(\frac{p^2}{2\mu} + \frac{1}{2}\mu\nu^2\left(R - \frac{R_g}{2}\right)^2\right)\sigma\sigma^{\dagger}$$

Holstein Hamiltonian

Electronic operators (spin algebra)

Quantum Langevin equations

Quantum Langevin equations

 $\sigma(t) = \sigma(0)\mathcal{D}(t)\mathcal{D}^{\dagger}(0)e^{-[\gamma - i(\omega_{\ell} - \omega_{\rm e})]t}$

 J_0

Easy to add dynamics inside optical cavities

Results

Cavity QED with single or few molecules

Results

- Analytical approach to electron-photon-vibron
- Polariton cross-talk rates
- Turning a molecule into a single closed qubit
- Cavity modified Förster resonance energy transfer

M. Reitz, C. Sommer and C. Genes, **Phys. Rev. Lett. 122, 203602 (2019)** Langevin approach to quantum optics with molecules

Results

- Analytical approach to electron-photon-vibronphonon interactions
- Vibrational collective decoupling

M. Reitz, C. Sommer, B. Gurlek, V. Sandoghdar, D. Martin-Cano and C. Genes, Phys. Rev. Research 2, 033270 (2020) Molecule-photon interactions in phononic environments

Molecular aggregates

R. Holzinger, N. D. Bassler, H. Ritsch and C. Genes, arxiv:2304.10236 (2023), Scaling law for Kasha's rule in photoexcited subwavelength molecular aggregates

Molecular aggregates

Rate equations

$$\dot{p}_{\mathcal{S}} = -(\gamma_{\mathcal{S}} + \kappa_{\mathcal{S}})p_{\mathcal{S}} + \sum_{q \neq 0} \kappa_{q \to \mathcal{S}} p_q,$$
$$\dot{p}_q = -\kappa_q p_q + \sum_{q' \neq q} \kappa_{q' \to q} p_{q'}.$$

R. Holzinger, N. D. Bassler, H. Ritsch and C. Genes, arxiv:2304.10236 (2023), Scaling law for Kasha's rule in photoexcited subwavelength molecular aggregates

Molecular aggregates

Scaling

$$\kappa_{\mathcal{S}} \approx \frac{4s\Omega}{3} \frac{(n_{\max}+1)(2n_{\max}+1)}{n_{\max}}$$

R. Holzinger, N. D. Bassler, H. Ritsch and C. Genes, arxiv:2304.10236 (2023), Scaling law for Kasha's rule in photoexcited subwavelength molecular aggregates

Cavity QED with mescoscopic ensembles

Results

- Disorder provides loss of polaritons
- Disorder plus vibrations can reduce the Vacuum Rabi Splitting

C. Sommer, M. Reitz, F. Mineo and C. Genes, **Phys. Rev. Research 3, 033141 (2021)** *Molecular polaritonics in dense mesoscopic disordered ensembles* Thank you!