Majorana Loop Models and Engineering Criticality in Measurement-only Quantum Circuits

Kai Klocke

University of California, Berkeley

July 26, 2023

Kai Klocke (University of California, Berkeley) Majorana Loop Models and Engineering Criticality in Measurement-

Measurement-Induced Phase Transitions

Elementary components

- Unitary gates (e.g. Clifford, Haar)
- Weak or projective measurements
- Random positions, times and outcomes
- Averaging over the randomness yields an infinite temperature state $\overline{\rho} \sim \mathbb{1}$

Figure: Fisher et al., Annu Rev Cond Mat Phys 14:1 (2023)

Measurement-Induced Phase Transitions

Elementary components

- Unitary gates (e.g. Clifford, Haar)
- Weak or projective measurements
- Random positions, times and outcomes

```
Averaging over the randomness yields an infinite temperature state \overline{\rho} \sim \mathbb{1}
```

Entanglement Transitions

Measurements may drive a transition in the entanglement entropy at the level of individual circuit trajectories.

Figure: Fisher et al., Annu Rev Cond Mat Phys 14:1 (2023)

Universality

For Clifford circuits, the MIPT is *typically* in the percolation universality class.

Minimal Cut Picture

- Each qubit gets a worldline
- Unitaries are assumed to be maximally entangling
- Projections destroy entanglement \rightarrow cut worldlines
- Entanglement is upper-bounded by the minimal cut in this network

Figure: Fisher et al., Annu Rev Cond Mat Phys 14:1 (2023)

Measurement-only Clifford Circuits

- Measuring anticommuting operators \rightarrow competition dynamics
- Allowed operators determine the topology of the measurement phases
- Transition may separate topologically distinct *area-law* phases
- Few exactly solvable models

Objectives:

- Develop an analytic framework for characterizing MIPTs in generic measurement-only Clifford circuits.
- Olassify possible entanglement phases and transitions

Kai Klocke (University of California, Berkeley) Majorana Loop Models and Engineering Criticality in Measurement-(

July 26, 2023

Gaussian Majorana Circuits

2 Non-Gaussian Circuits

3 Outlook: Engineering criticality

Kai Klocke (University of California, Berkeley) Majorana Loop Models and Engineering Criticality in Measurement-

Loop Models in Majorana Circuits

Free fermionic stabilizer circuit:

- Allowed operations are quadratic
 - Braids: $\mathcal{R}_{lm} = \frac{1 \gamma_l \gamma_m}{\sqrt{2}}$
 - Parity measurements: $\mathcal{P}_{lm} = \frac{1-i\gamma_l\gamma_m}{2}$
- Majorana worldlines in the circuit correspond to an O(1) packed loop model

< 🗇 🕨

Loop Models in Majorana Circuits

Free fermionic stabilizer circuit:

- Allowed operations are quadratic
 - Braids: $\mathcal{R}_{lm} = \frac{1-\gamma_l \gamma_m}{\sqrt{2}}$
 - Parity measurements: $\mathcal{P}_{lm} = \frac{1-i\gamma_l\gamma_m}{2}$
- Majorana worldlines in the circuit correspond to an $\mathrm{O}(1)$ packed loop model

Circuit quantities in loop models:

- Mutual information $I_2(A, B)$: # loops connecting A and B
- Purification: # loops spanning from t = 0 to t = T
- Loop length distribution $P(\ell)$ encodes all key data

Operator Algebra

$$0 = [\mathcal{P}_{lm}, \mathcal{P}_{ns}] = [\mathcal{R}_{lm}, \mathcal{R}_{ns}],$$

$$1 = \mathcal{R}_{lm}^{4},$$

$$\mathcal{P}_{lm} = \mathcal{R}_{ms}^{\dagger} \mathcal{P}_{ls} \mathcal{R}_{ms},$$

$$\mathcal{R}_{lm} = \mathcal{R}_{ms}^{\dagger} \mathcal{R}_{ls} \mathcal{R}_{ms},$$

$$\mathcal{P}_{lm} = \mathcal{P}_{lm}^{2} = \mathcal{P}_{lm} \mathcal{P}_{nl} \mathcal{P}_{lm}$$

degenerate Birman-Murakami-Wenzl algebra

- Entanglement depends only on $|\langle \gamma_I \gamma_m \rangle|$
- Loop diagrams are equivalence classes of circuits under the relation R_{lm} ~ R[†]_{lm}
- The operator algebra reduces to the Brauer algebra \mathcal{B}_N

