Efficient method for quantum impurity problems out of equilibrium

July 22, 2023

Dmitry Abanin

Julian Thönniß

Alessio Lerose ENSINE ENDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NATIONAL SUIZEZ SWISS NATIONAL SUIZEZO

Quantum systems out of equilibrium

ETH or MBL?

Quantum computing

Quantum advantage?

Dynamical phases

Impurity models

Kondo physics, DMFT, NMR

Real time evolution of local observables

$$\langle O(t) \rangle_{\rho(t=0)=\rho_0}$$
 or $\langle O(0)O(t) \rangle_{\rho_0}$

- Measurable quantity
- Transport properties: (Sub)diffusion vs ballistic
- Localization, Edge modes

Wavefunction based approaches

- Represent the density matrix at different time $\rho(t)$
- Obtain observables by computing $Tr[\rho(t)O]$

Problem:

Complexity grows exponentially with time!

Influence functional approach¹

Idea:

Describe the local subsystem as a quantum system coupled to a bath.

¹Feynman and Vernon Jr 1963.

The numerical power of the Influence matrix approach is limited by **temporal entanglement** instead of spatial entanglement

- Represents the "Memory" of the quantum bath
- Low temporal entanglement \Rightarrow efficient MPS representation
- Examples for low temporal entanglement:
 - Very chaotic systems $U \approx e^{i\frac{\pi}{4}Z_iZ_{i+1}+hZ_i}e^{i\frac{\pi}{4}X_i1}$
 - Close to integrability $U \approx e^{iJ_X X_i X_{i+1} + iJ_y Y_i Y_{i+1} 2}$
 - Dissipative system³
 - Many body localized systems Exact disorder averaging!⁴

¹Lerose, Sonner, and Abanin 2021a.

²Lerose, Sonner, and Abanin 2021b; Giudice et al. 2021; Thoenniss, Lerose, and Abanin 2022.

³Sonner, Lerose, and Abanin 2021; Mi et al. 2022.

⁴Sonner, Lerose, and Abanin 2022.

Obtaining the Influence matrix

¹Lerose, Sonner, and Abanin 2022; Frías-Pérez and Bañuls 2022; Banuls et al. 2009

Model

Single Impurity Anderson model

$$H = \sum_{k,\sigma} \left(\epsilon_{k,\sigma} c_{k,\sigma}^{\dagger} c_{k,\sigma} + V_{k,\sigma} d_{\sigma}^{\dagger} c_{k,\sigma} + h.c. \right) + U(n_{\uparrow} - \frac{1}{2})(n_{\downarrow} - \frac{1}{2})$$

- Impurity with on-site interaction coupled to free fermions
- Bath defined by spectral density $f(\omega) = 2\pi \sum_{k} |V_k|^2 \delta(\epsilon_k \omega)$
- Kondo effect: Effective impurity spin forms singlet with the fermions in the bath
- Quantum embedding approaches

Entanglement barrier²¹

Reflection at the boundary cause high temporal entanglement in finite system IM!

But: thermodynamic IM has low temporal entanglement

¹Calabrese and Cardy 2005.

²Lerose, Sonner, and Abanin 2022.

Algorithm¹

Spectral density

¹Thoenniss, Lerose, and Abanin 2022; Thoenniss et al. 2023.

- Initialize impurity in the $|\uparrow\rangle$ state
- Slow spin relaxation in the Kondo regime
- $\cdot\,$ Competitive with state of the art QMC 1

¹Cohen et al. 2015

²Thoenniss et al. 2023.

Transport²

- Left and right reservoir at different chemical potential
- Small bond dimension $\chi = 32,64$ (!)
- Steady state reachable
- Comparable with QMC ¹

¹Bertrand et al. 2019

²Thoenniss et al. 2023.

Imaginary time - RAMPS¹

Imaginary time Green's function

$$G(\tau) = \operatorname{Tr}(e^{-(\beta-\tau)H}c^{\dagger}e^{-\tau H}c)$$

Benedikt Kloss, Matthew T. Fishman, E. M. Stoudenmire, Olivier Parcollet, Antoine Georges

- Central step for Dynamic mean field theory (DMFT)
- Requires relatively high bond dimension
- Multi-orbital possible, no sign problem!

¹Kloss et al. 2023.

Compute local observables by finding a compressed representation of the large quantum system as a bath (IM)

- Complexity of the IM can be low even in traditionally difficult regimes
- For free fermions there is an efficient algorithm to compute the IM directly
- Natural for impurity problems, DMFT!
- For one dimensional interactive models, we can be efficiently obtain the IM through sequencial contraction¹

¹Lerose, Sonner, and Abanin 2022; Frías-Pérez and Bañuls 2022.