

Light- and microwave-induced spin current and spin-to-charge conversion in magnetic quantum material heterostructures

M. Benjamin Jungfleisch Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA

Team and Collaborators

University of Delaware

Weipeng Wu Duy Quang To Anderson Janotti Lars Gundlach

NIST

Garnett W. Bryant

Argonne National Labs

Haidan Wen Richard D. Schaller

Morgan State University

Vinay Sharma Prabesh Bajracharya Anthony Johnson Ramesh C. Budhani

Acknowledgment

Additional support received by NSF under Grant No. 1833000 and the University of Delaware Research Foundation

Jungfleisch Group

Terahertz technologies

Jungfleisch Group

CENTER FOR HYBRID, ACTIVE, AND RESPONSIVE MATERIALS

Miao et al., Rep. Prog. Phys. **74**, 036501 (2011)

3

Spintronic terahertz emitter

Inverse spin Hall effect: $\vec{J}_c \propto \theta_{SH} \vec{J}_s \times \vec{\sigma}$

Wu, ..., MBJ et al., J. Appl. Phys. 130, 091101 (2021)

Jungfleisch Group

Control of THz emission by spin-charge current conversion at Rashba interfaces

Modification of THz emission using microfabricated spintronic emitters

6

Controlling polarization by remanent magnetization - concept

In collaboration with Haidan Wen and Rich 7 Schaller, Argonne National Laboratory.

Controlling polarization by remanent magnetization - realization

Schaller, Argonne National Laboratory.

Outline: Spin current injection across FM/ TI interfaces

THz emission inverse spin Hall effect experiment

Ferromagnet/ 3D topological insulator heterostructures grown by DC magnetron sputtering:

- Sapphire(substrate)//Fe₇₈Ga₁₃B₉(FeGaB)/Bi₈₅Sb₁₅(BiSb)/MgO(capping)
 - Amorphous FeGaB
 - BiSb with (001) texture
- MgAl₂O₄(substrate)// Fe₇₅Co₂₅(FeCo) / Bi₂Te₃(BiTe)/Al(capping)
 - Epitaxial FeCo with body-centered cubic (bcc) structure
 - Polycrystalline BiTe

Jungfleisch Group

CENTER FOR HYBRID, ACTIVE, AND RESPONSIVE MATERIALS → Phys. Rev. Materials **5**, 124410 (2021)

→ Appl. Phys. Lett. **122**, 072403 (2023)

Outline: Spin current injection across FM/ TI interfaces

THz emission inverse spin Hall effect experiment

Ferromagnet/ 3D topological insulator heterostructures grown by DC magnetron sputtering:

- Sapphire(substrate)//Fe₇₈Ga₁₃B₉(FeGaB)/Bi₈₅Sb₁₅(BiSb)/MgO(capping)
 - Amorphous FeGaB
 - BiSb with (001) texture
- MgAl₂O₄(substrate)// Fe₇₅Co₂₅(FeCo) / Bi₂Te₃(BiTe)/Al(capping)
 - Epitaxial FeCo with body-centered cubic (bcc) structure
 - Polycrystalline BiTe

Jungfleisch Group

Bilayer thin film growth and characterization

<u>DC magnetron sputtering:</u> **Fe₇₈Ga₁₃B**₉ and **Bi₈₅Sb**₁₅ <u>Thickness</u> FeGaB: 6 nm, BiSb: 0, 1, 2, 4, 6, 8, 10, 15, 20 nm We refer FeGaB(6)/BiSb(2) as A6-B2.

- Similar saturation magnetization M_s of 1.2 ± 0.14 T for bilayer with different thickness of BiSb
- Small coercivity field of $\mu_0 H \leq 2mT$ indicating a soft magnetic character of the FeGaB films with inplane magnetization

The deposition of BiSb on top of FeGaB does not affect the magnetization significantly

Sharma, Wu, ..., MBJ et al., Phys. Rev. Materials 5, 124410 (2021)

Jungfleisch Group

Experimental setup for combined FMR/ISHE

Ferromagnetic resonance (FMR): Gilbert damping $\alpha \rightarrow$ spin-mixing conductance $g^{\downarrow\uparrow}$ **Inverse spin-Hall effect (ISHE):** spin-to-charge current conversion \rightarrow spin-Hall angle θ_{SH} and spin-diffusion length λ_{SD} of BiSb

Sharma, Wu, ..., MBJ et al., Phys. Rev. Materials 5, 124410 (2021)

Jungfleisch Group

Ferromagnetic resonance (FMR)

BiSb-thickness dependent variation of Gilbert damping

Inverse spin Hall effect (ISHE) of BiSb

Positive spin Hall angle of BiSb
Opposite spin Hall angle for bare FeGaB compared to FeGaB/BiSb

BiSb(8 nm): $\theta_{SH} = 0.007 \pm 0.001$ BiSb(10 nm): $\theta_{SH} = 0.010 \pm 0.001$

Jungfleisch Group

How do GHz dynamics translate to the THz range?

