Entropic effects and solitons in thermally activated magnetic transitions

Louise Desplat

Photo credit: https://h2obyjoanna.wordpress.com/

Ackowledments

Prof. Robert L. Stamps

Dr. Joo-Von Kim

Prof. Dieter Suess Dr. Christoph Vogler

Computing thermal activation rates in magnetism

An overview

Thermal activation in magnetism

Arrhenius law:

♦ Search for transition pathways: GNEB

2 Sampling the dynamics

& Langevin dynamics: stochastic Laudau-Lifshitz-Gilbert equation

$$\frac{d\boldsymbol{m}}{dt} = \gamma \boldsymbol{m} \times (\boldsymbol{B}_{eff} + \boldsymbol{b}(t)) - \gamma \frac{\alpha}{\mu_S} \boldsymbol{m} \times (\boldsymbol{m} \times (\boldsymbol{B}_{eff} + \boldsymbol{b}(t)))$$

• However: brute-force sampling: $k^{-1} \le ns$

Sampling rare events: Forward flux sampling (FFS)

- Transition path ensemble between stationary states A and B
- In or out of equilibrium
- Define interfaces between A and B
- Langevin trial runs \rightarrow compute partial flux of trajectories p_i

Rate of crossing of interface Λ_0 coming from region A

Probability that a trajectory that has crossed interface λ_i will cross λ_{i+1} before returning to A

Allen et al. Phys. Rev. Lett. 94 (2005)

Louise Desplat – SPICE YRLGW, Ingelheim, Germany – 25/07/2023

 $\boldsymbol{B}_{eff} + \boldsymbol{b}(t)$

 $\boldsymbol{m}(t)$

Thermal stability of magnetic skyrmions

Entropic narrowing

Magnetic skyrmions

✤ Topologically nontrivial solitonic textures

$$\pi_2(S^2) = \mathbb{Z}$$

Topological charge $N = \frac{1}{4\pi} \int d\mathbf{r}^2 \ \mathbf{m} \cdot (\partial_x \mathbf{m} \times \partial_y \mathbf{m})$

Stabilized by the chiral Dzyaloshinskii-Moriya interaction (DMI)

$$\mathcal{H}_{DMI} = -\boldsymbol{D}_{ij} \cdot (\boldsymbol{m}_i \times \boldsymbol{m}_j)$$

Levy & Fert, *Phys. Rev. Lett.* **44** (1980) Bogdanov & Yablonskii, *Zh. Eksp. Teor. Fiz* **95** (1989) Envisioned as information carriers in future spintronics devices

Skyrmion racetrack

Sampaio et al. Nat. Nanotechnol. 8 (2013) Prychynenko et al. Phys. Rev. Appl. 9 (2018) Pinna et al. Phys. Rev. Appl. 9 (2018)

Continuum limit: topological protection Discrete lattice: skyrmions are metastable

Heisenberg Hamiltonian

Projection on the unit sphere

Projection on the unit sphere

Projection on the unit sphere

Projection on the unit sphere

Projection on the unit sphere

Projection on the unit sphere

Eigenmode profiles

Saddle point

Desplat et al. PRB 98, 134407 (2018)

Metastable skyrmion

Eigenmode profiles

Metastable skyrmion

Saddle point

Desplat et al. PRB 98, 134407 (2018)

Eigenmode profiles

Metastable skyrmion

Saddle point

Desplat et al. PRB 98, 134407 (2018)

Thermal significance of internal skyrmion modes

Entropic narrowing

Effect of a magnetic field: comparison with forward flux sampling

> Good agreement of the methods

- \succ Variation of f_0 over several orders of magnitude
 - important entropic contribution
 - ΔE is not enough to estimate sk stability

Von Malottki et al. PRB 99, 0604099(R) (2019)

Retention times in magnetic tunnel junctions

Entropy-Enthalpy Compensation

Information retention time in magnetic tunnel junctions

- \clubsuit Information encoded by collinear magnetization state of the free layer
- \clubsuit Magnetization can reverse under thermal fluctuations \rightarrow information loss

★ Information retention time: mean waiting time between reversals τ = k⁻¹ = f₀⁻¹ e^{βΔE}
★ Typical metric: stability factor Δ = β₃₀₀ΔE ≥ 50 → 10 year stability assuming f₀ ~GHz

► Is this valid?

System studied

- ✤ Perpendicularly magnetized CoFeB nanodisc
- * Micromagnetic energy density:

$$\varepsilon = A \begin{bmatrix} \partial_x m^2 + \partial_y m^2 \end{bmatrix} - K m_z^2 + D \begin{bmatrix} m_z \partial_x m_x - m_x \partial_z m_z + id. (x \to y) \end{bmatrix}$$

Exchange Anisotropy DMI

• In some cases a full dipole-dipole (DDI) treatment was done (MUMAX3)

Parameters: Sampaio *et al.* Appl. Phys. Lett., **108**, 112403 (2016)

Reversal pathway, energy barriers

\clubsuit Reversal pathway

- Nucleation and propagation of a **domain wall**
- Saddle point S: wall in the centre of the disk

- ***** Energy barriers:
 - Varying DMI: $\Delta E \sim D$
 - Varying anisotropy: $\Delta E \sim \sqrt{K}$

Desplat & Kim, PRL **125**, 107201 (2020) Desplat & Kim, PR Applied **14**, 064064 (2020)

Retention times

***** Retention times:

- Qualitative agreement between Langer and FFS
- Much shorter times than for $f_0 \sim \text{GHz}$

Desplat & Kim, PRL **125**, 107201 (2020) Desplat & Kim, *PR Applied* **14**, 064064 (2020)

Prefactor:

- Very large values (10^{17} s^{-1})
- Varies over several orders of magnitude with material parameters

The Meyer-Neldel Rule: Entropy-enthalpy Compensation

- Many processes in science: transport in semiconductors, chemical reactions, biological death rates, etc
- Processes with **large energy barriers** compared to typical excitations in the system
- A family of transitions follows the MN rule if

$$f_0 \propto e^{\frac{\Delta E}{E_0}}$$

• Since $\Delta F = \Delta E - T\Delta S$, $\longrightarrow k = f_{00}e^{\frac{\Delta S}{k_B}}e^{-\beta\Delta E}$

and the MN rule follows if

$$\frac{\Delta S}{k_B} \propto \frac{\Delta E}{E_0}$$

Yelon & Movaghar, *PRL* **65**, 818 (1990) Yelon *et al.*, *PRB* **46**, 12244 (1992) ΔF - change in total free energy ΔS - activation entropy E_0 - characteristic Meyer-Neldel energy d - width of the disk Ad - energy scale of magnons

> DW-mediated reversal obeys MN rule > $f_0 \propto e^{\Delta E}$

Desplat & Kim, *PRL* **125**, 107201 (2020) Desplat & Kim, *PR Applied* **14**, 064064 (2020)

Interpretations

Conclusion

✤ In both cases: soliton state is a high entropy state due to internal degrees of freedom