

Walther Meißner Institut

Stochastic Simulations of Dissipative Spin Systems

Peter Rabl

Collaborations:

Julian Huber (TU Wien), Peter Kirton (->Strathclyde)

Ana Maria Rey (Boulder)

"Quantum Spinoptics", Ingelheim, 14.06.2023

Driven-dissipative spin systems

• Quantum optics:

• Theory:

 $N \sim 100 \times 100$

$$N_s \sim 10^{10}$$

Driven-dissipative spin systems

Numerical simulations:

- *Hilbertspace dimension:*
- Density operator dimension:

 $d \approx 2^{N_a} \times N_{\rm ph}$ $D \approx (2^{N_a} \times N_a)^2$

Semiclassical methods for dissipative spin systems

1) Truncated Wigner Method for Open Quantum Spins (TWOQS)

Julian Huber, Peter Kirton, PR, SciPost Phys. 10, 045 (2021)

2) Discrete Truncated Wigner Approximation for Dissipative Spin Systems (DDTWA)

Julian Huber, Ana Maria Rey, PR, PRA **105**, 013716 (2022)

3) Criticality in dissipative spin models with long-range interactions

Julian Huber, PR, in progress

Truncated Wigner Approximation (TWA)

initial conditions:

$$(x_0, p_0)$$

classical equations of motion:

$$\dot{x} = \frac{p}{m}, \qquad \dot{p} = F(x,t)$$

Truncated Wigner Approximation (TWA)

distribution of initial conditions:

$$W(x_0, p_0) \longrightarrow Wigner$$

function

classical equations of motion:

$$\dot{x} = \frac{p}{m}, \qquad \dot{p} = F(x,t)$$

Truncated Wigner Approximation (TWA)

- ▶ beyond mean-field: $\langle x_1 x_2 \rangle \neq \langle x_1 \rangle \langle x_2 \rangle$
- beyond classical: entanglement !

TWA for spin-1/2 systems ?

Mean-field simulations

$$(\hat{\sigma}_x, \hat{\sigma}_y, \hat{\sigma}_z) \longrightarrow \vec{s} = (\langle \hat{\sigma}_x \rangle, \langle \hat{\sigma}_y \rangle, \langle \hat{\sigma}_z \rangle)^T$$

MF equations of motion (3N_a classical eqs):

Discrete Wigner Function

W. K. Wootters, Annals of Physics **176**, 1 (1987)

Basic idea:

Discrete Wigner Function

Example:
$$|\psi_s\rangle = |\downarrow\rangle \longrightarrow (s_x, s_y, s_z) = (\pm 1, \pm 1, -1)$$

with probability 1/4

Average values:

$$\langle \sigma_x \rangle = 0 \quad \checkmark \qquad \langle \sigma_x^2 \rangle = \langle \sigma_y^2 \rangle = \langle \sigma_z^2 \rangle = 1 \quad \checkmark \langle \sigma_y \rangle = 0 \quad \checkmark \qquad \langle \vec{\sigma}^2 \rangle = 3 \quad \checkmark \langle \sigma_z \rangle = -1 \quad \checkmark$$

Discrete Truncated Wigner Approximation

(1) Draw random set of initial spin configurations.

(2) Evolve spins by simulating 3N_a classical equations of motion:

(3) Calculate expectation values from averages over N_{samp} >>1 samples.

J. Schachenmayer, A. Pikovsky, A. M. Rey, PRX 5, 011022 (2015)

DTWA for open spin systems ?

$$\dot{\rho} = -i[\mathcal{H}, \rho] + \mathcal{L}_{deph}(\rho) + \mathcal{L}_{decay}(\rho)$$

MF dynamics with dephasing & decay:

$$\dot{s}_{i}^{x} = \dots - (\Gamma_{\phi} + \Gamma/2) s_{i}^{x}$$

$$\dot{s}_{i}^{y} = \dots - (\Gamma_{\phi} + \Gamma/2) s_{i}^{y}$$

$$\dot{s}_{i}^{z} = \dots - \Gamma(s_{i}^{z} + 1)$$

$$\langle \vec{s}^{2} \rangle (t) \neq 3$$

Idea: Add random noise during evolution to restore the correct level of quantum fluctuations!

Dephasing

$$\mathcal{L}_{deph}(\rho) = \frac{\Gamma_{\phi}}{2} \left(\sigma^{z} \rho \sigma^{z} - \rho \right) \qquad \longleftrightarrow \qquad \mathcal{H}_{fluc}(t) = \frac{1}{2} \xi(t) \sigma^{z}$$

 $\langle d\vec{s}^2 \rangle = 0$

$$ds^{x} = -\Gamma_{\phi}s^{x}dt - \sqrt{2\Gamma_{\phi}}s^{y}dW$$
$$ds^{y} = -\Gamma_{\phi}s^{y}dt + \sqrt{2\Gamma_{\phi}}s^{x}dW$$
$$ds^{z} = 0$$
(Markov, Ito)

