The role of the magnon gap in spin-charge conversion at magnetic insulator/heavy metal interfaces

Joseph Barker j.barker@leeds.ac.uk *University of Leeds*

Engineering and Physical Sciences Research Council

THE ROYAL SOCIETY

Acknowledgements

Cavendish Laboratory, University of Cambridge

Chiara Ciccarelli

Farhan Nur Kholid

Dominik Hamara

Ioffe Institute, Russian Academy of Sciences Roman V. Pisarev

Department of Physics, University of Konstanz Davide Bossini

THz emission from insulator/metal multilayers

Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy

T.S. Seifert et al., Nat. Commun. 9, 2899 (2018)

Not the 'usual' spin Seebeck effect

- Too fast for temperature gradients to be established in the magnet.
- Only the metal is heated.
- THz experiments remove the long ranged spin transport of a temperature gradient sensitive only to the interface spin-charge conversion.

Overview

Interface spin currents - spin transfer torques

The electron spin polarisation is **perpendicular** to the magnetic moments

ť Torque First interaction induces a torque, but up and down electrons have opposite S effects so there is no net ΔS J_{sd} Torque S

T.S. Seifert *et al.*, Nat. Commun. **9**, 2899 (2018)

Interface spin currents - spin transfer torques

The electron spin polarisation is **perpendicular** to the magnetic moments

T.S. Seifert *et al.*, Nat. Commun. **9**, 2899 (2018)

Interface spin currents – incoherent scattering

The electron spin polarisation is **parallel** to the magnetic moments

S.A. Bender & Y. Tserkovnyak, Phys. Rev. B **91**, 140402 (2015)

Interface spin currents

Ultrafast heating of the heavy metal electrons breaking the equilibrium and leading to a net spin current

KCoF₃ and KNiF₃ Κ Co/Ni F

- Antiferromagnetic insulators
- Identical structure and magnetic space group
- Different magnetic anisotropy

The gap probably plays a role, but how do we interpret this for these very complex non-equilibrium experiments.

THz signal

Emission only lasts for 2 picoseconds.

THz signal is field dependent

Two degenerate modes that must be split with a field to generate a net spin current

Temperature dependence

F.N. Kholid et al., Appl. Phys. Lett. 119, 032401 (2021)

Temperature dependence of spin mixing conductance

(a)

THz signal amplitude

F.N. Kholid et al., Nat. Commun. 14, 538 (2023)

Interface spin currents – mDOS gap

If there are no magnon states, then electrons with energy below the gap cannot transfer spin

Electron-magnon scattering in magnetic heterostructures far out of equilibrium

Tveten, Phys. Rev. B 92, 180412 (2015)

"Just" need to derive for an antiferromagnetic insulator!

Theoretical model

$$\mathscr{H}_{AFM} = J_{AFM} \sum_{i,j} \mathbf{S}_j \cdot \mathbf{S}_j + H \sum_i S_i^x - K \sum_i (S_i^x)^2$$

 $\mathscr{H}_{Pt} = \sum_{i,j} \left(t_{ij} c_i^{\dagger} c_j + \text{h.c.} \right)$
 $\mathscr{H}_{sd} = \sum_i J_{sd} \mathbf{S}_i \cdot c_i^{\dagger} \boldsymbol{\sigma} c_i$

Heisenberg model for antiferromagnet

Tight binding model for metal

sd coupling at the interface

- Assume electrons follow a thermal (Fermi-Dirac) distribution
- Magnon distribution is allowed to be non-equilibrium
- Apply Fermi's Golden Rule for the *sd* scattering

Do a little maths...

