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Terahertz spintronics: Basic operations

1. Turn spins around

£

— Torque
B Dynamic equation: d;s =T = ys X Bgg(t) ﬁ Effective
magnetic field
Contributions to B .¢s:
1. Applied field TVDi
ypically < 1T
2. Spin-orbit 4>
3. Exchange<«- 100 —1000T

Exchange fields greatly enhance spin dynamics

Can we exploit them?



Exchange torques

Ferromagnet Antiferromagnet

Spins parallel 2 No exchange torques

Spin canted = Exchange torques

How to cant the spins in the first place?

In antiferromagnets: Néel spin-orbit torques



Néel spin-orbit torqgues (NSOTs)

4 My Metallic antiferromagnets Mn,Au and CuMnAs

. €O

Apply electric field E — Effective spin-orbit field B,

Locally broken inversion symmetry:
* Opposite Bg, for Aand B

| 4
‘-_ e Torques induce spin canting
Q X Zelezny et al, PRB (2014)
Wadley et al., Science (2016)
Mg

Néel vector L = M, — Mg Leads to exchange-enhanced dynamics

1. Can NSOTs launch THz magnons?
2. Ultimately, can they switch antiferromagnetic bits?

Requires ultrafast experiments



THz pump, magneto-optic probe

\" : Detect polarization change AS

As-grown:
* 90° domains
b <L0> = O

Prealigned:
Bext == 60 T

* LO 1 Bext

* (L()) +07?

THz pump field
+F = +(E, B)

Optical probe

Let us look at the signals from the prealigned sample Sapozhnik et al. PRB 97,
134429 (2018)



Raw signals: Prealigned sample

T T T T T T T T T T T (pS =
10 7
> ~~ L 4
. ©
= ©
£ 0 > o0
(4°) © o
5 & {180
(9p] _10 (9p]
10 F _
0 2 4 6 0) 2 4 6
Time t (ps) Time t (ps)
* Response slower than F(t) Rotate sample by 180° = Signal changes sign
e Signal is mostly odd in THz field F
* Focus on:
AS(+F,Ly) — AS(—F, L) “Built-in arrow”: Is it the Néel vector L,?
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Magnetic origin?

e “Built-in arrow” is L,

— Prealigned sample

Which field is acting?

Symmetry analysis:

Time (ps)

Further analysis (incl. probe polarization) shows:

AS < Ag; (t) In-plane
rotation of L

How can we model this rotation?

—— As-grown sample * Signal AS odd in F = (E, B) and odd in L,

— Substrate N

[110]

e Space inversion: Ly and THz E change sign, B does not

* Implies: AS < E < AS « L, % In general: ,,0dd”

L(t)

App ()

E(t)

[110]



Magnon model

t=0
1 NSOT Response for impulse:
E(t) < §(t)
t>0 We expect:

* In-plane magnon, i.e. oscillation of A
L

* Exchange-enhanced (THz frequency)

L
] Anisotropy Roy et al., PRB (2016); Gomonay et al., PRB (2018)

Solution: A, (t) « O(t) sin(Qt) exp(—Tt)

Does it fit our data?



Model vs. experiment

1 T T T T 15 T
5 10 (t)
§057¢ % 10 | H(t) .
S = x O(t) sin(Qt) exp(—Tt) |
& 0 Z
s I = 5r -
2 05 | =
= -0. SN
= <

1 F

-2 0 2 4 0 2 4
Time t (ps) Time t (ps)

Linear model: App(t) = fH(t)E(t —ndr ﬁ Convolution

AV O2 2
Do _ Y4 _ 0.6 THz = Implies spin-flop field B = % ~ 20T

Bare frequency: o -
OK with Sapozhnik et al., PRB (2018)

Damping: % = 0.3 THz - Gilbert damping a = ~ 1072
ex
OK with other AFM, e.g. IrMn (Kang et al., APL (2021))

We observe a strongly damped THz magnon .



Torkance and deflection

L(t)

App (1)

[110]
E(t)

* How strong is the coupling between electric field and spins,
i.e. the effective spin-orbit field?

* How large is the pump-induced deflection Ag;?

Calibration challenging in linear regime

But: We can use the non-linear response instead



Anharmonic potential for calibration

Harmonic potential Anisotropy potential
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Beyond harmonic approximation: Size of ¢; is uniquely determined by waveform shape

Can we observe non-linear behavior?
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Non-linear dynamics
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Time t (ps)

e Clear signs of non-linear dynamics
e Fit by model:
e Effective field By, = 8 mT per 1011A/m?

DFT: 2 mT
Zelezny et al.,
2017 (PRB)

* Maximum deflection Ap; =~ 30°
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L gets close to the maximum of the potential barrier

Extrapolate what happens at larger fields
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Extrapolation
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Possibility of coherent switching for increased fields

Switching time 1 ps
90° X n — rotation possible
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Summary and outlook

We observe signatures of Néel spin-orbit torques
Exchange-enhanced THz magnon

Deflection reaches non-linear regime at Ap; = 30°

90° switching is expected at
2-3 times higher THz fields

For observation in our experiments, we need:
« Signal sensitive to switched domains
* Reinitialization by in-situ control

* Enhanced electric field inside film

YB, Chekhov, Kampfrath et al. Nature Commun. 14, 6083 (2023)
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