Hybrid Quantum Systems: Coupling Diamond Color Centers to Superconducting Cavities

Johannes Majer

University of Science and Technology of China

Quantum Spinoptics, SPICE June 2023

- Introduction
- 3D Lumped Element Resonator
- Superradiance
- Relaxation Time

Hybrid Quantum System

Quantum Optics with Spin Ensemble and Microwave Resonators

Superconducting - Microwave Resonator Circuit CQED

Spin Ensemble NV⁻ centers

Coupling Diamonds

T. Astner, S. Nevlacsil, N. Peterschofsky, A. Angerer, S. Rotter, S. Putz, J. Schmiedmayer, and J. Majer, Coherent Coupling of Remote Spin Ensembles via a Cavity Bus, Phys. Rev. Lett. 118, 140502 (2017) **Editors Suggestion**

EM Field strongest in the gaps

Coupling strength varies over many orders of magnitude

3D Lumped Resonator

Port 1

coupling to small sample homogenous coupling

LC Resonator

Strong Coupling

 $\Omega = 12.5 \text{MHz}$ C = 27

Homogenous Coupling

Andreas Angerer, Thomas Astner, Daniel Wirtitsch, Hitoshi Sumiya, Shinobu Onoda, Junichi Isoya, Stefan Putz, and Johannes Majer,

Collective strong coupling with homogeneous Rabi frequencies using a 3D lumped element microwave resonator, Applied Physics Letters **109**, (2016)

aluminium Q = 510000

no external field possible (Meissner effect)

Dispersive Measurement

Resonator $\omega_r/2\pi = 3.04 \mathrm{GHz}$

Spins $\omega_s/2\pi=2.88{\rm GHz}$

$$\Delta = \omega_r - \omega_s \gg g$$

$$\begin{split} H_{\mathrm{int}} &= \hbar (a^{\dagger}S^{-} + aS^{+}) & \text{non-distructive} \\ H_{\mathrm{eff}} &= \hbar \left(\omega_{r} + \frac{g^{2}}{\Delta}S_{z} \right) a^{\dagger}a + \dots & \text{quantum non-demolition} \\ & \text{dielectric shift of the cavity} \end{split}$$

Number of spins

Relaxation Time

 $2.88 \,\mathrm{GHz} = 145 \,\mathrm{mK}$

T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, and J. Majer, *Solid-state electron spin lifetime limited by phononic vacuum modes*, Nature Materials **17**, 313--317 (2018)

J. Gugler, T. Astner, A. Angerer, J. Schmiedmayer, J. Majer, and P. Mohn, *Ab initio calculation of the spin lattice relaxation time T*¹ for nitrogen-vacancy centers in diamond, Phys. Rev. B **98**, 214442 (2018)

Summary

3D Lumped Element Resonator

Superradiance

Relaxation Time

Shanghai

Division of Quantum Physics and Quantum Information

University of Science and Technology of China

JianWei Pan

Photonic quantum computing

62 superconducting qubits

Quantum Satellite Micius

Projects, PhD, PostDoc, ... available

Victor Rollano

Furonean

mmission

Scientific Visitors Welcome !