

Victor Ukleev BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie Department of Spin and Topology in Quantum Materials

Long-periodic spin textures in vector magnetic fields as seen by resonant elastic x-ray scattering

YRLG Workshop Ingelheim 26-07-2023

Topological spin orders in magnetic materials

INTRODUCTION

Particle-like spin objects hosting "topological charge": a zoo of the topological spin textures

G. Börge, I. Mertig, and O. A. Tretiakov. Physics Reports 895, 1-28 (2021)

Topological spin orders in magnetic materials

• Topological spin textures and emergent fields

INTRODUCTION

Electrons adiabatically traversing the topological spin texture adapt to the local **M** and acquire a quantum-mechanical Berry phase

Emergent magnetic field $\mathbf{B}_{i}^{e} = \frac{\hbar}{2} \epsilon_{ijk} \hat{n} \cdot (\partial_{j} \hat{n} \times \partial_{k} \hat{n})$ Emergent electric field $\mathbf{E}_{i}^{e} = \hbar \hat{n} \cdot (\partial_{i} \hat{n} \times \partial_{t} \hat{n})$

Topological contribution to the Hall resistivity:

The effective field in MnSi (skyrmion size of 15 nm)

$$B^{\mathrm{eff}} = -\frac{h}{e} \left(\frac{\sqrt{3}}{2\lambda_{\mathrm{S}}^2} \right) \approx -13.15 \mathrm{~T}.$$

generated by the applied field of 0.3 T!

Topological spin orders in magnetic materials

• Potential applications

INTRODUCTION

K. Everschor-Sitte, et al. AIP Advances 8, 055602 (2018)

K.M. Song, et al. Nature Electronics 3, 3 148-155 (2020)

Skyrmion

Input (784)

INTRODUCTION

Resonant x-rays for magnetism

Polarised x-rays - a tool to study static and dynamics magnetic orders

contrast mechanism for 'soft' x-rays (~100-2000 eV) - XMCD

Virtual transitions between 2p and 3d states

Resonant x-rays for magnetism (scattering)

INTRODUCTION

- 3*d*-2*p* transition is used for resonant scattering and diffraction: L_{2,3} edges of TM correspond to soft x-rays in the energy range of 460 (Ti L₃) 950 eV (Cu L₂) and wavelength range λ ~ 13-27 Å
- Resonant x-rays allow both reciprocal (scattering) and real-space (imaging)

bright x-ray source)

V.U., unpublished

Small-angle scattering: a tool to study nanometric orders

INTRODUCTION

pixel size ~ 15x15 µm²

Sample preparation for soft x-ray experiment

- Sample size and shape are adjusted according to the attenuation length of soft x-ray beam (~50 - 1000 nm thick for TM) and desire to use the coherence (aperture size of 1-20 μm)
- Method: thin plates prepared by Focused Ion Beam (FIB) milling

Commercial membranes (Silson Ltd., UK) 50 - 500 nm

Silicon nitride is almost transparent for soft x-rays

1 μm Au-coated Si₃N₄ membranes

EXPERIMENTAL

Zeiss NVision at EMF PSI

Sample preparation for soft x-ray experiment

- Sample size and shape are adjusted according to the attenuation length of soft x-ray beam (~50 - 1000 nm thick for TM) and desire to use the coherence (aperture size of 1-20 μm)
- Method: thin plates prepared by Focused Ion Beam (FIB) milling

Membrane preparation

EXPERIMENTAL

 Si_3N_4 membrane: thickness of 200 nm (transparent for soft X-rays)

Coating membrane with a few micron of Au to block the beam

Büttner, F., et al., Optics express, 21(25), pp.30563-30572.