GHZ ______ THZ

THz emission experiments

pumping across FeGaB-BiSb interface in agreement.

Jungfleisch Group

Comparison to theory: Tight-binding model of BiSb

 $t_{ij} \neq 0$ and $t_{ij} = 0$ correspond to the case with and without surface Rashba effect

Increased BiSb thickness leads to an increase of spin-Hall conductivity σ_{SHE} , hence increasing the spin-to-charge conversion efficiency in GHz and THz experiments.

Modeling by To, Janotti, Bryant (UDCHARM)

Jungfleisch Group

Sharma, Wu, ..., MBJ et al., Phys. Rev. Materials **5**, 124410 (2021)

Take-home messages - Part 1

E Contraction of the second se

- Metallurgically clean interface between FeGaB and BiSb layer
- Unconventional thickness dependence of $g^{\downarrow\uparrow}$ in FeGaB/BiSb
- Spin-pumping-induced DC measurements enable separation of contributions from AMR and ISHE
- Spin Hall angle ($\theta_{SH} = 0.010$) and spin-diffusion length ($\lambda_{SD} = 7.86 nm$) of BiSb determined
- Agreement between GHz, THz experiments & linear response theory based on Kubo-Bastin formula considering a tight-binding model

Jungfleisch Group

Sharma, Wu, ..., MBJ et al., Phys. Rev. Materials **5**, 124410 (2021)

Outline: Spin current injection across FM/ TI interfaces

THz emission mediated by inverse spin Hall experiment

Materials of interest (ferromagnet/3D topological insulator) grown by DC magnetron sputtering:

- Sapphire(substrate)//Fe₇₈Ga₁₃B₉(FeGaB)/Bi₈₅Sb₁₅(BiSb)/MgO(capping)
 - Amorphous FeGaB
 - BiSb with (001) texture
- MgAl₂O₄(substrate)// Fe₇₅Co₂₅(FeCo) / Bi₂Te₃(BiTe)/Al(capping)
 - Epitaxial FeCo with body-centered cubic (bcc) structure
 - Polycrystalline BiTe

Jungfleisch Group

GHz – ISHE studies: FeCo/BiTe

(c)

-20 -10

10

and a constant

10 20

30

CENTER FOR HYBRID. ACTIVE

AND RESPONSIVE MATERIALS

-10 0 10 μ_o(H-H_) (mT)

20

ISHE and rectification effects

Jungfleisch Group

A Coco on

Ο

-20

Data

Symm

Asymm

-10

0

 $\mu_0(H-H_r)(mT)$

 $V_{mix} = K_s \frac{H^2}{(H - H_r)^2 + H^2} + K_{as} \frac{-2H(H - H_r)}{(H - H_r)^2 + H^2}$

Fit

 $(V_{mix}(+H) - V_{mix}(-H))/2$

-2

-4

-8 ...

Sharma, Wu, ..., MBJ et. al. Appl. Phys. Lett. **122**, 072403 (2023)

BT thickness (nm)

21

Jungfleisch Group

CENTER FOR HYBRID, ACTIVE, AND RESPONSIVE MATERIALS

Sharma, Wu, ..., MBJ et. al. Appl. Phys. Lett. **122**, 072403 (2023)

Spin-diffusion length - comparison

Spin diffusion lengths determined from experiments at different time scales in agreement.

Jungfleisch Group

Take-home messages - Part 2

H

- Observation of spin pumping induced ISHE signal in FeCo/BiTe; additional contribution from high AMR of Fe₇₅Co₂₅ is revealed.
- Extracted spin-diffusion lengths obtained from the two experiments agree well despite the drastically different time scales.
- FMR-induced spin pumping and ultrafast spin-current injection are promising complementary tools to investigate inverse spin Hall effect.

Fe₇₈Ga₁₃B₉/Bi₈₅Sb₁₅ results: Phys. Rev. Materials **5**, 124410 (2021) Fe₇₅Co₂₅/Bi₂Te₃ results: Appl. Phys. Lett. **122**, 072403 (2023)

Recent tutorial article on Principles of THz spintronics: Wu et al., J. Appl. Phys. **130**, 091101 (2021)

