

LUKAS KÖRBER // YRLGW 07/2023

Spin waves in *curved* magnetic shells

Deutsche Forschungsgemeinschaft

Acknowledgements

HELMHOLTZ ZENTRUM **DRESDEN** ROSSENDORF

Helmholz-Zentrum Dresden-Rossendorf

- Prof. Dr. Jürgen Fassbender
- Prof. Dr. Manfred Helm
- Dr. Jürgen Lindner
- Oleksandr Pylypovsky

Micromagnetic Modeling Group (HZDR)

- Dr. Attila Kákay
- Friedrich Zahn
- Gwendolyn Quasebarth
- Alexander Hempel

TU Dresden

– Dr. Andreas Otto

TU München

– Prof. Dr. Christian Back

Universidad Católica del Norte

– Prof. Dr. Jorge Otálora

Universität Augsburg University

University Augsburg

– Prof. Dr. István Kézsmárki

NAS of Ukraine

– Dr. Roman Verba

Karlsruhe Institute of Technology

– Dr. Volodymyr Kravchuck

Spin waves in curved magnetic shells

Curvature is a fundamental aspect of our physical world

Curvature of spacetime

Photo of earth's curvature

taken in 1947 (using a V-2 rocket)

Hannay angle from curvature

Microscopic properties changed by bending, deforming, rolling up

Strain-induced Berry phase in graphene

Hannay angle of pendulum

Berry phase of electrons

Aharonov-Bohm interference

Other examples

geometric frustration in liquid crystals

assembly of **viral shells**

Lopez-Leon et al. Nature Phys 7, 391-394 (2011)

Ganser et al., Science 283, 80-83 (1999)

vortex generation in **superconductor tubes**

Fomin et al., Nano Lett. 12.3, 1282-1287 (2012)

5

Magnetic materials are sensitive to curvature, topology etc.

Symmetry (e.g. parity)

emergent chiral interactions

stabilization of skyrmions Kravchuk *et al.*, PRL **120**, 067201 (2018)

asymmetric domain wall pinning Volkov *et al.*, PRL **123**, 077201 (2019)

topologically-induced domain walls on Möbius ribbons Pylypovskyi et al., PRL 114, 197204 (2015)

magnetization *M* = vector order parameter

Topology

vortex pairs on spherical shells Kravchuk et al., PRB **85**, 144433 (2012)

other geometrical effects

locked domain walls in double helices Donnelly et al., Nat. Nano 17, 136–142 (2022)

effects relevant on nm to μ m scale \rightarrow technologically relevant

Statics is nice... but what about dynamics?

What is a spin wave?

7

Statics is nice... but what about dynamics?

What is a spin wave?

How they might be useful (examples)

...as interconnects to spin qubits Bejarano *et al.,* arXiv:2208.09036v1 (2023)

...for reservoir computing Körber, Heins *et al.*, accepted at Nat. Comm (2023)

8

Spin waves are also sensitive to geometrical effects

Example: Curvature-induced dispersion asymmetry

Otálora *et al.*, PRL **117**, 227203 (2016)

Curvature leads to Nonlocal chiral symmetry breaking (related to dipole-dipole interactions).

nonreciprocal propagation +Z

$$\mathbf{x} + \mathbf{H}_{dip} + \mathbf{H}_{ani} + \mathbf{H}_{ext} + \dots$$

$$\mathbf{x}$$

$$\mathbf{x}$$

$$\mathbf{x}$$

$$\mathbf{x}$$

$$\mathbf{x}$$

$$\mathbf{x}$$

$$\mathbf{x}$$

$$\mathbf{x}$$

11

Continuum limit: Landau-Lifshitz-Gilbert equation (LLG)

$$\frac{\mathrm{d}M}{\mathrm{d}t} = -\gamma M \times H_{\mathrm{eff}}(M)$$
$$|$$
$$H_{\mathrm{eff}} = H_{\mathrm{ex}}$$

Continuum limit: Landau-Lifshitz-Gilbert equation (LLG)

$$\frac{\mathrm{d}M}{\mathrm{d}t} = -\gamma M \times H_{\mathrm{eff}}(M)$$
$$|$$
$$H_{\mathrm{eff}} = H_{\mathrm{ex}}$$