BESSY-II, Helmholtz-Zentrum Berlin for Materials and Energy

- Location: Adlershof, Berlin, Germany
- **Operator:** Helmholtz-Zentrum Berlin für Materialien und Energie (Financing: 90% federal government, 10% State of Berlin)
- Commissioned: September 1998
- **Upgrades:** October 2012: Top-up mode and fast-orbit feedback
- Circumference: 240 metres
- Bending magnets: 32

EXPERIMENTAL

- Beam tubes: approx. 45
- Electron energy: 1.7 gigaelectronvolts (GeV)
- Nominal beam current: 300 milliamperes (mA)
- Energy of the synchrotron radiation: 1 to 150 kiloelectronvolts (keV)
- Duration of the light pulse: 20 picoseconds (after the upgrade to BESSY VSR: 1.5 and 15 ps)
- Measurement time per year: 40 weeks p.a., approx. 6,600 hours or 800 shifts p.a. (2017)
- User visits from guest researchers: 3,000 p.a.
- Strategic partners: Max Planck Society, PTB, BAM, Berliner universities

PM-2 VEKMAG, Dep. Spin and Topology in Quantum Materials

PM-2 beamline:

- Source: Dipole
- Energy range: 20-1600 eV

EXPERIMENTAL

- Flux: $\sim 5 \cdot 10^9$ photons/sec
- Polarization: 77% circular, linear horizontal
- Focus: from 60x50 μ m to 800x800 μ m
- Beam availability: 24 h/d, 6 d/w, 40 w/y
- User beam: ~70%

VEKMAG instrument:

- Pressure: $\sim 10^{-9}$ mbar
- Temperature: 350 mK 500 K
- Magnetic field: 9 T (X), 2 T (Y), 1 T (Z), up to 1 T in any 3D direction
- Sample manipulator: x, y, z, θ , azimuthal (ext. holder)
- Detectors: drain current: TEY, photodiodes: FY, transmission, reflection (z, 2θ), 2k-CCD, <u>4k-CCD (scattering in transmission)</u>.
- Techniques: XAS, XMCD, XLMD, XFMR, XRMS, SAXS
- **Unique capabilities:** downstream deposition chamber for in-situ experiments and vacuum transfer; in-situ cleaving; electric transport capability; XFMR; SAXS; laser (to be commissioned in 2023-2024)

https://www.helmholtz-berlin.de/pubbin/igama_output?modus=einzel&sprache=en&gid=1969&typoid=75136 https://www.helmholtz-berlin.de/pubbin/igama_output?modus=einzel&sprache=en&gid=1937&typoid=75136

Instrument scientist: Dr. Florin Radu

Dr. Victor Ukleev Dr. Chen Luo

P. Bak and M. H. Jensen, J. Phys. C 13, L881 (1980)S.V. Grigoriev, et al. PRB 91.22, 224429 (2015)

- Recently, we proposed a SAXS-based method to unambiguously quantify the AEI constant via tuning the spiral orientation by the vector field
- Anisotropic exchange interaction is called to explain the new tilted conical and low-T skyrmion phases in cubic chiral insulator Cu₂OSeO₃

Victor Ukleev^{0,1,*} Oleg Utesov^{0,2,3,4} Le Yu,^{1,5,6} Chen Luo^{0,7} Kai Chen,⁷ Florin Radu^{0,7} Yuichi Yamasaki,^{8,9} Naoya Kanazawa,¹⁰ Yoshinori Tokura,^{10,11,12} Taka-hisa Arima,^{11,13} and Jonathan S. White⁰¹

EXAMPLE I

 Cu_2OSeO_3 is a $P2_13$ cubic chiral magnet with the spiral period of 60 nm

Individual images of the conical states with 3 deg. step

EXAMPLES

Summed image at 14 K

EXAMPLE I

Summed pattern for all vector field angles (a) 0.12 30 $T=14\,\mathrm{K}$ 25 0.08 20 (.un 0.04 (nm^{-1}) arb. 15 0.00 ² Intensity Q_y -0.04 -0.08 0 $B = 40 \,\mathrm{mT}$ -0.12 -0.12 -0.04 0.00 0.04 0.08 0.12 -0.08 $Q_x \ (\mathrm{nm}^{-1})$

Strongly anisotropic periodicity of the conical texture!

Q is minimum for <100> and maximum for <110> -> F>0

$$Q = Q_0 \left\{ 1 - \frac{F_{\text{AEI}} \sin^2 2\psi}{4J} \right\} - \frac{JZ^2 \cot^2 \alpha}{2D^3} \sin^2 2(\psi - \phi)$$

Theory by O. Utesov (IBS, Korea Rep.)

