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Complex systems – no stationarity



Conway’s game of life

from: http://web.stanford.edu/~cdebs/GameOfLife/

Simple rules  complex dynamics



Quantum systems – driven

• Closed system driven by external field

• “… here we show that for generic nonintegrable 
interacting systems, … Floquet eigenstates of 
the driven system at quasienergy 𝜔𝜔𝛼𝛼 consist of a 
mixture of the exponentially many eigenstates of 
the undriven Hamiltonian, which are thus drawn 
from the entire extensive undriven spectrum.”

• A. Lazarides, A. Das, and R. Moessner, Phys. 
Rev. E 90, 012110 (2014)

7 driven hardcore bosons on 14 lattice sites

Population in 8-th site Floquet eigenstate



Non-stationary quantum matter

Can we dynamically engineer non-equilibrium stable many-body quantum states?

Combination of symmetry and dissipation
 prevent ETH
 non-ergodic



Eigenvalues 𝜆𝜆𝑖𝑖 and eigenstates 𝜌𝜌𝑖𝑖 of the dynamics

Im{𝜆𝜆𝑖𝑖}
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𝜌𝜌𝑖𝑖(𝑡𝑡) = 𝑒𝑒𝜆𝜆𝑖𝑖𝑡𝑡𝜌𝜌𝑖𝑖

Closed system
• purely imaginary 𝜆𝜆𝑖𝑖
• dephasing
Open system
• negative real parts
• dissipation

Generic condition for
𝐻𝐻,𝐴𝐴 = −𝜆𝜆𝜆𝜆 and         𝐴𝐴, 𝐿𝐿𝜇𝜇

† = 𝐴𝐴, 𝐿𝐿𝜇𝜇 = 0 ∀𝜇𝜇



Generic condition

• If there exists a lowering operator 𝐴𝐴 with the following properties

𝐻𝐻,𝐴𝐴 = −𝜆𝜆𝜆𝜆 and         𝐴𝐴, 𝐿𝐿𝜇𝜇
† = 𝐴𝐴, 𝐿𝐿𝜇𝜇 = 0 ∀𝜇𝜇

with 𝜆𝜆 ≠ 0 then 𝜌𝜌𝑛𝑛𝑛𝑛 of the form (with integer 𝑚𝑚,𝑛𝑛 > 0, 𝑚𝑚 ≠ 𝑛𝑛)

𝜌𝜌𝑛𝑛𝑛𝑛 = A𝑛𝑛𝜌𝜌00 𝐴𝐴† 𝑚𝑚

with 𝜌𝜌00 a stationary state evolves according to 

ℒ𝜌𝜌𝑛𝑛𝑛𝑛 = i 𝑚𝑚− 𝑛𝑛 λρ𝑛𝑛𝑛𝑛

• The “mixed coherences” are not necessarily decoupled from the 
environment

𝐿𝐿𝜇𝜇𝜌𝜌𝑛𝑛𝑛𝑛𝐿𝐿𝜇𝜇
† ≠ 0

• The combination of system and environment drives the long-
term dynamics among the states on the imaginary axis. Im{𝜆𝜆𝑖𝑖}

Re{𝜆𝜆𝑖𝑖}

ga
p

𝜌𝜌𝑠𝑠𝑠𝑠

𝝆𝝆𝟎𝟎𝟎𝟎

𝝆𝝆𝟏𝟏𝟏𝟏



Generalized Gibbs ensemble

• In general we may have a set of dynamical symmetries 𝐴𝐴𝑗𝑗 with values 𝜆𝜆𝑗𝑗.

• This includes conventional symmetries with a value of 𝜆𝜆𝑗𝑗 = 0.

• In the long-time limit we can assume that the system evolves to a maximum entropy state consistent 
with the presence of dynamical symmetries.

• This state is a generalized Gibbs ensemble

𝜌𝜌 𝑡𝑡 → ∞ =
1
𝑍𝑍

exp −�
𝑗𝑗

𝜇𝜇𝑗𝑗 exp −i𝜆𝜆𝑗𝑗𝑡𝑡 𝐴𝐴𝑗𝑗 + h. c.

• The constant amplitudes 𝜇𝜇𝑗𝑗 are determined by the initial state.

• Note that the operators 𝐴𝐴𝑗𝑗 are not necessarily extensive observables.



Example: driven superconductivity



Systems with 𝜂𝜂-pairing symmetry

• 𝜂𝜂-pairing symmetry

𝜂𝜂𝑧𝑧 =
1
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with 𝜏𝜏 𝑗𝑗 a chequerboard pattern. 