 \Rightarrow

$$\mathcal{L}_{decay}(\rho) = \frac{\Gamma}{2} \left(2\sigma^{-}\rho\sigma^{+} - \sigma^{+}\sigma^{-}\rho - \rho\sigma^{+}\sigma^{-} \right)$$

Quantum Langevin Equations:

$$\dot{\sigma}^{x} = -\frac{\Gamma}{2}\sigma^{x} + \sqrt{\Gamma}\left(\sigma^{z}\hat{f}_{\mathrm{in}}(t) + \hat{f}_{\mathrm{in}}^{\dagger}(t)\sigma^{z}\right)$$
$$\dot{\sigma}^{y} = -\frac{\Gamma}{2}\sigma^{y} + i\sqrt{\Gamma}\left(\sigma^{z}\hat{f}_{\mathrm{in}}(t) - \hat{f}_{\mathrm{in}}^{\dagger}(t)\sigma^{z}\right)$$
$$\dot{\sigma}^{z} = -\Gamma(\sigma^{z} + 1) - 2\sqrt{\Gamma}\left(\sigma^{+}\hat{f}_{\mathrm{in}}(t) + \hat{f}_{\mathrm{in}}^{\dagger}(t)\sigma^{-}\right)$$

$$\hat{f}_{\rm in}(t), \hat{f}_{\rm in}^{\dagger}(t) \longrightarrow \xi(t)$$

$$\mathcal{L}_{decay}(\rho) = \frac{\Gamma}{2} \left(2\sigma^{-}\rho\sigma^{+} - \sigma^{+}\sigma^{-}\rho - \rho\sigma^{+}\sigma^{-} \right)$$

Stochastic Ito Equations:

$$ds^{x} = -\frac{\Gamma}{2}s^{x}dt + \sqrt{\Gamma}s^{z}dW_{1}(t) \qquad \langle d\vec{s}^{2} \rangle = -2\Gamma\langle s^{z} \rangle dt$$
$$ds^{y} = -\frac{\Gamma}{2}s^{y}dt - \sqrt{\Gamma}s^{z}dW_{2}(t)$$
$$ds^{z} = -\Gamma(s^{z}+1)dt - \sqrt{\Gamma}\left[s^{x}dW_{1}(t) - s^{y}dW_{2}(t)\right]$$

$$\hat{f}_{\rm in}(t) \to \frac{\xi(t)}{\sqrt{2}}, \qquad \hat{f}_{\rm in}^{\dagger}(t) \to \frac{\xi^*(t)}{\sqrt{2}}$$

$$\mathcal{L}_{\text{decay}}(\rho) = \frac{\Gamma}{2} \left(2\sigma^{-}\rho\sigma^{+} - \sigma^{+}\sigma^{-}\rho - \rho\sigma^{+}\sigma^{-} \right)$$

Stochastic Ito Equations ("educated guess"):

$$ds^{x} = -\frac{\Gamma}{2}s^{x}dt - \sqrt{\Gamma}s^{y}dW$$
$$ds^{y} = -\frac{\Gamma}{2}s^{y}dt + \sqrt{\Gamma}s^{x}dW$$
$$ds^{z} = -\Gamma(s^{z}+1)dt + \sqrt{\Gamma}(s^{z}+1)dW$$

$$\Rightarrow \qquad \left\langle d\vec{s}_i^2 \right\rangle = \Gamma \left(1 - \left\langle (s_i^z)^2 \right\rangle \right) dt$$

... as good as it gets!

Stochastic spin dynamics

$$ds_{i}^{x} = -\Gamma_{\phi}s_{i}^{x}dt - \sqrt{2\Gamma_{\phi}}s_{i}^{y}dW_{i}, \qquad ds_{i}^{x} = -ds_{i}^{z} = 0 \qquad ds_{i}^{z} = 0 \qquad ds_{i}^{z} = -ds_{i}^{z} = 0 \qquad ds_{i}^{z} = -ds_{i}^{z} = 0 \qquad (d\vec{s}_{i}^{z}) = 0 \qquad (d\vec{s}) = 0 \qquad (d\vec{s}) = 0 \qquad (d\vec{s}) = 0 \qquad (d\vec{s$$

decay

$$ds_i^x = -\frac{\Gamma}{2}s_i^x dt - \sqrt{\Gamma}s_i^y dW_i,$$

$$ds_i^y = -\frac{\Gamma}{2}s_i^y dt + \sqrt{\Gamma}s_i^x dW_i,$$

$$ds_i^z = -\Gamma(s_i^z + 1)dt + \sqrt{\Gamma}(s_i^z + 1)dW_i)$$

$$\langle d\vec{s}_i^2 \rangle = \Gamma \left(1 - \langle (s_i^z)^2 \rangle \right) dt$$

~

Reproduce MF dynamics

donhasing

Conserve length of individual spins on average

Dissipative DTWA

(1) Draw random set of initial spin configurations.

- (2) Evolve spins by simulating 3xN_a classical **stochastic** equations of motion.
- (3) Calculate expectation values from averages over N_{samp} >>1 samples.