$$\begin{split} I_{\rm sd} &= \frac{\pi S J^2}{A} \sum_{\mathbf{k}} \sum_{\mathbf{q}}' \left[\xi_{\mathbf{q}}^2 [1 + n_{\alpha}(\varepsilon_{-\mathbf{q}}^{\alpha})] n_B(\varepsilon_{\mathbf{k}+\mathbf{q}} - \varepsilon_{\mathbf{k}} - \mu_{\downarrow} + \mu_{\uparrow}) [n_F(\varepsilon_{\mathbf{k}} - \mu_{\uparrow}) - n_F(\varepsilon_{\mathbf{k}+\mathbf{q}} - \mu_{\downarrow})] \delta(\varepsilon_{\mathbf{k}} + \varepsilon_{-\mathbf{q}}^{\alpha} - \varepsilon_{\mathbf{k}+\mathbf{q}}) \\ &\quad -\xi_{\mathbf{q}}^2 [n_{\alpha}(\varepsilon_{-\mathbf{q}}^{\alpha})] n_B(\varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{k}+\mathbf{q}} + \mu_{\downarrow} - \mu_{\uparrow}) [n_F(\varepsilon_{\mathbf{k}+\mathbf{q}} - \mu_{\downarrow}) - n_F(\varepsilon_{\mathbf{k}} - \mu_{\uparrow})] \delta(\varepsilon_{\mathbf{k}} - \varepsilon_{-\mathbf{q}}^{\alpha} - \varepsilon_{\mathbf{k}+\mathbf{q}}) \\ &\quad +\xi_{\mathbf{q}}^2 [n_{\beta}(\varepsilon_{\mathbf{q}}^{\beta})] n_B(\varepsilon_{\mathbf{k}+\mathbf{q}} - \varepsilon_{\mathbf{k}} - \mu_{\downarrow} + \mu_{\uparrow}) [n_F(\varepsilon_{\mathbf{k}+\mathbf{q}} - \mu_{\downarrow}) - n_F(\varepsilon_{\mathbf{k}+\mathbf{q}} - \mu_{\downarrow})] \delta(\varepsilon_{\mathbf{k}} - \varepsilon_{-\mathbf{q}}^{\beta} - \varepsilon_{\mathbf{k}+\mathbf{q}}) \\ &\quad -\xi_{\mathbf{q}}^2 [1 + n_{\beta}(\varepsilon_{\mathbf{q}}^{\beta})] n_B(\varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{k}+\mathbf{q}} + \mu_{\downarrow} - \mu_{\uparrow}) [n_F(\varepsilon_{\mathbf{k}+\mathbf{q}} - \mu_{\downarrow}) - n_F(\varepsilon_{\mathbf{k}} - \mu_{\uparrow})] \delta(\varepsilon_{\mathbf{k}} - \varepsilon_{-\mathbf{q}}^{\beta} - \varepsilon_{\mathbf{k}+\mathbf{q}}) \\ &\quad +\xi_{\mathbf{q}}^{-2} [1 + n_{\alpha}(\varepsilon_{-\mathbf{q}}^{\alpha})] n_B(\varepsilon_{\mathbf{k}+\mathbf{q}+\mathbf{q}} - \varepsilon_{\mathbf{k}} - \mu_{\downarrow} + \mu_{\uparrow}) [n_F(\varepsilon_{\mathbf{k}+\mathbf{q}-\mu_{\downarrow}) - n_F(\varepsilon_{\mathbf{k}-\mathbf{q}+\mathbf{q}} - \mu_{\downarrow})] \delta(\varepsilon_{\mathbf{k}} + \varepsilon_{-\mathbf{q}}^{\alpha} - \varepsilon_{\mathbf{k}+\mathbf{q}+\mathbf{Q}}) \\ &\quad -\xi_{\mathbf{q}}^{-2} [n_{\alpha}(\varepsilon_{-\mathbf{q}}^{\alpha})] n_B(\varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{k}+\mathbf{q}+\mathbf{q}} + \mu_{\downarrow} - \mu_{\uparrow}) [n_F(\varepsilon_{\mathbf{k}+\mathbf{q}+\mathbf{q}} - \mu_{\downarrow}) - n_F(\varepsilon_{\mathbf{k}-\mathbf{q}+\mathbf{q}) - \mu_{\downarrow})] \delta(\varepsilon_{\mathbf{k}} - \varepsilon_{-\mathbf{q}}^{\beta} - \varepsilon_{\mathbf{k}+\mathbf{q}+\mathbf{Q}}) \\ &\quad +\xi_{\mathbf{q}}^{-2} [n_{\beta}(\varepsilon_{-\mathbf{q}}^{\beta})] n_B(\varepsilon_{\mathbf{k}+\mathbf{q}+\mathbf{q}} - \varepsilon_{\mathbf{k}} - \mu_{\downarrow} + \mu_{\uparrow}) [n_F(\varepsilon_{\mathbf{k}-\mathbf{q}+\mathbf{q}-\mu_{\downarrow}) - n_F(\varepsilon_{\mathbf{k}-\mathbf{q}+\mathbf{q}-\mu_{\downarrow})] \delta(\varepsilon_{\mathbf{k}} - \varepsilon_{-\mathbf{q}}^{\beta} - \varepsilon_{\mathbf{k}+\mathbf{q}+\mathbf{Q}}) \\ &\quad -\xi_{\mathbf{q}}^{-2} [n_{\beta}(\varepsilon_{-\mathbf{q}}^{\beta})] n_B(\varepsilon_{\mathbf{k}-\varepsilon_{-\mathbf{k}+\mathbf{q}+\mathbf{Q}} + \mu_{\downarrow} - \mu_{\uparrow}) [n_F(\varepsilon_{\mathbf{k}+\mathbf{q}+\mathbf{q}-\mu_{\downarrow}) - n_F(\varepsilon_{\mathbf{k}-\mathbf{q}+\mathbf{q}-\mu_{\downarrow})] \delta(\varepsilon_{-\mathbf{k}} - \varepsilon_{-\mathbf{q}}^{\beta} - \varepsilon_{-\mathbf{k}+\mathbf{q}+\mathbf{Q}}) \\ &\quad -\xi_{-2}^{-2} [1 + n_{\beta}(\varepsilon_{-\mathbf{q}}^{\beta})] n_B(\varepsilon_{-\mathbf{k}-\varepsilon_{-\mathbf{q}+\mathbf{q}+\mathbf{q}+\mu_{\downarrow} - \mu_{\uparrow}) [n_F(\varepsilon_{-\mathbf{k}+\mathbf{q}+\mathbf{q}-\mu_{\downarrow}) - n_F(\varepsilon_{-\mathbf{k}-\mu_{\uparrow})] \delta(\varepsilon_{-\mathbf{k}} - \varepsilon_{-\mathbf{q}}^{\beta} - \varepsilon_{-\mathbf{k}+\mathbf{q}+\mathbf{Q}}) \\ \\ &\quad -\xi_{-2}^{-2} [1 + n_{\beta}(\varepsilon_{-\mathbf{q}}^{\beta})] n_B(\varepsilon_{-\mathbf{k}-\varepsilon_{-\mathbf{q}+\mathbf{q}+\mu_{\downarrow}) - \mu_{\uparrow}) [n_F(\varepsilon_{-\mathbf{k}+\mathbf{q}+\mathbf{q}-\mu_{\downarrow}) - n_F(\varepsilon_{-\mathbf{k}-\mu_{\downarrow})] \delta(\varepsilon_{-\mathbf{k}-\varepsilon_{-\mathbf{q}}^{\beta} - \varepsilon_{-\mathbf{k}+\mathbf{q}+\mathbf{Q}}) \\ \\ &\quad -\xi_{-2}^{-2} [1 + n_{\beta}(\varepsilon_{-\mathbf{q}}$$

