Optical investigation of strong electronic correlations: magnetism in semiconductor moire materials

Atac Imamoglu

ETH Zurich

<u>Co-workers</u>:

<u>Livio Ciorciaro</u>, Natasha Kiper, Sarah Hiestand

Tomasz Smolenski, Martin Kroner

Ivan Morera, Eugene Demler

Yang Zhang (DFT calculations)

Kenji Watanabe, Takashi Taniguchi (NIMS)

Emerging platform for studying strong correlations: van der Waals heterostructures

Atomically-thin materials with different electronic, optical and magnetic properties can be combined to create a van der Waals heterostructure with novel hybrid functionality

Magnet, Superconductor, TI, ...

Van der Waals heterostructure

A. K. Geim et al., Nature 499, 419 (2013)

Moire fatbands in (twisted) semiconductor bilayers

Twisted bilayer transition metal dichalcogenide (TMD)

F. Wu et al., Phys. Rev. Lett. 121, 026402 (2018)

Heavy effective mass (m*~0.7m_e)

 \rightarrow Flat bands in wide range of angles

→ Electric field tunable moire potential

Difficulties

Electrical contact

Inhomogeneity due to strain

Local probe by optical spectroscopy

Mott-Wigner states & quantum anomalous Hall effect (pioneering work: Wang and Mak-Shan groups)

Moire fatbands in (twisted) semiconductor bilayers

Twisted bilayer transition metal dichalcogenide (TMD)

F. Wu et al., Phys. Rev. Lett. 121, 026402 (2018)

- Heavy effective mass (m*~0.7m_e)
- \rightarrow Flat bands in wide range of angles
- → Electric field tunable moire potential

Difficulties

Electrical contact

Inhomogeneity due to strain

Local probe by optical spectroscopy

Mott-Wigner states & quantum anomalous Hall effect (pioneering work: Wang and Mak-Shan groups) Quantum magnetism of correlated electrons: 120 Neel order or spin liquid or ...?

Outline

 Optics/excitons as a spectroscopic tool for investigating ground-state electronic properties

 Kinetic magnetism in semiconductor moire materials: magnetism that stems from kinetic energy minimization, instead of interactions

<u>Materials</u>: Transition metal dichalcogenides (TMD) –layered 2D valley semiconductors

Strong exciton resonance below the band-gap dominates the absorption/ reflection & emission spectrum

Table 1 Fundamental	optoelectronic material	parameters of monolaye	er TMD semiconductors
---------------------	-------------------------	------------------------	-----------------------

Valley and spin are locked: low energy K valley states have spin-up

Material	m _r (m ₀)	E _b (meV)	E _{gap} (eV)	κ	r _o (nm)	r _{1s} (nm)
hBN MoS ₂ hBN	0.275 ± 0.015	221	2.160	4.45	3.4	1.2
hBN MoSe ₂ hBN	0.350 ± 0.015	231	1.874	4.4	3.9	1.1
hBN MoTe ₂ hBN	0.360 ± 0.040	177	1.352	4.4 ^a	6.4	1.3
hBN WS ₂ hBN	0.175 ± 0.007	180	2.238	4.35	3.4	1.8
hBN WSe ₂ hBN ^b	0.20 ± 0.01	167	1.890	4.5	4.5	1.7

Experimentally determined values of the exciton reduced mass m_r , the 1s exciton binding energy E_b , the free-particle bandgap E_{gap} , the dielectric screening parameters r_0 and κ , and the root-mean-square radius of the 1s exciton r_{1s} . Typical error bars on experimental values of E_b and E_{gap} are ± 3 meV. Typical error bars on values of r_0 and r_{1s} are ± 0.1 nm, except for MoTe₂, where they are ± 0.3 nm ^aThe value of κ for MoTe₂ is assumed to be 4.4 and is not a fitting parameter (see text for details) ^bValues for hBN-encapsulated WSe₂ are taken from ref. ²⁷

Monolayer MoSe₂ device with tunable charge density

hBN (30-35nm)

Elementary optical excitations in monolayer MoSe₂

Elementary optical excitations in monolayer MoSe₂

<u>Charge neutrality</u>: tightly bound 1s exciton dominates <u>Finite electron or hole density</u>: spectrum is drastically modified

How to understand the modified spectrum: Exciton-electron scattering in a monolayer TMD

 Excitons interact with itinerant electrons or holes from the <u>opposite valley</u> and form a bound molecular state termed "<u>trion</u>"

V(r) <u>Blue</u>: Interaction potential for an exciton and an electron in opposite valleys For small r, the exciton-electron pair hybridizes with the trion, leading to - blue shift of exciton-electron energy - finite "exciton" weight to trion C 9⁻K - E7

exciton (+) electron (2) r = separation of an exciton & electon

<u>A free electron-exciton pair</u>: blue-shift - effective repulsive interaction <u>Excitons injected below the trion resonance</u>: red-shift - effective attractive interaction