Spin squezzing & entanglement

$$H_{\text{int}} = \frac{1}{N} \sum_{i \neq j} \frac{J}{|\vec{r_i} - \vec{r_j}|^{\alpha}} \sigma_z^i \sigma_z^j$$

+ local decay

Steady state of the dissipative Ising model

 $H_{\text{TIM}} = \Omega S_x + (J/N)S_z^2 \qquad \text{local decay}$ $\dot{\rho} = -i[H_{\text{TIM}}, \rho] + \frac{\Gamma}{2}\sum_{i=1}^N \left(2\sigma_i^-\rho\sigma_i^+ - \sigma_i^+\sigma_i^-\rho - \rho\sigma_i^+\sigma_i^-\right)$

Driven Dicke model + (local) dephasing

Remark: role of noise process

[1] QLE: Quantum Langevin Eqs. + DTWA H. Liu, et al., PRL (2020); S. B. Jäger et al., PRA (2021)

[2] OSSTWA: DTWA + quantum trajectories V. P. Singh, H. Weimer, PRL (2022) $d\langle \vec{s}^2 \rangle \neq 0$

Applications

Superradiance in real systems

Non-eq. phases of dissipative spin systems

Example: Dissipative Anisotropic XY-model (DAXY)*:

$$H_{\rm spin} = \sum_{\langle i,j \rangle} \frac{J}{4} \left(\sigma^i_+ \sigma^j_+ + \sigma^i_- \sigma^j_- \right) + \text{local decay}$$

(*) "Liouvillian PT-symmerty": J. Huber et al., SciPost Phys. 9, 052 (2020)

Dissipative anisotropic XY-model

field theory / RG

M. Maghrebi, A. Gorshkov, PRB 93, 014307 (2016)

• MPO (1D)

Huber, P. Kirton, PR, PRA 102, 012219 (2020)

• tensor-networks (2D)

C. Mc Keever, M. Szymanska, PRX 11, 021035 (2021)

no phase transition!

DDTWA

Iarge systems, spatial correlations !

Iong-range interactions !

DAXY phase diagram

beyond mean-field, new 'reentrance' transitions

> 2nd order phase transition (mean-field type)

Critical scaling & correlations

$$C(r) \sim \frac{e^{-r/\xi}}{r^{2-d+\eta}}$$

J. Huber, PR, in progress

Conclusions

- Stochastic methods for large spin ensembles and cavity QED systems.
- 1:1 simulation of real experiments (spin squeezing, dissipative phase transitions, ...)
- Programming effort: <u>one afternoon</u> !

Julian Huber, Ana Maria Rey, PR, PRA 105, 013716 (2022)

Remark2: DTWA + polar coordinates

$$\vec{s} = \sqrt{3}(\sin\theta\cos\phi, -\sin\theta\sin\phi, -\cos\theta)^T$$

Decay:

$$d\theta = \left(\cot\theta + \frac{\csc\theta}{\sqrt{3}}\right)dt$$

C. D. Mink, D. Petrosyan, M. Fleischhauer, PR Research 4, 043136 (2022)

Improved noise process for decay

$$\begin{aligned} ds_i^x &= -\frac{\Gamma}{2} s_i^x dt - \frac{\sqrt{\Gamma} \left[(s_i^y + 1) dW_i^1 + (s_i^y - 1) dW_i^2 \right]}{2} \\ ds_i^y &= -\frac{\Gamma}{2} s_i^y dt + \frac{\sqrt{\Gamma} \left[(s_i^x + 1) dW_i^1 + (s_i^x - 1) dW_i^2 \right]}{2} \\ ds_i^z &= -\Gamma (s_i^z + 1) dt + \sqrt{\frac{\Gamma}{2}} (s_i^z + 1) (dW_i^1 - dW_i^2) \end{aligned}$$

$$\langle d\vec{s}_i^2 \rangle = \frac{\Gamma}{2} \left[4 - \langle (s_i^x)^2 \rangle - \langle (s_i^y)^2 \rangle - 2 \langle (s_i^z)^2 \rangle \right] dt$$

Spin conservation

Phase diagram

Benchmarks

 $\alpha = 0, N = 40$

 $N = 4 \times 4$

Benchmarks

 $N = 4 \times 4$

PT-symmetric quantum systems?

Master equation:

PT-symmetric breaking ?

- polarized and highly mixed phases
- quantum noise & entanglement important
- exact numerics: S<100

PT-symmetric quantum systems

Random gain-loss systems:

PT-symmetry for master equations:

 $\mathcal{L}[\mathcal{M}(H), \mathcal{M}(c_A), \mathcal{M}(c_B)] = \mathcal{L}[H, c_A, c_B], \quad \mathcal{M}(O) = \mathcal{P}O^{\dagger}\mathcal{P}^{-1}$

Dissipative Spin Lattice Systems

- new, strongly fluctuating phases
- diverging correlations in dissipative spin systems
- absence of symmetry breaking due to fluctuations

J. Huber et al., PRA 2020