Electrical Detection magnetic Configurations in insulators

Aisha Aqeel

Technical University of Munich, Germany

Thanks to

Maria Azhar KIT Karlsruhe

Maxim Mostovoy Bart J. Van Wees Thomas Palstra RUG Netherlands

Nynke Vlietstra Hans Hübl TU Munich

Technology evolution

Going beyond standard charge electronics

Magnetic insulators?

Yttrium Iron Garnet YIG - Y₃Fe₅O₁₂

Static magnetization

Copper oxy-selenite Cu₂OSeO₃

Dzyaloshinskii-Moriya (DM)

*н*Тіппіпіпіпі

Static magnetization - noncollinear

Copper oxy-selenite Cu₂OSeO₃

Dzyaloshinskii-Moriya (DM)

Static magnetization - noncollinear

e.g. Tokura, Y. and Seki, S. Adv. Mater., 22 (2010), Leonov and Kézsmárki, Phys. Rev. B 96, 214413 (2017)

Copper oxy-selenite Cu₂OSeO₃

Dzyaloshinskii-Moriya (DM)

Static magnetization - noncollinear

Part I – Spin-Hall magnetoresistance

Part II – Results in Pt/Cu₂OSeO₃ & Pt/CoCr₂O₄

Spin-Hall magnetoresistance (SMR)

 Accidental detection (explained by AMR):
 M. Weiler *et al.*, Phys. Rev. L. 108, 106602 (2012)

 Theory:
 Y.-T. Chen, *et al.*, Phys. Rev. B **87**, 144411 (2013)

Detection:

H. Nakayama *et al.*, Phys. Rev. Lett. 110, 206601 (2013) N. Vlietstra *et al.*, . Phys. Rev. B 87, 184421 (2013)

Spin-Hall magnetoresistance (SMR)

NM

FM

$$R_L^{SMR} \propto \left(1 - m_y^2\right)$$

 $\tau_{\text{STT}} \propto M \times (M \times s) \neq 0$ Large dissipation in NM

M

 $\tau_{\rm STT} = 0$ Reduced dissipation in NM

Spin-Hall magnetoresistance (SMR)

$$R_L^{SMR} \propto \left(1 - m_y^2\right) = A \cos^2(\alpha)$$

$$R_{L}^{SMR} \propto (1 - m_{y}^{2}) = A \cos^{2}(\alpha)$$

$$R_{T}^{SMR} \propto m_{x}m_{y} = A \sin(2\alpha)$$

$$Exp. \text{ configuration}$$

$$Magnetic Insulator$$

Aqeel, et al., Phys. Rev. B, 94, 134418 (2016); Aqeel, et al., J. Phys. D Appl. Phys. 50, 174006 (2017)

Aqeel, et al., Phys. Rev. B, 94, 134418 (2016); Aqeel, et al., J. Phys. D Appl. Phys. 50, 174006 (2017)

Aqeel, et al., Phys. Rev. B, 94, 134418 (2016); Aqeel, et al., J. Phys. D Appl. Phys. 50, 174006 (2017)

13/21

T dependence of SMR

14/21

T dependence of SMR

T dependence of SMR

Can there be a second term?

$$R_T^{SMR} \propto \langle m_x m_y \rangle = A \sin(2(\alpha - \phi))$$

1.5

collinear

1.0

SMR theory

Aqeel, et al., Phys. Rev. B, **103**, *L100410*. (2021)

 $(35nm) CoCr_2O_4/MgAl_2O_4$

SMR in Pt/CoCr₂O₄

SMR in Pt/CoCr₂O₄

Is second term chiral/orientation dependent?

Kipp, Lux, Mokrousov, Phys. Rev. R 3, 043155 (2021)

Summary

• SMR for electric detection of spirals and skyrmions.

• Can there be chiral/directional contributions?