13

Nonlocal chiral symmetry breaking due to geometric charges

homogenous in cross section

(- (- m(t))) $k \odot$

Homogeneous along normal direction! (otherwise not analytically solvable)

dynamic volume charges

Volume charges

$$\nabla \boldsymbol{m} = (\partial_1 m^1$$

Sheka *et al.*, Comm. Phys. 3, 128 (2020)

14

Nonlocal chiral symmetry breaking due to geometric charges

homogenous in cross section

(- (- m(t))) $k \odot$

Homogeneous along normal direction! (otherwise not analytically solvable)

dynamic volume charges

Volume charges

$$\nabla \boldsymbol{m} = (\partial_1 m^1$$

Sheka *et al.*, Comm. Phys. 3, 128 (2020)

15

Nonlocal chiral symmetry breaking due to geometric charges

If is a bulk effect... thin-shell approximation is boring

(otherwise not analytically solvable)

Development of finite-element dynamic-matrix method

Landau-Lifshitz-Gilbert equation (LLG) $\frac{dM}{dt} = -\gamma M \times H_{eff}(M) + damping$ linearize around some equilibrium $M(t) = M_0 + m(t)$ $\frac{dm}{dt} = -\gamma \left[M_0 \times h_{eff}(m) + m \times H_{eff}(M_0) \right]$

Time integration + Post processing can take extremely long (several days to weeks)

18

Development of finite-element dynamic-matrix method

Development of finite-element dynamic-matrix method

Körber, Hempel *et al.,* AIP Advances **12**, 115206 (2022)

Notoriously tricky: Calculation of dynamic dipolar fields

How to solve this (efficiently) on a FEM mesh?

Körber *et al.*, AIP Advances **11**, 095006 (2021) Körber, Hempel *et al.*, AIP Advances **12**, 115206 (2022)

Method published as open-source package TetraX

Map of *confirmed* users

Documentation at <u>tetrax.readthedocs.io</u> with many examples

V TetraX Getting started Examples Publications User Guide API Reference More •

Section Navigation

User Guide

- 1. Introduction
- 2. Installation
- 3. Creating and defining a sample
- 4. Numerical Experiments
- 5. Visualization and evaluation
- 6. Appendix

Note

During the course of this User Guide, volumentric \mathbf{m}_{ν} and lateral profiles $\mathbf{m}_{\nu k}$ are often interchangeably denoted simply as "mode profiles", unless stated otherwise.

In *TetraX*, the eigensystem of a given sample in an experimental setup exp can be calculated by

>>> dispersion = exp.eigenmodes(...)

or simply

>>> exp.eigenmodes(...)

By default, the oscillation frequencies and the mode profiles are saved into the directory of the experimental setup.

 \square

40 Wave vector, $k (rad/\mu m)$

Different radial modes are hybridized/mixed

Hybridization between radial modes is nonreciprocal!

asymmetric crossings

$$\langle \psi_1 | \psi_2 \rangle$$

from nonreciprocal radial profiles? $\psi_{1}(k) \neq \left| \psi_{1}(-k) \right\rangle^{\mathscr{I}}$

Hybridization between radial modes is nonreciprocal!

$$\langle \psi_1 | \psi_2 \rangle$$

Nonreciprocity of profiles explained by inhomogeneous geometric charges

k < 0

Charges extended to thick shells:

$$\nabla \boldsymbol{m} = \left(\frac{1}{1+\zeta \mathcal{H}_0}\partial_1 m^1 + \partial_2 m^2 + \partial_{\zeta} m_n\right) + \mathcal{H}(\boldsymbol{r})m_n$$

Körber *et al.*, PRB 105, 014405 (2022)

k > 0

Nonreciprocity of profiles explained by inhomogeneous geometric charges

Assume same (homogeneous) profile

k < 0

$$\nabla \boldsymbol{m} = \left(\frac{1}{1+\zeta \mathcal{H}_0}\partial_1 m^1 + \partial_2 m^2 + \partial_{\zeta} m_n\right) + \mathcal{H}(\boldsymbol{r})m_n$$

Körber *et al.*, PRB 105, 014405 (2022)

ρ

Depends on normal direction.

 $\sim k + \frac{1}{2}$

Nonreciprocal hybridization allows unidirectional propagation

Summary: Spin waves in curved magnetic shells

open-source package TetraX

Nonlocal chiral symmetry breaking

Thank you for your attention!

