

Terahertz Néel spin-orbit torques drive nonlinear spin dynamics in antiferromagnetic Mn₂Au

Yannic Behovits, FU Berlin

Terahertz Spintronics: Toward Terahertz Spin-based devices (2023)

Terahertz spintronics: Basic operations

- 1. Turn spins around

2. Transport spins

3. Detect spin dynamics

 \rightarrow Torque

Dynamic equation: $\partial_t s = T = \gamma s \times B_{eff}(t)$ Effective
magnetic fieldContributions to B_{eff} :Typically $\leq 1 \text{ T}$ 1. Applied fieldTypically $\leq 1 \text{ T}$ 2. Spin-orbit100 - 1000 \text{ T}

Exchange fields greatly enhance spin dynamics

Can we exploit them?

Exchange torques

Ferromagnet

Spins parallel \rightarrow No exchange torques

Antiferromagnet

 \otimes

Spin canted \rightarrow Exchange torques

 $T_{\rm ex} \neq 0$

How to cant the spins in the first place?

In antiferromagnets: Néel spin-orbit torques

Néel spin-orbit torques (NSOTs)

- 1. Can NSOTs launch THz magnons?
- 2. Ultimately, can they switch antiferromagnetic bits?

Requires ultrafast experiments

THz pump, magneto-optic probe

Raw signals: Prealigned sample

- Response slower than F(t)
- Signal is mostly odd in THz field F
- Focus on:

$$\Delta S(\boldsymbol{L}_0) = \frac{\Delta S(\boldsymbol{+F}, \boldsymbol{L}_0) - \Delta S(\boldsymbol{-F}, \boldsymbol{L}_0)}{2}$$

Rotate sample by 180° \rightarrow Signal changes sign

"Built-in arrow": Is it the Néel vector L_0 ?

Magnetic origin?

Magnon model

Response for impulse: $E(t) \propto \delta(t)$

We expect:

- In-plane magnon, i.e. oscillation of $\Delta \varphi_L$
- Exchange-enhanced (THz frequency)

Roy et al., PRB (2016); Gomonay et al., PRB (2018)

Does it fit our data?

Model vs. experiment

Torkance and deflection

- How strong is the coupling between electric field and spins, i.e. the **effective spin-orbit field**?
- How large is the pump-induced deflection $\Delta \varphi_L$?

Calibration challenging in linear regime

But: We can use the non-linear response instead

Anharmonic potential for calibration

Beyond harmonic approximation: Size of φ_L is *uniquely* determined by waveform shape

Can we observe non-linear behavior?

Non-linear dynamics

- Clear signs of non-linear dynamics
- Fit by model:

• Maximum deflection $\Delta \varphi_L \approx 30^\circ$

L gets close to the maximum of the potential barrier

Extrapolate what happens at larger fields

Extrapolation

Possibility of coherent switching for increased fields

- Switching time 1 ps
- $90^{\circ} \times n$ rotation possible

Acknowledgments

THz physics group

Afnan Alostaz Genaro Bierhance **Alexander Chekhov Oliver Gueckstock** Chihun In Zdenek Kaspar Quentin Remy Reza Rouzegar Amon Ruge Bruno Serrano Tom Seifert Junwei Tong

Tobias Kampfrath

JGU Mainz JGU Stanislav Boo

Stanislav Bodnar Satya Bommanaboyena Sonka Reimers Martin Jourdan Mathias Kläui Yaryna Lytvynenko

Helen Gomonay

HZDR Yurii Skourski

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

DFG

CRC / TRR 227

Summary and outlook

- We observe signatures of Néel spin-orbit torques
- Exchange-enhanced THz magnon
- Deflection reaches non-linear regime at $\Delta \varphi_L \approx 30^\circ$

- 90° switching is expected at 2-3 times higher THz fields
- For observation in our experiments, we need:
 - Signal sensitive to switched domains
 - Reinitialization by in-situ control
 - Enhanced electric field inside film

