Realization of an 3D ideal Weyl semimetal in MnBi_{2-x}Sb_xTe₄

Jiun-Haw Chu

Department of Physics, University of Washington

UW Quantum materials group

Qianni Jiang,, Yue Shi, Paul Malinowski, Aaron Wang, Zhong Lin (joint with Xiaodong Xu)

UW Theory Lingnan Shen, Chong Wang, Di Xiao

Qianni Jiang (Now GLAM Postdoc Fellow in Stanford)

High Field Magnet Lab

Johannes Palmstrom, John Singleton David Graf, Shalinee Chikara

W Background of Weyl Semimetals

Weyl Equation

Z. Liu, et al. Nat. Mater. 15, 27 (2016)
J. Xiong et al. Science 350,413-416 (2015)
N.P. Armitage, et. al. Rev. Mod. Phys, 90(1), 015001 (2018)

• Chiral Anomaly

Intrinsic anomalous Hall

In an ideal Weyl semimetal:

Quantized

Q : Weyl points separation

W Two types of Weyl Semimetals

Z. Liu, et al. Nat. Mater. 15, 27 (2016)

J. Xiong et al. Science 350,413-416 (2015)

N.P. Armitage, et. al. Rev. Mod. Phys, 90(1), 015001 (2018)

W The need for an ideal Weyl semimetal

W The need for an ideal Weyl semimetal

PRL 107, 127205 (2011)

PHYSICAL REVIEW LETTERS

week ending 16 SEPTEMBER 2011

Weyl Semimetal in a Topological Insulator Multilayer

A. A. Burkov^{1,2} and Leon Balents² ¹Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada ²Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA (Received 27 May 2011; published 16 September 2011)

W Background of $MnBi_2Te_4$

\mathbf{W} MnBi₂Te₄ as a natural superlattice of FMIs and TIs

(Zhang D., et al, PRL 122.20 (2019): 206401)

\mathbf{W} MnBi₂Te₄ as a natural superlattice of FMIs and TIs

(Zhang D., et al, PRL 122.20 (2019): 206401)

W Shubnikov-de Haas Oscillations of MnBi_{2-x}Sb_xTe₄

Dingle damping factor: $R_D = \exp(-\frac{\alpha T_D m^*}{B})$

Thermal damping factor: $R_T = \frac{\alpha T m^*}{Bsinh(\alpha T m^*/B)}$

W Fermi surface evolution of Weyl Semimetals

Q: How to distinguish a normal semiconductor, an ideal type-I WSM and an ideal type-II WSM in this case?

Normal Semiconductor

Type-I Weyl Semimetal

Type-II Weyl Semimetal

W Transport Properties of MnBi_{2-x}Sb_xTe₄

1cm

charge neutral point x ~ 0.7

Q. Jiang & J-H Chu, et al, PRB 103, 205111 (2021)

14

W SdH Oscillations under a 31T DC Field

W SdH Oscillations under a 31T DC Field

 $\mu_0 H \parallel [001]$

slightly electron-doped

W Evolution of Fermi Pockets

W Evolution of Fermi Pockets

W Anomalous Hall Conductivity of Ideal Weyl Semimetal

Free carrier contribution:

Q : Weyl points separation

Integrate the z-component of Berry curvature over the occupied states

W Anomalous Hall Conductivity of Ideal Weyl Semimetal

Q: Weyl points separation

Fermi Surface contribution: Integrate the z-component of Berry curvature over the occupied states

In type-I WSM the Fermi Surface contribution cancel!

W Anomalous Hall Conductivity of Ideal Weyl Semimetal

Q: Weyl points separation

Fermi Surface contribution: Integrate the z-component of Berry curvature over the occupied states

In type-II WSM the Fermi Surface contributions diverge!

W Intrinsic Anomalous Hall of Ideal Weyl Semimetal

A. A. Burkov, Phys. Rev. Lett. **113**, 187202 (2014)

W Anomalous Hall Effect in $MnBi_{2-x}Sb_xTe_4$

M Anomalous Hall Conductivity of MnBi_{2-x}Sb_xTe₄

The evolution of anomalous Hall conductivity matches with the ideal type-II WSM case.

M Anomalous Hall Conductivity of MnBi_{2-x}Sb_xTe₄

The evolution of anomalous Hall conductivity matches with the ideal type-II WSM case.

M Anomalous Hall Conductivity of MnBi_{2-x}Sb_xTe₄

The evolution of anomalous Hall conductivity matches with the ideal type-II WSM case.

 An ideal type-II Weyl semimetal phase in Field-induced FM MnBi_{2-x}Sb_xTe₄

• Evidence of a type-II to type-I WSM transition by rotating the magnetic field

Thank you!