Elementary optical excitations in monolayer MoSe₂

Attractive polaron as an electronic spin sensor in MoSe₂ monolayer

Attractive polaron as an electronic spin sensor in MoSe₂ monolayer

A semiconducting moire system: MoSe₂/WS₂

- Moire potential due to lattice mismatch of $\sim 4\%$
- Type I band alignment both CB minimum and VB maximum are in MoSe2
- Electronic bands are trivial but E-field tuning may yield Chern bands

A semiconducting moire system: MoSe₂/WS₂

• Potential landscape for electrons and excitons are generically different.

Semiconductor moire system: MoSe₂/WS₂

Semiconductor moire system: MoSe₂/WS₂

Semiconductor moire system: MoSe₂/WS₂ : Second device

Cusps in reflection for v = 2 and v = 3 signaling incompressible electronic states even at high doping

Magnetic field response at T=4 K

To explore magnetic properties, we determine magnetization as a function of temperature and magnetic field

Evidence for the (extended) single-band Hubbard model

• For B=4T, electrons are spin-valley polarized in K'-valley; the strength of K-valley AP increases linearly till v=1 and then decreases linearly; for v=2, all electronic states in the lowest moire flat band are filled and they cannot contribute to AP/trion formation.

Direct measurement of magnetization (p_{AP}) using attractive polarons

Spin susceptibility:
$$\chi \propto \lim_{B \to 0} \nu \frac{p_{AP}}{B}$$

Electron moire magnetism for v ~ 1: determined by interactions or kinetic energy?

• For v=1, $\theta_{CW} \sim J = t^2/U \sim 0$, since U= 50 meV and t=1 meV

Electron moire magnetism for v ~ 1: determined by interactions or kinetic energy?

- For v=1, $\theta_{CW} \sim J = t^2/U \sim 0$, since U= 50 meV and t=1 meV
- For v>1, $\theta_{CW} > 0$: Nagaoka ferromagnetism (FM) with $\theta_{CW} \sim t$

Electron moire magnetism for v ~ 1: determined by interactions or kinetic energy?

- For v=1, $\theta_{CW} \sim J = t^2/U \sim 0$, since U= 50 meV and t=1 meV
- For v>1, θ_{CW} > 0: Nagaoka ferromagnetism (FM) with $\theta_{CW} \sim t$
- For v<1, θ_{CW} < 0: kinetic Antiferromagnetism (AF) with θ_{CW} ~ t, due to kinetic frustration in a triangular lattice

Antiferromagnetic correlations due to kinetic frustration

Fermi-Hubbard model for v<1

 \rightarrow Indistinguishable paths interfere destructively due to negative hopping t

→ Spin-polaron formation (hole bound to a spin-flip) allows for KE gain (Haerter&Shastry,Fu,Demler)

DMRG results (Morera & Demler)

When Coulomb is replaced by infinite strength on-site repulsion (contact interaction), DMRG predicts a switch from AF to F limits

Paramagnetic response for $v \le 1$

 ~ 1 photon every 100 ns

 \rightarrow Degree of polarization (DOP) as a function of B identical for v = 0.8 and v = 1

Enhanced susceptibility for v > 1

 \sim 1 photon every 100 ns

 \rightarrow Degree of polarization (DOP) as a function of B identical for v = 0.8 and v = 1 <u>but not</u> for v = 1.2

Enhanced susceptibility for v > 1 – Nagaoka mechanism

Sharp increase in spin susceptibility χ for v>1

Paramagnetic response for $v \le 1$ –Are long-range interactions the culprit?

DMRG calculation of magnetization with NN interactions (V) and disorder (Δ)

Quantum simulators of the Fermi-Hubbard model

0.16 K

Kinetic magnetism in a triangular&square optical lattice of ultracold fermions (Greiner group)

MoSe2/WS2 moire heterostructure

→ 0.49 K

---- 0.70 K

Kinetic magnetism in triangular

0.27 K

- Strong AF correlations at v=1
- FM (AF) correlations for v > 1 (v < 1)
- Fully consistent with theoretical predictions
- Paramagnetic spin susceptibility for $v \le 1$
- Nagaoka FM only for v > 1
- <u>Long range Coulomb</u> + disorder suppresses AF for v < 1•

Summary and outlook

 Evidence for magnetism that originates from itinerant electrons minimizing kinetic energy – in stark contrast to usual magnetism which stem from electron-electron interactions.

- Future directions:
 - Chiral spin liquids using layer pseudo-spin
 - Kondo lattice