50 K vs. 14 K

Anisotropy gradually vanishes on warming to 50 K ($T_c = 55$ K), but a weak uniaxial distortion is present due to the tensile strain

EXAMPLE I

SAXS on single-Q and multi-Q textures in tetragonal Heusler alloy

In collaboration with TU Dresden and MPI CPfS

A. Sukhanov, V.U., et al. PRB 106, L140402 (2022)

EXAMPLE II SAXS on single-Q and multi-Q textures in tetragonal Heusler alloy

In collaboration with TU Dresden and MPI CPfS

Tetragonal (D_{2d}) anti-skyrmion Heusler alloy Mn_{1.4}PtSn

[100] RH Bloch [110] [110] [110] [110] [110] [110] [110] [110] [110] [110] [110] [110] [110] [110]

T. Ma, et al., Adv. Mater. **2020**, 32, 2002043

VEKMAG @ BESSY-II

Full rotation of the spiral plane by the in-plane field!

Summed over all azimuthal angles

- Full control over the in-plane spiral propagation plane via vector magnetic field at VEKMAG (BESSY-II)
- At 300 K the spiral can be rotated freely within the tetragonal plane
- The *Q*-vector anisotropy depends on the sample shape

SAXS on single-Q and multi-Q textures in tetragonal Heusler alloy

In collaboration with TU Dresden and MPI CPfS

History dependence of the spiral switching:

(1) Prepare a single domain by the corresponding in-plane field

EXAMPLE II

- (2) Apply a finite field in the direction of k
- (3) The selected domain re-orients to the orthogonal direction

Orthogonal helices in a D_{2d} system have opposite chiralities (in principle)

To change the helical propagation vector from [100] to [010] the system goes through an intermediate triple-Q state

- □ Resonant SAXS is an excellent tool study long-periodic spin textures
- □ Element selectivity is naturally provided
- □ Flexible sample environment
- \Box Sensitive to very small sample volumes, e.g. 1 x 1 x 0.1 μ m³
- □ Requires rather complex sample preparation
- □ Complementary to neutron scattering and electron microscopy
- □ Allows to extract weak parameters of the spin Hamiltonian (AEI) in cubic chiral magnets (FeGe, Cu₂OSeO₃, CoZnMn, FeCoSi, etc.)
- \Box Adds new knowledge of the spin spiral behaviours in (not quite) $D_{\rm 2d}$ systems

PHYSICAL REVIEW RESEARCH	PHYSICAL REVIEW B 106, L140402 (2022)
Welcome Recent Subjects Accepted Collections Authors Referees Search About Scope Editorial Team ふ	Letter
Accepted Paper	Hybrid Bloch-Néel spiral states in Mn _{1.4} PtSn probed by resonant soft x-ray scattering
Direct observation of exchange anisotropy in the helimagnetic insulator Cu_2 $OSeO_3$	A. S. Sukhanov, ^{1,*,†} V. Ukleev, ^{2,3,*,‡} P. Vir, ⁴ P. Gargiani, ⁵ M. Valvidares, ⁵ J. S. White, ⁶ , ² C. Felser, ⁶ and D. S. Inoso
Priva R. Baral. Oleo I. Utesov. Chen Luo. Florin Radu. Arnaud Macrez. Jonathan S. White. and Victor Ukleev	

ACKNOWLEDGEMENTS

CollaboratorsFundingALBA synchrotron
P. Gargiani, M. ValvidaresSwiss Nation
Swiss Nation
Science For
Science For
Scien

Technische Universität Dresden

A. Sukhanov, M. Winter, M. Rahn, A. Tahn, D. Inosov, B. Rellinghaus

Paul Scherrer Institut

J.S. White

Institute for Basic Science

O.I. Utesov

Swiss National Science Foundation Federal Ministry of Education and Research Deutsche **DFG** Forschungsgemeinschaf

PAUL SCHERRER INSTITUT

Thank you for your attention!

victor.ukleev@helmholtz-berlin.de