Dynamical description

Magnon dispersion

 $\varepsilon_k \approx 4\sqrt{3}SJ_{\rm AFM}k + 2S\sqrt{(J_{\rm AFM}z + K)K} \mp g\mu_B B$

Instantaneous spin current

$$I_{\rm sd} = \sqrt{\frac{S}{2}} \left\{ \int_{\varepsilon_0^{\alpha}}^{\varepsilon_{\rm max}^{\alpha}} d\varepsilon_q^{\alpha} \Gamma(\varepsilon_q^{\alpha}) g_{\alpha}(\varepsilon_q^{\alpha}) \left[(u_q + v_q)^2 + (u_q - v_q)^2 \right] [\varepsilon_q^{\alpha} + \mu_s] [n_B(\varepsilon_q^{\alpha} + \mu_s) - n_{\alpha}(\varepsilon_q^{\alpha})] - \int_{\varepsilon_0^{\beta}}^{\varepsilon_{\rm max}^{\beta}} d\varepsilon_q^{\beta} \Gamma(\varepsilon_q^{\beta}) g_{\beta}(\varepsilon_q^{\beta}) \left[(u_q + v_q)^2 + (u_q - v_q)^2 \right] [\varepsilon_q^{\beta} - \mu_s] [n_B(\varepsilon_q^{\beta} - \mu_s) - n_{\beta}(\varepsilon_q^{\beta})] \right\}$$

Electron temperature dynamics (induced by the laser heating)

$$\frac{\partial T_e}{\partial t} = \frac{T_0 - T_e}{\tau_e} + I \exp{-\frac{(t - t_0)^2}{2\sigma^2}}$$

$$\frac{\partial \mu_s}{\partial t} = -\frac{\mu_s}{\tau_s} + \frac{\rho}{\hbar} I_{sd}$$

Magnon population dynamics

$$\frac{\partial n_{\alpha}(\varepsilon_{q}^{\alpha})}{\partial t} = \frac{I_{sd}(\varepsilon_{q}^{\alpha})}{\hbar} = \frac{1}{\hbar} \sqrt{\frac{S}{2}} \Gamma(\varepsilon_{q}^{\alpha}) g_{\alpha}(\varepsilon_{q}^{\alpha}) \left[(u_{q} + v_{q})^{2} + (u_{q} - v_{q})^{2} \right] \left[\varepsilon_{q}^{\alpha} + \mu_{s} \right] \left[n_{B}(\varepsilon_{q}^{\alpha} + \mu_{s}) - n_{\alpha}(\varepsilon_{q}^{\alpha}) \right]}$$

Comparing theory and experiments

Interface spin currents – mDOS gap

Interface spin current transfer is constrained by the lack of magnon states.

Laser only increases Pt electron temperature ~30K, so at low temperatures few electrons can spin transfer

Still some open questions

- No theory yet which includes both spin transfer torques and incoherent processes – maybe important to understand the role of different domains in antiferromagnets.
- Small gap ferromagnets and antiferromagnets seem to have a universal behaviour. Not clear why.

Conclusions

- THz spin currents can be generated by antiferromagnet/heavy metal bilayers and they probe the interface spin-charge conversion.
- Experimental results are well reproduced by a simple sdscattering model.
- Spin current behaviour gives information about gaps in the magnon density of states.

Thank You