6/17

Operator Algebra

$$\begin{split} \mathbf{0} &= [\mathcal{P}_{lm}, \mathcal{P}_{ns}] = [\mathcal{R}_{lm}, \mathcal{R}_{ns}], \\ \mathbf{1} &= \mathcal{R}_{lm}^{4}, \\ \mathcal{P}_{lm} &= \mathcal{R}_{ms}^{\dagger} \mathcal{P}_{ls} \mathcal{R}_{ms}, \\ \mathcal{R}_{lm} &= \mathcal{R}_{ms}^{\dagger} \mathcal{R}_{ls} \mathcal{R}_{ms}, \\ \mathcal{P}_{lm} &= \mathcal{P}_{lm}^{2} = \mathcal{P}_{lm} \mathcal{P}_{nl} \mathcal{P}_{lm} \end{split}$$

degenerate Birman-Murakami-Wenzl algebra

Orientability: a hidden U(1) symmetry

If all operators $\gamma_I \gamma_m$ respect a partitioning $I \in A$, $m \in B$, worldlines can be assigned a conserved orientation.

- Orientable: walled Brauer algebra $\mathcal{B}_{|\mathcal{A}|,|\mathcal{B}|}$, $\mathbb{CP}^{n-1} \operatorname{NL}\sigma M$
- Non-orientable: Brauer algebra \mathcal{B}_N , \mathbb{RP}^{n-1} NL σ M

Operator Algebra

$$0 = [\mathcal{P}_{lm}, \mathcal{P}_{ns}] = [\mathcal{R}_{lm}, \mathcal{R}_{ns}],$$

$$1 = \mathcal{R}_{lm}^{4},$$

$$\mathcal{P}_{lm} = \mathcal{R}_{ms}^{\dagger} \mathcal{P}_{ls} \mathcal{R}_{ms},$$

$$\mathcal{R}_{lm} = \mathcal{R}_{ms}^{\dagger} \mathcal{R}_{ls} \mathcal{R}_{ms},$$

$$\mathcal{P}_{lm} = \mathcal{P}_{lm}^{2} = \mathcal{P}_{lm} \mathcal{P}_{nl} \mathcal{P}_{lm}$$

degenerate Birman-Murakami-Wenzl algebra

Temperley-Lieb (TL) algebra

$$e_i e_{i\pm 1} e_i = e_i, \quad [e_i, e_j] = 0 \quad (\forall |i-j| > 1), \ e_i^2 = n e_i$$

- Describes O(n) loop models without crossings (i.e. Q = n²-state Potts model)
- Diagrammatic representation via loops with $e_i \sim \mathcal{P}_{i,i+1}$
- For nearest-neighbor measurements and *n* = 1, we get a 1-state Potts model → percolation universality

Percolation and the Goldstone Phase

Vertex Configurations:

$$\bigvee \longrightarrow \bigvee_{p} \qquad \sum_{(1-p)q} \qquad \bigvee_{(1-p)(1-q)}$$

- p = 0
 ightarrow measurement-only repetition code
- $p \neq 0 \rightarrow$ completely-packed loop model with crossings (CPLC)

→ < ∃ →</p>

Percolation and the Goldstone Phase

Vertex Configurations:

$$\bigvee \longrightarrow \bigvee_{p} \qquad \sum_{(1-p)q} \qquad \bigvee_{(1-p)(1-q)}$$

- $p = 0 \rightarrow$ measurement-only repetition code
- $p \neq 0 \rightarrow$ completely-packed loop model with crossings (CPLC)

	Critical Percolation	CPLC Goldstone Phase
Orientable	✓	×
Exponent ν	4/3	2.75
Entanglement S_ℓ	$\sim \log(\ell)$	$\sim \log(L)\log(\ell)$
Purification $S(L, t)$	$F[tL^{-1}]$	$\log(L)F[tL^{-1}]$
Stabilizer lengths $P(\ell)$	ℓ^{-2}	$\log(\ell)\ell^{-2}$

→ < ∃ →</p>

7/17

Gaussian Circuits: Two Leg Ladder

Majorana Lattice Representation:

- Vertex $I \leftrightarrow$ Majorana γ_I
- Edges $(I, m) \leftrightarrow$ allowed measurement P_{Im}

If the Majorana lattice is bipartite, the loop model is orientable

Kai Klocke (University of California, Berkeley)

Majorana Loop Models and Engineering Criticality in Measurement-

July 26, 2023

8/17

Gaussian Circuits: Orientable

Loop length distribution

Finite coupling yields an area-law phase with exponentially large correlation length

< ∃⇒

Gaussian Circuits: Orientable

Network localization in class C

- Localization on the Manhattan lattice (Beamond 2002)
- Spin quantum Hall effect in coupled Chalker-Coddington bilayer (Chalker 2011)

Figure: Chalker et al., PRB 83, 115317 (2011)

Gaussian Circuits: Non-Orientable

Strong orientability breaking yields an extended Goldstone phase in the CPLC universality class.

