Magneitc excitations and dynamics of the honeycomb iridate H₃Lilr₂O₆

Alberto de la Torre (he/his) Northeastern University

DeLTA lab at NU

"Emergence"

"More is different" P. W. Anderson, 1972

Quantum Materials

Materials displaying complex emergent phenomena over a wide range of energies and length scales

Correlated insulators

Ultrafast light-matter interaction

Reversible

Timescale of microscopic processes

Flexible implementation

Access p.o.m. without equilibrium counterpart

Nonthermality as a resource

Colloquium: Nonthermal pathways to ultrafast control in quantum materials

ADLT et al, Rev. Mod. Phys. **93**, 041002 (2021)

Dante Kennes

Martin Claassen

Simon Gerber

James Mclver

Michael Sentef

Quantum Spin Liquids

- Highly correlated fluctuating spins down to low temperature without symmetry breaking
- Long range entangled ground states

Kitaev model in the honeycomb lattice

K. Plumb

Iridium oxides

Magnetic interactions

Towards Kitaev Quantum Spin Liquids

First experimental realizations

Generic spin model beyond the Kitaev limit

PRL 112, 077204 (2014)

Phenomena during excitation

Free moving electron

 $p \rightarrow p - eA(t)$

One dimensional chain (Peierls substitution)

$$t_0 \rightarrow t_{\rm h}(t) = t_0 e^{ieaA(t)/\hbar}$$

 $A(t) = E_0/\omega \cos(\omega t)$

Periodically oscillating field

Light induced control of magnetic interactions in Kitaev materials

$$\mathcal{H}_{ij}{}^{(\gamma)} = J\tilde{\boldsymbol{S}}_{i}\cdot\tilde{\boldsymbol{S}}_{j} + K\tilde{\boldsymbol{S}}_{i}{}^{\gamma}\tilde{\boldsymbol{S}}_{j}{}^{\gamma} + \sum_{\alpha\neq\beta}\Gamma_{\alpha\beta}\left(\tilde{\boldsymbol{S}}_{i}{}^{\alpha}\tilde{\boldsymbol{S}}_{j}{}^{\beta} + \tilde{\boldsymbol{S}}_{i}{}^{\beta}\tilde{\boldsymbol{S}}_{j}{}^{\alpha}\right)$$

Light induced control of magnetic interactions in Kitaev materials

What are the spectroscopic signatures of this transition?

Outlook

- Broad, momentum-independent, magnetic excitations in H₃Lilr₂O₆ reflect Kitaev physics
- Ultrafast control of magnetic exchanges (a preview)

"My drawing was not a picture of a hat. It was a picture of a boa constrictor digesting an elephant."

A spin-orbital-entangled quantum liquid on a honeycomb lattice

K. Kitagawa¹*, T. Takayama²*, Y. Matsumoto², A. Kato¹, R. Takano¹, Y. Kishimoto³, S. Bette², R. Dinnebier², G. Jackeli^{2,4} & H. Takagi^{1,2,4}

Resonant Inelastic X-ray Scattering (RIXS)

Resonant inelastic x-ray scattering studies of elementary excitations Charge Transfer Phonons (Bi-) Magnons 50 meV 500 meV 1.5 eV 2 eV Energy

REVIEWS OF MODERN PHYSICS, VOLUME 83, APRIL–JUNE 2011

 $E_i = 2p_{3/2} \rightarrow 5d \ (L_3)$

 $E_{Loss} = E_i - E_f$

Intermediate state 5d⁵*

ADLT et al, Phys. Rev. B 104, L100416 (2021)

Resonant Inelastic X-ray Scattering (RIXS)

 $E_{Loss} = E_i - E_f$

Intermediate state 5d⁵*

RIXS spectrometer (MERIX) @ APS 27-ID

Lowe energy RIXS excitations in H₃Lilr₂O₆

ADLT et al, arxiv: 2302.07907

Continuum of magnetic excitations

Data is not consistent with a random valance bond model

AFM short range correlations in Kitaev magnets

 α - Li₂IrO₃ T > T_N

Nat Phys 11, 462 (2015)

Absence of short-range correlations

Comparison to Kitaev QSL

PRL 112, 207203 (2014) PHYSICAL REVIEW B 92, 115127 (2015) PHYSICAL REVIEW B 97, 134432 (2018)

Comparison to Kitaev QSL

PHYSICAL REVIEW B 92, 115127 (2015) PHYSICAL REVIEW B 97, 134432 (2018)

Effect of disorder in S(Q)

Stacking faults

 2θ (degree)

arxiv: 2201.06085

Take home message

- Spin excitation is characterized by a broad continuum of comparable intensity to the elastic line, centered at E ~ 25 meV with a tail extending up to 150 meV
- Disorder induced absence of momentum dependence of the magnetic excitations
- H₃Lilr₂O₆ is proximal to bond-disordered KQSL with dominant K ~ 25 meV

Some preliminary synchrotron tr-RIXS results

PHYSICAL REVIEW B 92, 115154 (2015)

Acknowledgements

Brown University

Kemp Plumb Ben Zager

Office of Science DE-SC002165

Boston College

Faranak Bahrami Fazel Tafti

RIXS spectrometer (MERIX) @ APS 27-ID

Argonne National Lab

Jungho Kim Mary Upton Diego Casa Gilberto Fabbris Daniel Haskel