• They fulfil
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𝜂𝜂 – correlations in the Hubbard model
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• Competing order
• Decaying correlations

• High energy
• Off-diagonal long-range order
• Superconducting

C. N. Yang, PRL 63, 2144 (1989)



Spin-heated Hubbard model

Heating-Induced Long-Range 𝜂𝜂-Pairing in the Hubbard Model, J. Tindall, B. Buca, J.R. Coulthard, DJ, PRL 123, 030603 (2019)

• High Temperature • Off-diagonal long-
range order

Source of Heating
- dissipation ∝ 𝑆𝑆𝑧𝑧
- driving ∝ 𝐵𝐵 𝜏𝜏

Hubbard 
model



Spin-heating the Hubbard model from the ground state

• Uniform off-
diagonal 
correlations

• Superconducting 
order

• Survives 
indefinitely

Doublon-doublon correlation 
between site 𝑖𝑖 and 𝑗𝑗

Parameters:
𝑈𝑈 = 𝑡𝑡

• Ground state of 
the Hubbard 
model

• Decaying 
correlations

• No off-diagonal 
order



Stationary State

• The quantum jump operators 𝐿𝐿𝜇𝜇 ∝ 𝑛𝑛𝜇𝜇 are Hermitian and thus the 
identity operator 𝕀𝕀 is a stationary state of the dynamics

ℒ𝕀𝕀 = −i 𝐻𝐻, 𝕀𝕀 + �
𝜇𝜇

2 𝐿𝐿𝜇𝜇𝕀𝕀𝐿𝐿𝜇𝜇
† − 𝐿𝐿𝜇𝜇

†𝐿𝐿𝜇𝜇𝕀𝕀 − 𝕀𝕀𝐿𝐿𝜇𝜇
†𝐿𝐿𝜇𝜇 = 0

• Conserved quantities are 𝑁𝑁↓, 𝑁𝑁↑, and 𝜂𝜂+𝜂𝜂− and we assume a 
stationary state of the form (with Lagrange parameters 𝛽𝛽𝑖𝑖 fixing them)

𝜌𝜌𝑠𝑠𝑠𝑠 ∝ exp(𝛽𝛽1𝑁𝑁↓ + 𝛽𝛽2𝑁𝑁↑ + 𝛽𝛽3𝜂𝜂+𝜂𝜂−)

• Since in the stationary state 𝜌𝜌𝑠𝑠𝑠𝑠 we have 𝜌𝜌𝑠𝑠𝑠𝑠,𝑃𝑃𝑖𝑖,𝑗𝑗 = 0, where 𝑃𝑃𝑖𝑖,𝑗𝑗
swaps two lattice sites we can show that

𝑇𝑇𝑇𝑇 𝜌𝜌𝑠𝑠𝑠𝑠, 𝜂𝜂𝑖𝑖+𝜂𝜂𝑖𝑖+𝑗𝑗− = const.

J. Tindall, F. Schlawin, M. Sentef and D. Jaksch, Analytical Solution for the Steady States of the Driven Hubbard model, PRB103, 035146 (2021).

Im{𝜆𝜆𝑖𝑖}
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Lattice imbalance and 𝜂𝜂 condensates

Lieb Theorem
𝑆𝑆+𝑆𝑆− ∝ 𝑁𝑁2

in unbalanced lattices 
with

𝑁𝑁𝑎𝑎 ≠ 𝑁𝑁𝑏𝑏
and total number of 
lattice sites

𝑁𝑁 = 𝑁𝑁𝑎𝑎 + 𝑁𝑁𝑏𝑏

Driving an unbalanced 
lattice thus leads to long-
range 𝜂𝜂 correlations in 
the long-term

J. Tindall, F. Schlawin, M. Sentef and D. Jaksch, Lieb Theorem and Maximum Entropy Condensates, preprint arXiv:2103.04687.



Summary: Dynamical symmetries

NJP 22, 013026 (2020);
SciPost Physics 12, 097 (2022)

Quantum time crystals

PRL 123, 030603 (2019); 
Quantum 5, 610 (2021)

Frustration induced 
pairing

PRL 125, 137001 (2020)

𝑡𝑡𝑡
𝑡𝑡𝑡

𝑡𝑡

𝑡𝑡

𝑡𝑡

𝑡𝑡
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𝐴𝐴, 𝐿𝐿𝜇𝜇
† = 𝐴𝐴, 𝐿𝐿𝜇𝜇 = 0 ∀𝜇𝜇

arXiv:2008.11166 (2020)

Quantum many-body
attractors

𝑡𝑡

Dissipative time 
crystals

PRL 123, 260401 (2019); NJP 22, 085007 (2020)
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