Majorana Loop Models and Engineering Criticality in Measurement-o

July 26, 2023

< ∃⇒

10/17

Gaussian Majorana Circuits

Outlook: Engineering criticality

・ロト・日本・日本・日本・日本・ つんの

Non-Gaussian Circuits

Simplifying Jordan-Wigner strings

- In a short loop (area-law) phase, local parities reduce JW strings and may restore an unambiguous loop configuration.
- RG relevance can be inferred from the Potts model formulation of the Gaussian limit.

Parity breaking terms

- Prepare an ancilla with $\langle X_A \rangle = +1$.
- Promote parity non-conserving Paulis $\hat{O} \rightarrow X_A \hat{O}$.
- The ancilla mediates non-local swaps which may break orientability.

CPLC from Parity Breaking

Generic Range-2 Circuit: Allow all two-qubit Paulis measurements with probability $p_{A_lB_{l+1}} = p_a p_b$ for $A, B \in \{X, Y, Z\}$

Coupled Potts Models

Bond	Operator XY	Probability $s/2$
=	YX	s/2
\square	ZZ	(1 - s)r
	XIX	(1-s)(1-r)

Gaussian limit

• Two decoupled TL algebras: $\mathcal{P}_{XY} \rightarrow e_i$, $\mathcal{P}_{YX} \rightarrow b_i$

Interactions

- $\mathcal{P}_{ZZ} \rightarrow 1 e_i b_i + 2e_ib_i$
- $\mathcal{P}_{XIX} \to 1 e_i b_{i+1} + 2e_i b_{i+1}$
- Such $\varepsilon \overline{\varepsilon}$ coupling of 1-state Potts models is RG irrelevant

Figure: Fendley and Jacobsen, J Phys A, 2008

< <p>Image: A matrix

Majorana Loop Models and Engineering Criticality in Measurement-o

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Coupled Potts Models

Bond	Operator	Probability
	XY	s/2
=	YX	s/2
	ZZ	(1 - s)r
	XIX	(1-s)(1-r)

Transfer matrix

$$egin{aligned} \hat{T} &= \sum_i iggl[\lambda(e_i+b_i)+e_i\left((1+\delta r)b_i+(1-\delta r)b_{i+1}
ight) \ \lambda &= rac{s}{2(1-s)}-|\delta r|, \ \delta r = 2r-1 \end{aligned}$$

Strong-coupling fixed point

• At $\lambda = 0$, \hat{T} involves the new TL algebras generated by $e_i b_i$ and $e_i b_{i+1}$

•
$$s_c(\delta r) = \frac{2|\delta r|}{1+2|\delta r|}$$

Universality

- $|\delta r| \lesssim \frac{1}{4} \Rightarrow$ percolation
- $|\delta r| \gtrsim \frac{1}{4} \Rightarrow \mathsf{BKT}$
- $\delta r = 0 \Rightarrow$ tricritical 1-state Potts (Ising)

Coupled Potts Models

Bond	Operator XY	Probability $s/2$
=	YX	s/2
	ZZ	(1 - s)r
	XIX	(1-s)(1-r)

Tricritical Point

- 4-fermion terms try to align the two copies (e_i, b_i)
- Competition leads to breakdown of correlated percolation
- Tricritical 1-state Potts \rightarrow dilute O(1) loops \rightarrow lsing universality
- Relevant perturbations
 - Varying δr tunes the vacancy chemical potential
 - Varying s tunes the effective temperature to infinity \rightarrow volume law phase

3 Outlook: Engineering criticality

July 26, 2023

Majorana Loop Models and Engineering Criticality in Measurement-Kai Klocke (University of California, Berkeley)

→ < Ξ →</p>

ъ

Engineering Criticality

Adaptive circuits

- Varying loop fugacity n → broad family of critical models
 - $n \in [0,2] \rightarrow 2$ nd order transition
 - n>2
 ightarrow 1st order transition
 - Realized by adaptive classical assistance to modify measurement probabilities and thus the loop ensemble
- $\bullet~{\rm Line~tension} \rightarrow {\rm dense}~{\rm and}~{\rm dilute~loop}~{\rm models}$
 - Realized by classical flag for "active" or "inactive"

Surface transitions

- Fixing loop fugacity *n* determines the possible surface transitions in the loop model
- Modifying the boundary couplings requires a final layer of additional measurements.
- See Garratt et al. PRX 2023

Summary

Summary

- Majorana circuits admit an exact O(1) loop model description
- Generic measurement-only Clifford circuits yield a coarse-grained loop picture.
- Diverse family of critical points can be realized by manipulating the operator algebra
- Blueprint for engineered criticality via adaptive feedback and boundary measurements

See arXiv:2305.18559

Thank you!

- Cologne: Michael Buchhold
- Berkeley: Joel Moore

